Aula 20

F 502 - Eletromagnetismo I 2o semestre de 2020
24/11/2020

Aulas passadas

Campo magnético de correntes estacionárias: lei de Biot-Savart

$\mathbf{B}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime}$ se $\boldsymbol{\nabla} \cdot \mathbf{J}=0$
Leis da magnestostática:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\boldsymbol{\nabla} \times \mathbf{B} & =\mu_{0} \mathbf{J}(\text { se } \boldsymbol{\nabla} \cdot \mathbf{J}=0)
\end{aligned}
$$

Aulas passadas

Campos magnéticos atuam sobre correntes/cargas em movimento

$$
\begin{gathered}
\mathbf{F}=q \mathbf{v} \times \mathbf{B} \\
d \mathbf{F}=d \mathbf{I} \times \mathbf{B}
\end{gathered}
$$

$d \mathbf{I}=\mathbf{I} d l=I d \mathbf{l}$
$d \mathbf{I}=\mathbf{K} d S$
$d \mathbf{I}=\mathbf{J} d V$

Wire 1
Wire 2

Aulas passadas

Potencial vetor:

$$
\nabla \cdot \mathbf{B}=0 \Longleftrightarrow \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}
$$

Liberdade ou invariância de calibre:

$$
\mathbf{A}^{\prime}=\mathbf{A}+\boldsymbol{\nabla} \lambda \Rightarrow \boldsymbol{\nabla} \times \mathbf{A}^{\prime}=\boldsymbol{\nabla} \times \mathbf{A}
$$

Equação de Poisson no calibre de Coulomb:

$$
\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J} \text { se } \boldsymbol{\nabla} \cdot \mathbf{A}=0
$$

Aulas passadas

Solução geral das equações da magnetostática

$$
\begin{aligned}
& \mathbf{A (\mathbf { r })}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \\
& \mathbf{A (\mathbf { r })}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{K}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d S^{\prime} \\
& \mathbf{A (\mathbf { r })}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{I}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d l^{\prime}
\end{aligned}
$$

$$
\text { se } \boldsymbol{\nabla} \cdot \mathbf{J}=0 \mathrm{e} \boldsymbol{\nabla} \cdot \mathbf{A}=0
$$

A expansão multipolar na magnetostática

Aula passada $(r \gg a, b)$:

$$
\begin{gathered}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \\
\mathbf{m}=I a b \hat{\mathbf{z}}
\end{gathered}
$$

$$
\vec{A}(\vec{\sim})=\frac{\mu_{0}}{4 \pi} \int \frac{I d \overrightarrow{Q^{\prime}}}{\left|\vec{T}-\vec{\lambda}^{\prime}\right|}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{Q}^{\prime} \mid}{\left|\vec{\lambda}-\vec{R}^{\prime}\right|}
$$

Expansád multipolar: SE o circuito pe corrente ter DIMENSAO d, QUEREMOS $\vec{A}(\vec{r})$ PARA $|\vec{\lambda}| \gg d$.

$$
\begin{aligned}
& \frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}(\cos \gamma)^{\left(\wedge>八^{\prime}\right)} \\
& \cos \gamma=\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}^{\prime}=\frac{\hat{\mathbf{r}} \cdot \mathbf{r}^{\prime}}{r^{\prime}}
\end{aligned}
$$

$$
\text { TERMO } \theta=0: \frac{1}{a} R_{0}(\cos \gamma)=\frac{1}{n}
$$

$$
\vec{A}_{0}(\vec{n})=\frac{\mu_{0} I}{4 \pi} \oint \frac{d^{2} l^{\prime}}{\mu}=\frac{\mu_{0} I}{4 \pi \mu} \oint \vec{Q}^{\prime} \text { ESTACIONA'RCA }
$$

=termo de monopolo magnético é sempre nulo. ISSO REGLETE A INEXISTÊNCIA DE MONOPRLOS (CARAAS) magne'ticas wa natureza:

$$
\bar{\nabla} \cdot \bar{B}=0
$$

TERMO $l=1: \frac{1}{\sim} \frac{\Lambda^{\prime}}{\sim} P_{1}(\cos \gamma)=\frac{\Lambda^{\prime}}{\mu^{2}} \cos \gamma=\frac{\mu^{\prime}}{\mu^{2}} \frac{\hat{\Omega} \cdot \vec{n}^{\prime}}{\mu^{\prime}}=\frac{\hat{\mu} \cdot \mu^{\prime}}{\mu^{2}}$

$$
\vec{A}_{1}(\vec{r})=\frac{\mu_{0} I}{4 \pi} \oint \frac{\hat{\lambda} \cdot \vec{\Lambda}^{\prime}}{\Lambda^{2}} d \vec{l}^{\prime}=\frac{\mu_{0} I}{4 \pi \Lambda^{2}} \oint\left(\hat{\imath} \cdot \vec{n}^{\prime}\right) d \vec{l}^{\prime}=\frac{\mu_{0} I}{4 \pi \mu^{2}} \hat{\imath} \cdot\left[\oint \vec{r}^{\prime} d \vec{l}^{\prime}\right]
$$

coro mostrado nas notas:

$$
\begin{aligned}
& \oint_{c(s)}\left(\hat{\imath} \cdot \vec{n}^{\prime}\right) d \vec{l}^{\prime}=-\hat{\Omega} \times \int_{s} d \vec{s}^{\prime} \\
& \Rightarrow \vec{A}_{1}(\vec{r})=\frac{\mu_{0} I}{4 \pi \lambda^{2}}\left[-\hat{\imath} \times \int_{s} d \vec{s}^{\prime}\right]=\frac{\mu_{0}}{4 \pi \lambda^{2}} \underbrace{\left[I \int_{S} d \vec{s}^{\prime}\right]}_{\overrightarrow{\vec{m}}} \times \hat{\imath} \\
& \vec{A}_{1}(\vec{r})=\frac{\mu_{0}}{4 \pi n^{2}} \vec{m} \times \hat{\imath} \\
& \overrightarrow{m_{n}}=I \int d \vec{S}^{\prime} \text { MOMENTO DE } \\
& \text { DIPOLD MAG. } \\
& \text { NÉTICO. }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{M}=I \int_{S} d \vec{S}^{\prime} \quad \text { VALE PARA QUAL QUER CIRCUITO EM } 3 D \\
& \text { MESMO QUE ELE NĂO SE JA PLANAR. } \\
& \int_{S} d \vec{S}^{\prime} \Rightarrow A \text { ÁEA VETORIAL DO CIRCUITO }
\end{aligned}
$$

SE O CIRCUITO FOR PLANAR, PODEMOS TOMAR S como a superfície planar cuja borpa éo CIRCUITO

$$
\begin{aligned}
& \left|\int_{s} d \vec{s}^{\prime}\right|=\left|\hat{\mu} \int_{s} d s^{\prime}\right|= \\
& =A^{\prime} R E A \text { PLANAR DO } \\
& \text { CIRCUITO }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \hat{\mu}=I A \hat{\mu} \quad \text { ONDE } A= & A^{\prime} R E A \text { PLANAR DO } \\
& C I R C U I T O \\
\hat{\mu}= & \text { NDRMAL AO PLAND DO } \\
& C I R C U I T D ~
\end{aligned}
$$

TERMOS SUPERIORES DA EXPANSATO $(l=2,3, \ldots)$ NOS DÃO OS TERMOS DE QUADRUPOLO MAGNE'TICG, OCTUPOLO MAGNE'TICO,....

- CAMPO reAGNE'TICO B RELATIVO AD DIPOLD MAGNE'TICO E':

$$
\begin{aligned}
& \vec{B}_{1}(\vec{r})=\vec{\nabla} \times \vec{A}_{1}(\vec{\pi})=\frac{\mu_{0}}{4 \pi} \vec{\nabla} \times\left[\frac{\vec{\mu} \times \hat{\mu}}{r^{2}}\right] \\
& \text { TONA NDO } \vec{\mu}=M \hat{z}: \vec{B}_{1}(\vec{\pi})=\frac{\mu_{m}}{4 \pi} \vec{\nabla} \times\left[\frac{\hat{\tilde{z} \times \hat{\imath}}}{\hat{r}^{2}}\right] \\
& =\frac{\mu_{0} m}{4 \pi} \vec{\nabla} \times\left[\frac{\sin \theta}{n^{2}} \hat{\phi}\right] \\
& \Rightarrow \vec{B}_{1}(\vec{r})=\frac{\mu_{0} \mu}{4 \pi r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta})
\end{aligned}
$$

QUE E' A MESMA DEPENDÊNCIA DO CAMRO ELE'TRICO DE UM DIPOLO ELE'TRICD:

$$
\Rightarrow \vec{B}_{1}(\vec{n})=\frac{\mu_{0}}{4 \pi n^{3}}[3(\vec{m} \cdot \hat{n}) \hat{n}-\vec{m}]
$$

Campo e potencial de dipolo magnético

$$
\begin{aligned}
& \mathbf{A}_{d i p}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^{2}} \\
& \mathbf{B}_{d i p}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{[3(\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{m}]}{r^{3}}
\end{aligned}
$$

Problema 5.35: O momento de dipolo de um disco carregado girante
$\sigma=$ Dens idade superficial de carga

$$
\begin{aligned}
& \text { Elétrica } \\
& 2 . \begin{array}{c}
\text { ELE'TRICA } \\
\text { VAMOS CALCULAR } d \vec{m} \\
e \text { ESPESSURA } d \sim E \\
\text { COUTRIBUI̧DES } \\
d \vec{m}=\hat{z}(d I) \pi r^{2}
\end{array} \\
& \text { Cl } \\
& K=|\vec{k}|=\frac{d I}{d \sim}=\sigma v=\sigma(\omega \wedge) \\
& \Rightarrow d I=\sigma \omega r d r \\
& \Rightarrow d \vec{m}=\pi \sigma \omega r^{3} d r \hat{z} \\
& \Rightarrow \vec{M}=\int d \vec{m}=\pi \sigma \omega \hat{z} \int_{0}^{R} r^{3} d r=\frac{\pi}{4} \sigma \omega R^{4} \hat{z}
\end{aligned}
$$

Razão entre o momento de dipolo e o momento angular

$$
\begin{aligned}
& L=I \omega \quad I_{\text {DISCO }}=\frac{M R^{2}}{2} \Rightarrow L=\frac{M R^{2}}{2} \omega \\
& \frac{|\vec{M}|}{\left|I^{2}\right|}=\frac{M}{L}=\frac{\pi}{4_{2}} \sigma \psi R^{q^{2}} \frac{\not 2}{M R^{2} \varphi}=\frac{\overbrace{\sigma} \pi R^{2}}{2 M}=\frac{\theta}{2 M}
\end{aligned}
$$

ESSA RAZATO $\frac{Q}{2 M}$ PARA $\frac{\mu}{L} E^{\prime}$ VA'LIDA PARA qualquer corpo girante uniforme.
partículas sub-atômicas têm momento angular INTRINSECD \& MOMENTO DE DIPOLO MAGNE'TICO ASSOClADO.

O momento de dipolo magnético de partículas elementares

Algumas partículas elementares tem um momento angular intrínseco (spin) e também um momento de dipolo magnético intrínseco:

$$
\begin{aligned}
& \text { Elétron : } \frac{|\mathbf{m}|}{|\mathbf{L}|} \approx 2 \times \frac{e}{2 m_{e}} \\
& \text { Próton : } \frac{|\mathbf{m}|}{|\mathbf{L}|} \approx 5.59 \times \frac{e}{2 m_{p}} \\
& \text { Neutron : } \frac{|\mathbf{m}|}{|\mathbf{L}|} \approx 3.83 \times \frac{e}{2 m_{p}}
\end{aligned}
$$

Condições de contorno na magnetostática

AS CONDICOEES DE CONTORNO SAO DETERMINADAS PELAS EQS. DA MAGWETOSTA'TICA:

$$
\bar{D} \cdot \bar{B}=0
$$

USANDO O RACIOCIŃNIO USUAL

(VOLUME DA CAIXA INDO A ZERO, COM ALTURA $h \ll \sqrt{A}$, ONDE A E' A A'REA DA bASE)
$B_{A B O V E}^{\perp}-B_{B E L O W}^{\perp}=0 \Rightarrow B^{\perp} E^{\prime}$ CONTIŃUA ATRAVİS Da interface

$$
\bar{\nabla} \times \vec{B}=\mu_{0} \vec{J} \Rightarrow \oint_{C(s)} \vec{B} \cdot d \vec{l}=\mu_{0} I(s)
$$

APLICANDO A LEI DE AMPIERE ADS CIRCUITOSAO LADO $\cos h \rightarrow 0, l \rightarrow 0$ MAS $h \ll l$:

CIRCUITO $1(\perp A \vec{K})$:

$$
\left(B_{\triangle B_{O V E}^{\prime \prime}}^{\prime \prime}-B_{\text {BELOW }}^{\prime \prime}\right) \notin=\mu_{0} I(s)=\mu_{0} k \not \subset
$$

$$
B_{A B O V E}^{M}-B_{\text {BELOW }}^{4}=\mu_{0} K \Rightarrow \quad \text { DESCONTINUIDADEDE } \vec{B}^{\prime \prime} \text { DEVIDOA } \vec{k}
$$

CIaculto $2(\| A \vec{K})$:

$$
\left(B_{A B O V E}^{\prime \prime}-B_{B E Z Q N}^{\prime \prime}\right) l=0 \Rightarrow \vec{B}^{\prime \prime} E^{\prime} \text { cONTÍNUO }
$$

NESSE CASO $\vec{B}^{\prime \prime} \| \vec{k}$
OS DOIS CASOS SÃO CASOS PARTICULARES DE:

$$
\vec{B}_{A B O V E}^{\prime \prime}-\vec{B}_{\text {BELOW }}^{\prime \prime}=\mu_{0} \vec{k} \times \hat{\mu}
$$

Potencial vetor \vec{A} :

$$
\vec{\nabla} \times \vec{A}=\vec{B} \Rightarrow \oint_{c(s)} \vec{A} \cdot d \vec{R}=\int_{s} \vec{B} \cdot d \vec{s}=\Phi_{B}(s)
$$

APLICANDO AOS CIRCUITOS DO SLIDE ANTERIOR:

$$
\left(A_{A B Q V E}^{\prime \prime}-A_{B E L O W}^{\prime \prime}\right) \ell=B \not \subset h \rightarrow 0
$$

$\Rightarrow A^{\prime \prime} E^{\prime}$ CONTÍNUO NA INTERFACE
$\vec{\nabla} \cdot \vec{A}=$? SE $\vec{\nabla} \cdot \vec{A}=0$, ENTIAO
$\Rightarrow A^{\prime} E^{\prime}$ CONTÍ́NU NA INTERFACE

$\Delta B_{\perp}=0$
$\Delta \mathbf{B}_{\|}=\mu_{0} \mathbf{K} \times \hat{\mathbf{n}}$
$\Delta \mathbf{A}=0$ se $\boldsymbol{\nabla} \cdot \mathbf{A}=0$

POLIGONO DEVAROOS

$$
\begin{aligned}
B & =\frac{\mu_{0} I}{4 \pi s} n\left(\sin \left(\frac{\pi}{n}\right)-\sin \left(-\frac{\pi}{n}\right)\right) \\
& =\frac{\mu_{0} I}{2 \pi s} \mu \sin \left(\frac{\pi}{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S \rightarrow R \\
& B_{\mu \rightarrow \alpha}=\frac{\mu_{0} I}{2 K R} \not \subset=\frac{\mu_{0} I}{2 R} \\
& \text { OUE E' O RESULTAD DD } \\
& \text { CIRCULO }
\end{aligned}
$$

