Aula 21

F 502 - Eletromagnetismo I 2o semestre de 2020
26/11/2020

Magnetostática em meios materiais

Aulas passadas

Leis da magnestostática:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{B} & =\mu_{0} \mathbf{J}(\text { se } \boldsymbol{\nabla} \cdot \mathbf{J}=0) \\
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \Longleftrightarrow \mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}
\end{aligned}
$$

Solução geral:

$$
\begin{aligned}
\nabla^{2} \mathbf{A} & =-\mu_{0} \mathbf{J} \text { se } \boldsymbol{\nabla} \cdot \mathbf{A}=0 \\
\mathbf{A}(\mathbf{r}) & =\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}
\end{aligned}
$$

Aulas passadas

Campos magnéticos atuam sobre correntes/cargas em movimento

$$
\begin{gathered}
\mathbf{F}=q \mathbf{v} \times \mathbf{B} \\
d \mathbf{F}=d \mathbf{I} \times \mathbf{B}
\end{gathered}
$$

Força magnética sobre loops de correntes

Se o campo magnético é constante, não há força sobre loops de corrente:

$$
\begin{aligned}
& \vec{B}=\vec{B}_{0}=\operatorname{CONST} \\
& \Rightarrow \vec{F}=\oint_{c} I d \vec{l} \times \vec{B}_{0}=\left[I \oint_{c} d \vec{l}\right] \times \vec{B}_{0}
\end{aligned}
$$

Compare con o caso elétrico

$$
\begin{aligned}
\vec{E}=\vec{E}_{0}=\text { CONST } \Rightarrow & \text { FOR\&A SORRE UM } \\
& \text { DIPOLO ELE'TRICO } \tilde{C} \text { ZERD }
\end{aligned}
$$

Força magnética sobre loops de correntes

Só há força, se o campo é não uniforme:

$$
\begin{aligned}
d F & =I d \theta \mathbb{B} \\
d F_{v} & =I d \operatorname{de} B \cos \theta \\
F_{v}=\int d F_{v} & =I B \cos \theta(2 \pi R)
\end{aligned}
$$

$$
F=2 \pi I R B \cos \theta .
$$

Força magnética sobre dipolos magnéticos

$$
\begin{aligned}
& \mathbf{F}=\boldsymbol{\nabla}(\mathbf{m} \cdot \mathbf{B}) \quad \text { SE } \vec{\mu}=\vec{m}_{0}=\operatorname{Cons} T \\
& U=-\vec{m} \cdot \vec{B} \Rightarrow \vec{F}=-\vec{J} U
\end{aligned}
$$

compare com o caso elétrico:

$$
\Rightarrow \vec{F}=\vec{\nabla}(\vec{p} \cdot \vec{E}) \text { SE } \vec{p}=\overrightarrow{p_{0}}=\text { coust. }
$$

Torque do campo magnético sobre loops de corrente

$$
\text { TORQUE } \vec{N}=\vec{r}_{3} \times \vec{F}_{3}+\vec{n}_{4} \times \vec{F}_{4} \Rightarrow \vec{N}=W \hat{x}
$$

$$
N=\frac{a}{2} F_{3} \sin \theta+\frac{a}{2} F_{4} \sin \theta=a \sin \theta(I b B)=I a b B \sin \theta
$$

$$
F_{3}=F_{4}=I b B \quad \begin{aligned}
& N=M M \sin \theta \\
& \vec{N}=\vec{M} \times \vec{B} \quad \vec{N} \quad \vec{P} \times \vec{E}
\end{aligned}
$$

HA' UMA TENDENCIA DOS DIPOROS SE ALINAAREM AO CAMPO \vec{B} APLICADO

Efeito do campo magnético em órbitas atômicas (clássicas)

Um modelo simplificado: Un ELÉETRON NUMA

orbita circular em torno DE UM NÚCLED DE CARGA Q DIPNL MAGNE'TICO: $\vec{M}=m \hat{z}$ $\left.\begin{array}{l}m=I A=I \pi R^{2} \\ I=-\frac{e}{T}=-\frac{e N}{2 \pi R}\end{array}\right\} m=-\frac{e \Omega R}{2}$

$$
m_{e} \frac{v^{2}}{R}=\frac{1}{4 \pi \epsilon_{0}} \frac{\theta e}{R^{2}}
$$

Na presença de um campo magnético:

SUPONAAMOS QUE O RAID DA ÓRBITA PERMANESA O MESMO
$\Rightarrow A$ FORGA MAGNE'TICA MODIFICA A VELOCIDADE: $v \rightarrow v^{\prime}$ $\vec{F}_{m} \Rightarrow$ RADIAL PARA DENTRO

$$
F_{\mu}=e v^{\prime} B
$$

$$
\Rightarrow \mu_{e} \frac{\left(D^{\prime}\right)^{2}}{R}=\frac{1}{4 \pi \epsilon_{0}} \frac{\theta e}{R^{2}}+e v^{\prime} B \Rightarrow e o_{x}^{\prime} B=\frac{m_{e}}{R}\left[\left(v^{\prime}\right)^{2}-v^{2}\right]
$$

Quero calcular $\quad \Delta v=v^{\prime}-v$

$$
=\frac{m_{e}}{R}(\underbrace{v^{\prime}-v}_{\Delta v})\left(v+\infty^{\prime}\right)
$$ COMPROVADO A ROSTERIOR: : $\left\{\begin{array}{l}v+N \underline{N} 2 v \\ v^{\prime} \cong v\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow e q B=\frac{m_{e}}{R} \Delta v(2 \beta\rangle \Rightarrow D v=\frac{e R B}{2 m_{e}} \\
& \text { USANDO: } \left.\begin{array}{rl}
B & =10 \mathrm{~T} \\
R & =1 A=10^{-10} \mathrm{~m} \\
v & =10^{-2} \mathrm{c}
\end{array}\right] \Rightarrow \Delta N<\omega \\
& \Delta \vec{M}=-\frac{e R}{2} \Delta \sigma \hat{z}=-\frac{e^{2} R^{2}}{4 \mu_{e}} B \hat{\jmath}=-\frac{e^{2} R^{2}}{4 \mu_{e}} \vec{B}
\end{aligned}
$$

NOTE OUE O RESULTADO DEPENDE PE $\left(e^{2}\right)$
$\Rightarrow O$ EFEITO DO CAMPO \vec{B} E SEMPRE
DIMINUIR O DIPOLO MAGNE'TICO
O PRIMEIRO EFEITO (TORQUE SQRRE \vec{M}) AUMENTA - DIPOLO HGAGNE'TIGO TOTAL. D 2? EFEITO (DRBITAL) TENDE A DIMINUIR O DIPOLD MAGNETICO

Magnetização
coro no CASO ELETTRICO, A PRESENGA DE DIPOLOS MAGWÉTICOS, INDUZIDOS OU PER MANENTES, TORNA ÚtIL A DEFINICÀO DE UM CAMPO VETORIAL \vec{M} (OAGNETIZACAAO):

$$
\begin{gathered}
\vec{M}=\lim _{\Delta V \rightarrow 0} \frac{\Delta \vec{M}}{\Delta V} \\
{[\vec{M}]=\frac{\left[\overrightarrow{M^{2}}\right]}{L^{3}}=\frac{I \not \chi^{2}}{L^{3}}=\frac{Q}{T L}}
\end{gathered}
$$

NOTEM QUE E' A MESMA DIMENSAO DA DENSIDADE SUPERFICIAL DE CORRENTE \vec{k}

Campo magnético de um corpo

$$
\begin{aligned}
& \text { magnetizado } \\
& \frac{\hat{n}}{n^{2}}=\frac{\vec{r}}{n^{3}} \\
& d \mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{d \mathbf{m} \times \hat{\mathbf{r}}}{r^{2}}{ }^{2} \\
& d \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \underbrace{\left[d_{m}(\vec{\pi})\right]}_{\vec{H}\left(\vec{r}^{\prime}\right) d v^{\prime}} \frac{x(\vec{r}-\vec{r})}{(\vec{r}-\vec{\lambda})^{3}} \\
& \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{v} \vec{M}(\vec{r} \mid) \times \frac{\left(\vec{r}-\overrightarrow{\lambda^{\prime}}\right)}{\left|\vec{\lambda}-\vec{\lambda}^{\prime}\right|^{3}} d v^{\prime} \\
& \frac{\vec{n}-\overrightarrow{n^{\prime}}}{\left|\vec{n}-\vec{r}^{\prime}\right|^{3}}=-\vec{\nabla}\left(\frac{1}{\left|\vec{\lambda}-\vec{r}^{\prime}\right|}\right)=\vec{\nabla}\left(\frac{1}{|\vec{\lambda}-\vec{n}|}\right) \quad-\frac{d f}{d x}\left(x-x^{\prime}\right)=\frac{d}{d x^{\prime}} f\left(x-x^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{V} \overrightarrow{r^{\prime}\left(\vec{r}^{\prime}\right) \times \vec{\nabla}^{\prime}\left(\frac{1}{\left|\pi-\pi^{\prime}\right|}\right) d V^{\prime}} \\
& \left.\vec{\nabla}^{\prime} \times(f \vec{c})=\left(\vec{\nabla}^{\prime} f\right)_{x} \vec{c}+f \vec{\nabla}^{\prime} \times \vec{c}\right\} \\
& \vec{A}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int_{V}\left\{-\vec{\nabla}^{\prime} \times\left[\frac{\vec{\mu}^{\prime}(\vec{n})}{|\vec{r}-\vec{\pi}|}\right]+\frac{\vec{\nabla}^{\prime} \times \vec{\nabla}^{\prime}\left(\vec{n}^{\prime}\right)}{\left|\vec{n}^{\prime}-\vec{r}^{\prime}\right|}\right\} d V^{\prime}
\end{aligned}
$$

"teorema de gauss" para o rotacional (ver notas)

$$
\begin{aligned}
& \int_{v}\left(\vec{\nabla}^{\prime} \times \vec{F}\right) d v^{\prime}=-\int_{s(v)} \vec{F} \times d \vec{s}^{\prime} \\
& \Rightarrow \vec{A}(\vec{r})=\frac{\mu_{0}}{4(\bar{u}}\left\{\int_{S(v)} \frac{\vec{\mu}\left(\overrightarrow{\left.\vec{n}^{\prime}\right)} \times d \vec{S}^{\prime}\right.}{|\vec{\lambda}-\vec{\lambda}|}+\int_{v}^{\|} \frac{\left[\vec{\nabla}^{\prime} \times \vec{n}^{\prime}\left(\vec{r}^{\prime}\right)\right]}{\left|\vec{r}-\vec{r}^{\prime}\right|} d v^{\prime}\right] \\
& d \vec{S}^{\prime}=\hat{M}^{\prime} d S^{\prime} \quad \int_{S(v)} \frac{\left[\vec{M}(\vec{n}) \times \hat{\mu}^{\prime}\right]}{\left|\vec{\lambda}-\vec{n}^{\prime}\right|} d S^{\prime} \quad \begin{array}{l}
\vec{J}_{B}=\vec{\nabla} \times \vec{M} \\
\vec{K}_{B}=\vec{M} \times \hat{M}
\end{array}
\end{aligned}
$$

Correntes ligadas ou de magnetização

$$
\begin{aligned}
\mathbf{J}_{B} & =\boldsymbol{\nabla} \times \mathbf{M} \\
\mathbf{K}_{B} & =\mathbf{M} \times \hat{\mathbf{n}}
\end{aligned}
$$

COMPARE COO O CASO ELETROSTA'TICO:

$$
\begin{aligned}
& g_{B}=-\vec{\nabla} \cdot \vec{p} \\
& \sigma_{B}=\vec{p} \cdot \hat{\mu}
\end{aligned}
$$

Interpretação física da corrente ligada

$$
\mathbf{K}_{B}=\mathbf{M} \times \hat{\mathbf{n}}
$$

Interpretação física da corrente ligada

$$
\begin{aligned}
& \mathbf{J}_{B}=\boldsymbol{\nabla} \times \mathbf{M} \\
& \iota_{Q}\left(J_{\boldsymbol{B}}\right)_{x}=\frac{\partial M_{z}}{\partial y}-\frac{\partial M_{y}}{\partial z} \\
& +d y) \\
& I_{x}=\left[M_{z}(y+d y)-M_{z}(y)\right] d z=\frac{\partial M_{z}}{\partial y} d y d z . \\
& \quad\left(J_{b}\right)_{x}=\frac{\partial M_{z}}{\partial y}
\end{aligned}
$$

(a)

Separando correntes livres e ligadas
CORRENTE TOTAL COMO TENDO DUAS CONTRIBUICIES: \vec{J}_{B}, \vec{J}_{F}

- CORRENTE DOS ELE'TROAS LIURES DOS rEJAIS

$$
\begin{aligned}
& \vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{J}_{F}+\vec{J}_{B}\right)=\mu_{0} \vec{J}_{F}+\mu_{0} \vec{\nabla} \times \vec{M} \\
& \Rightarrow \vec{\nabla} \times[\underbrace{\frac{\vec{B}}{\mu_{0}}-\vec{M}}_{\vec{H}}]=\vec{J}_{F} \\
& \vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M} \\
& \rightarrow " \text { CAMPO H" } \\
& \Rightarrow \begin{array}{l}
\vec{\nabla} \times \vec{H}=\vec{J} F \\
\vec{\nabla} \cdot \vec{B}=0
\end{array}\left\{\begin{array}{l}
\text { POR SI SÔS, ESSAS EQS. NAD } \\
\text { SAAO SUFICIENTES PARA RESOL- } \\
\text { VER OS PRDBLEMAS (T. HELMHOLTZ) }
\end{array}\right.
\end{aligned}
$$

INFORMAGEESS ADI CIONAIS:
(i) $\vec{\mu} \varepsilon^{\prime}$ DADO:

$$
\left\{\begin{array}{l}
\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}_{F}+\mu_{0} \vec{\nabla} \times \overrightarrow{\nabla r} \\
\vec{\nabla} \cdot \vec{B}=0
\end{array}\right.
$$

(iN) \vec{M} É DADS CORO RESPOSTA LINEAR AO CAMDO (MEIOS MAGNE'TICOS LINEARES)

$$
\begin{aligned}
\vec{M}=x_{m} \vec{H} \quad X_{m}= & \text { SUSCEPTIBILIDADE } \\
& \overrightarrow{M A G N E T I C A} \\
& \vec{A}=\frac{\vec{B}}{\mu_{0}}-\vec{M}=\frac{\vec{B}}{\mu_{0}}-\chi_{\mu} \vec{H} \Rightarrow\left(1+x_{m}\right) \vec{H}=\frac{\vec{B}}{\mu_{0}} \\
\Rightarrow & \vec{B}=\underbrace{\mu_{0}\left(1+x_{m}\right)}_{\mu: P E R M E A B I L I D A D E ~ M A G N E T I C A} \vec{H}=\mu \vec{H}
\end{aligned}
$$

DO MATERIAL

COMPARE COM O CASO ELETRICO:

$$
\begin{aligned}
& \vec{D}=\epsilon \vec{E} \\
& \vec{P}=x_{e} \epsilon_{0} \vec{E}
\end{aligned}
$$

Susceptibilidade de alguns materiais

Material	Susceptibility	Material	Susceptibility
Diamagnetic:		Paramagnetic:	
Bismuth	-1.7×10^{-4}	Oxygen $\left(\mathrm{O}_{2}\right)$	1.7×10^{-6}
Gold	-3.4×10^{-5}	Sodium	8.5×10^{-6}
Silver	-2.4×10^{-5}	Aluminum	2.2×10^{-5}
Copper	-9.7×10^{-6}	Tungsten	7.0×10^{-5}
Water	-9.0×10^{-6}	Platinum	2.7×10^{-4}
Carbon Dioxide	-1.1×10^{-8}	Liquid Oxygen $\left(-200^{\circ} \mathrm{C}\right)$	3.9×10^{-3}
Hydrogen $\left(\mathrm{H}_{2}\right)$	-2.1×10^{-9}	Gadolinium	4.8×10^{-1}

TABLE 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for 1 atm , 20° C). Data from Handbook of Chemistry and Physics, 91 st ed. (Boca Raton: CRC Press, Inc., 2010) and other references.

Leis da magnetostácia em meios

materiais

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{H}=\mathbf{J}_{F}\left(\text { se } \nabla \cdot \mathbf{J}_{F}=0\right) \\
\mathbf{H}=\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M} \\
\vec{J}_{B}=\vec{\nabla} \times \vec{\mu} \\
\vec{k}_{B}=\vec{M} \times \hat{\mu}
\end{gathered}
$$

Em meios lineares isotrópicos:

$$
\begin{aligned}
\mathbf{B} & =\mu \mathbf{H} \\
\mathbf{M} & =\chi_{m} \mathbf{H}
\end{aligned}
$$

