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Leis da magnestostática:
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Solução geral:



Aulas passadas
Campos magnéticos atuam sobre 
correntes/cargas em movimento

5.1 The Lorentz Force Law 211

Battery Battery

(a) Currents in opposite
     directions repel.

(b) Currents in same
      directions attract.

+ − + −

FIGURE 5.2

Whatever force accounts for the attraction of parallel currents and the repulsion
of antiparallel ones is not electrostatic in nature. It is our first encounter with a
magnetic force. Whereas a stationary charge produces only an electric field E in
the space around it, a moving charge generates, in addition, a magnetic field B.
In fact, magnetic fields are a lot easier to detect, in practice—all you need is a
Boy Scout compass. How these devices work is irrelevant at the moment; it is
enough to know that the needle points in the direction of the local magnetic field.
Ordinarily, this means north, in response to the earth’s magnetic field, but in the
laboratory, where typical fields may be hundreds of times stronger than that, the
compass indicates the direction of whatever magnetic field is present.
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where m is the particle’s mass and p = mv is its momentum. Equation 5.3 is
known as the cyclotron formula because it describes the motion of a particle in a
cyclotron—the first of the modern particle accelerators. It also suggests a simple
experimental technique for finding the momentum of a charged particle: send it
through a region of known magnetic field, and measure the radius of its trajectory.
This is in fact the standard means for determining the momenta of elementary
particles.

I assumed that the charge moves in a plane perpendicular to B. If it starts out
with some additional speed v‖ parallel to B, this component of the motion is
unaffected by the magnetic field, and the particle moves in a helix (Fig. 5.6). The
radius is still given by Eq. 5.3, but the velocity in question is now the component
perpendicular to B, v⊥.

Example 5.2. Cycloid Motion. A more exotic trajectory occurs if we include
a uniform electric field, at right angles to the magnetic one. Suppose, for instance,
that B points in the x-direction, and E in the z-direction, as shown in Fig. 5.7.
A positive charge is released from the origin; what path will it follow?

Solution
Let’s think it through qualitatively, first. Initially, the particle is at rest, so the mag-
netic force is zero, and the electric field accelerates the charge in the z-direction.
As it picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls
the charge around to the right. The faster it goes, the stronger Fmag becomes;
eventually, it curves the particle back around towards the y axis. At this point the
charge is moving against the electrical force, so it begins to slow down—the mag-
netic force then decreases, and the electrical force takes over, bringing the particle
to rest at point a, in Fig. 5.7. There the entire process commences anew, carrying
the particle over to point b, and so on.

Now let’s do it quantitatively. There being no force in the x-direction, the posi-
tion of the particle at any time t can be described by the vector (0, y(t), z(t)); the
velocity is therefore
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Força magnética sobre loops de 
correntes

Se o campo magnético é constante, não há força 
sobre loops de corrente:



Força magnética sobre loops de 
correntes

Só há força, se o campo é não uniforme:

268 Chapter 6 Magnetic Fields in Matter

Notice that Eq. 6.1 is identical in form to the electrical analog, Eq. 4.4:
N = p × E. In particular, the torque is again in such a direction as to line the
dipole up parallel to the field. It is this torque that accounts for paramagnetism.
Since every electron constitutes a magnetic dipole (picture it, if you wish, as a
tiny spinning sphere of charge), you might expect paramagnetism to be a univer-
sal phenomenon. Actually, quantum mechanics (specifically, the Pauli exclusion
principle) tends to lock the electrons within a given atom together in pairs with
opposing spins,1 and this effectively neutralizes the torque on the combination.
As a result, paramagnetism most often occurs in atoms or molecules with an
odd number of electrons, where the “extra” unpaired member is subject to the
magnetic torque. Even here, the alignment is far from complete, since random
thermal collisions tend to destroy the order.

In a uniform field, the net force on a current loop is zero:

F = I
∮

(dl × B) = I
(∮

dl
)

× B = 0;

the constant B comes outside the integral, and the net displacement
∮

dl around a
closed loop vanishes. In a nonuniform field this is no longer the case. For example,
suppose a circular wire ring of radius R, carrying a current I , is suspended above
a short solenoid in the “fringing” region (Fig. 6.3). Here B has a radial component,
and there is a net downward force on the loop (Fig. 6.4):

F = 2π I RB cos θ . (6.2)

For an infinitesimal loop, with dipole moment m, in a field B, the force is

F = ∇(m · B) (6.3)
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FIGURE 6.4
1This is not always true for the outermost electrons in unfilled shells.

268 Chapter 6 Magnetic Fields in Matter

Notice that Eq. 6.1 is identical in form to the electrical analog, Eq. 4.4:
N = p × E. In particular, the torque is again in such a direction as to line the
dipole up parallel to the field. It is this torque that accounts for paramagnetism.
Since every electron constitutes a magnetic dipole (picture it, if you wish, as a
tiny spinning sphere of charge), you might expect paramagnetism to be a univer-
sal phenomenon. Actually, quantum mechanics (specifically, the Pauli exclusion
principle) tends to lock the electrons within a given atom together in pairs with
opposing spins,1 and this effectively neutralizes the torque on the combination.
As a result, paramagnetism most often occurs in atoms or molecules with an
odd number of electrons, where the “extra” unpaired member is subject to the
magnetic torque. Even here, the alignment is far from complete, since random
thermal collisions tend to destroy the order.

In a uniform field, the net force on a current loop is zero:

F = I
∮

(dl × B) = I
(∮

dl
)

× B = 0;

the constant B comes outside the integral, and the net displacement
∮

dl around a
closed loop vanishes. In a nonuniform field this is no longer the case. For example,
suppose a circular wire ring of radius R, carrying a current I , is suspended above
a short solenoid in the “fringing” region (Fig. 6.3). Here B has a radial component,
and there is a net downward force on the loop (Fig. 6.4):

F = 2π I RB cos θ . (6.2)

For an infinitesimal loop, with dipole moment m, in a field B, the force is

F = ∇(m · B) (6.3)

II

B

FIGURE 6.3

B

F

B

F

I

R

θ

FIGURE 6.4
1This is not always true for the outermost electrons in unfilled shells.

268 Chapter 6 Magnetic Fields in Matter

Notice that Eq. 6.1 is identical in form to the electrical analog, Eq. 4.4:
N = p × E. In particular, the torque is again in such a direction as to line the
dipole up parallel to the field. It is this torque that accounts for paramagnetism.
Since every electron constitutes a magnetic dipole (picture it, if you wish, as a
tiny spinning sphere of charge), you might expect paramagnetism to be a univer-
sal phenomenon. Actually, quantum mechanics (specifically, the Pauli exclusion
principle) tends to lock the electrons within a given atom together in pairs with
opposing spins,1 and this effectively neutralizes the torque on the combination.
As a result, paramagnetism most often occurs in atoms or molecules with an
odd number of electrons, where the “extra” unpaired member is subject to the
magnetic torque. Even here, the alignment is far from complete, since random
thermal collisions tend to destroy the order.

In a uniform field, the net force on a current loop is zero:

F = I
∮

(dl × B) = I
(∮

dl
)

× B = 0;

the constant B comes outside the integral, and the net displacement
∮

dl around a
closed loop vanishes. In a nonuniform field this is no longer the case. For example,
suppose a circular wire ring of radius R, carrying a current I , is suspended above
a short solenoid in the “fringing” region (Fig. 6.3). Here B has a radial component,
and there is a net downward force on the loop (Fig. 6.4):

F = 2π I RB cos θ . (6.2)

For an infinitesimal loop, with dipole moment m, in a field B, the force is

F = ∇(m · B) (6.3)

II

B

FIGURE 6.3

B

F

B

F

I

R

θ

FIGURE 6.4
1This is not always true for the outermost electrons in unfilled shells.

1

|r� r0| =
1

r

1q
1� 2 (r0/r) cos ✓ + (r0/r)2

1p
1� 2sx+ s2

=
1X

l=0

slPl (x) (|s| < 1)

1

|r� r0| =
1

r

1X

l=0

✓
r0

r

◆l

Pl (cos ✓)

p = ↵E

P =
�p

�V

) P = �e"oE

N = p⇥E

�B (r) = n̂ ·P (r)

⇢B (r) = �r ·P (r)

⇢ (r) = ⇢B (r) + ⇢F (r) = �r ·P (r) + ⇢F (r)

r ·E =
⇢B + ⇢F

"0
=

�r ·P+ ⇢F
"0

) r · ("0E+P) = ⇢F

D = "0E+P ) r ·D = ⇢F

r ·D = ⇢F

r⇥E = 0

P = �e"oE , D = "E

"

"0
= "r = 1 + �e

�D? = �F

�Ek = 0

�V = 0

F = qv ⇥B

dF = dI⇥B

dI = Idl = Idl

dI = Kd�

dI = Jd⇢

5

q



Força magnética sobre dipolos 
magnéticos
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Torque do campo magnético sobre 
loops de corrente

6.1 Magnetization 267

I

FIGURE 6.1

rotate it). The forces on the “horizontal” sides are likewise equal and opposite (so
the net force on the loop is zero), but they do generate a torque:

N = aF sin θ x̂.

The magnitude of the force on each of these segments is

F = I bB,

and therefore

N = I abB sin θ x̂ = m B sin θ x̂,

or

N = m × B, (6.1)

where m = I ab is the magnetic dipole moment of the loop. Equation 6.1 gives
the torque on any localized current distribution, in the presence of a uniform field;
in a nonuniform field it is the exact torque (about the center) for a perfect dipole
of infinitesimal size.
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Efeito do campo magnético em 
órbitas atômicas (clássicas)

6.1 Magnetization 271

6.1.3 Effect of a Magnetic Field on Atomic Orbits

Electrons not only spin; they also revolve around the nucleus—for simplicity, let’s
assume the orbit is a circle of radius R (Fig. 6.9). Although technically this orbital
motion does not constitute a steady current, in practice the period T = 2π R/v is
so short that unless you blink awfully fast, it’s going to look like a steady current:

I = −e
T

= − ev
2π R

.

(The minus sign accounts for the negative charge of the electron.) Accordingly,
the orbital dipole moment (Iπ R2) is

m = −1
2

evR ẑ. (6.4)

Like any other magnetic dipole, this one is subject to a torque (m × B) when
you turn on a magnetic field. But it’s a lot harder to tilt the entire orbit than it is
the spin, so the orbital contribution to paramagnetism is small. There is, however,
a more significant effect on the orbital motion: The electron speeds up or slows
down, depending on the orientation of B. For whereas the centripetal acceleration
v2/R is ordinarily sustained by electrical forces alone,2

1
4πε0

e2

R2
= me

v2

R
, (6.5)

in the presence of a magnetic field there is an additional force, −e(v × B). For
the sake of argument, let’s say that B is perpendicular to the plane of the orbit, as
shown in Fig. 6.10; then

1
4πε0

e2

R2
+ ev̄B = me

v̄2

R
. (6.6)

Under these conditions, the new speed v̄ is greater than v:

ev̄B = me

R
(v̄2 − v2) = me

R
(v̄ + v)(v̄ − v),

v

z

m

R −e

FIGURE 6.9

2To avoid confusion with the magnetic dipole moment m, I’ll write the electron mass with
subscript: me .

Um modelo simplificado:

Q
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or, assuming the change !v = v̄ − v is small,

!v = eRB
2me

. (6.7)

When B is turned on, then, the electron speeds up.3

A change in orbital speed means a change in the dipole moment (Eq. 6.4):

!m = −1
2

e(!v)R ẑ = −e2 R2

4me
B. (6.8)

Notice that the change in m is opposite to the direction of B. (An electron circling
the other way would have a dipole moment pointing upward, but such an orbit
would be slowed down by the field, so the change is still opposite to B.) Ordi-
narily, the electron orbits are randomly oriented, and the orbital dipole moments
cancel out. But in the presence of a magnetic field, each atom picks up a little
“extra” dipole moment, and these increments are all antiparallel to the field. This
is the mechanism responsible for diamagnetism. It is a universal phenomenon,
affecting all atoms. However, it is typically much weaker than paramagnetism,
and is therefore observed mainly in atoms with even numbers of electrons, where
paramagnetism is usually absent.

In deriving Eq. 6.8, I assumed that the orbit remains circular, with its original
radius R. I cannot offer a justification for this at the present stage. If the atom
is stationary while the field is turned on, then my assumption can be proved—
this is not magnetostatics, however, and the details will have to await Chapter 7
(see Prob. 7.52). If the atom is moved into the field, the situation is enormously
more complicated. But never mind—I’m only trying to give you a qualitative
account of diamagnetism. Assume, if you prefer, that the velocity remains the
same while the radius changes—the formula (Eq. 6.8) is altered (by a factor of 2),
but the qualitative conclusion is unaffected. The truth is that this classical model is
fundamentally flawed (diamagnetism is really a quantum phenomenon), so there’s

3I said (Eq. 5.11) that magnetic fields do no work, and are incapable of speeding a particle up. I stand
by that. However, as we shall see in Chapter 7, a changing magnetic field induces an electric field, and
it is the latter that accelerates the electrons in this instance.

v’

Q
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Campo magnético de um corpo 
magnetizado
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Problem 6.6 Of the following materials, which would you expect to be paramag-
netic and which diamagnetic: aluminum, copper, copper chloride (CuCl2), carbon,
lead, nitrogen (N2), salt (NaCl), sodium, sulfur, water? (Actually, copper is slightly
diamagnetic; otherwise they’re all what you’d expect.)

6.2 THE FIELD OF A MAGNETIZED OBJECT

6.2.1 Bound Currents

Suppose we have a piece of magnetized material; the magnetic dipole moment per
unit volume, M, is given. What field does this object produce? Well, the vector
potential of a single dipole m is given by Eq. 5.85:

A(r) = µ0

4π

m × r̂
r2 . (6.10)

In the magnetized object, each volume element dτ ′ carries a dipole moment
M dτ ′, so the total vector potential is (Fig. 6.11)

A(r) = µ0

4π

∫
M(r′) × r̂

r2 dτ ′. (6.11)

That does it, in principle. But, as in the electrical case (Sect. 4.2.1), the integral
can be cast in a more illuminating form by exploiting the identity

∇′ 1
r = r̂

r2 .

With this,

A(r) = µ0

4π

∫ [
M(r′) ×

(
∇′ 1
r

)]
dτ ′.

Integrating by parts, using product rule 7, gives

A(r) = µ0

4π

{∫
1
r [∇

′ × M(r′)] dτ ′ −
∫

∇′ ×
[

M(r′)

r

]
dτ ′

}
.
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Problem 6.9 A short circular cylinder of radius a and length L carries a “frozen-in”
uniform magnetization M parallel to its axis. Find the bound current, and sketch the
magnetic field of the cylinder. (Make three sketches: one for L ! a, one for L " a,
and one for L ≈ a.) Compare this bar magnet with the bar electret of Prob. 4.11.

Problem 6.10 An iron rod of length L and square cross section (side a) is given
a uniform longitudinal magnetization M, and then bent around into a circle with a
narrow gap (width w), as shown in Fig. 6.14. Find the magnetic field at the center
of the gap, assuming w " a " L . [Hint: treat it as the superposition of a complete
torus plus a square loop with reversed current.]

6.2.2 Physical Interpretation of Bound Currents

In the last section, we found that the field of a magnetized object is identical to the
field that would be produced by a certain distribution of “bound” currents, Jb and
Kb. I want to show you how these bound currents arise physically. This will be a
heuristic argument—the rigorous derivation has already been given. Figure 6.15
depicts a thin slab of uniformly magnetized material, with the dipoles represented
by tiny current loops. Notice that all the “internal” currents cancel: every time
there is one going to the right, a contiguous one is going to the left. However, at
the edge there is no adjacent loop to do the canceling. The whole thing, then, is
equivalent to a single ribbon of current I flowing around the boundary (Fig. 6.16).

What is this current, in terms of M? Say that each of the tiny loops has area a
and thickness t (Fig. 6.17). In terms of the magnetization M , its dipole moment

t
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I
I I

I
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is m = Mat . In terms of the circulating current I , however, m = I a. Therefore
I = Mt , so the surface current is Kb = I/t = M . Using the outward-drawn unit
vector n̂ (Fig. 6.16), the direction of Kb is conveniently indicated by the cross
product:

Kb = M × n̂.

(This expression also records the fact that there is no current on the top or bottom
surface of the slab; here M is parallel to n̂, so the cross product vanishes.)

This bound surface current is exactly what we obtained in Sect. 6.2.1. It is a
peculiar kind of current, in the sense that no single charge makes the whole trip—
on the contrary, each charge moves only in a tiny little loop within a single atom.
Nevertheless, the net effect is a macroscopic current flowing over the surface of
the magnetized object. We call it a “bound” current to remind ourselves that every
charge is attached to a particular atom, but it’s a perfectly genuine current, and it
produces a magnetic field in the same way any other current does.

When the magnetization is nonuniform, the internal currents no longer cancel.
Figure 6.18(a) shows two adjacent chunks of magnetized material, with a larger
arrow on the one to the right suggesting greater magnetization at that point. On
the surface where they join, there is a net current in the x direction, given by

Ix = [Mz(y + dy) − Mz(y)] dz = ∂ Mz

∂y
dy dz.

The corresponding volume current density is therefore

(Jb)x = ∂ Mz

∂y
.

x
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z Mz(y + dy)        

dy

Mz(y)
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6.4 Linear and Nonlinear Media 285

notational consistency with the electrical case (Eq. 4.30), I should express the
proportionality thus:

M = 1
µ0

χmB (incorrect!). (6.28)

But custom dictates that it be written in terms of H, instead of B:

M = χmH. (6.29)

The constant of proportionality χm is called the magnetic susceptibility; it is a
dimensionless quantity that varies from one substance to another—positive for
paramagnets and negative for diamagnets. Typical values are around 10−5 (see
Table 6.1).

Materials that obey Eq. 6.29 are called linear media. In view of Eq. 6.18,

B = µ0(H + M) = µ0(1 + χm)H, (6.30)

for linear media. Thus B is also proportional to H:8

B = µH, (6.31)

where

µ ≡ µ0(1 + χm). (6.32)

µ is called the permeability of the material.9 In a vacuum, where there is no
matter to magnetize, the susceptibility χm vanishes, and the permeability is µ0.
That’s why µ0 is called the permeability of free space.

Material Susceptibility Material Susceptibility

Diamagnetic: Paramagnetic:
Bismuth −1.7 × 10−4 Oxygen (O2) 1.7 × 10−6

Gold −3.4 × 10−5 Sodium 8.5 × 10−6

Silver −2.4 × 10−5 Aluminum 2.2 × 10−5

Copper −9.7 × 10−6 Tungsten 7.0 × 10−5

Water −9.0 × 10−6 Platinum 2.7 × 10−4

Carbon Dioxide −1.1 × 10−8 Liquid Oxygen
(−200◦ C)

3.9 × 10−3

Hydrogen (H2) −2.1 × 10−9 Gadolinium 4.8 × 10−1

TABLE 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for 1 atm,
20◦ C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press,
Inc., 2010) and other references.

8Physically, therefore, Eq. 6.28 would say exactly the same as Eq. 6.29, only the constant χm would
have a different value. Equation 6.29 is a little more convenient, because experimentalists find it
handier to work with H than B.
9If you factor out µ0, what’s left is called the relative permeability: µr ≡ 1 + χm = µ/µ0. By the
way, formulas for H in terms of B (Eq. 6.31, in the case of linear media) are called constitutive
relations, just like those for D in terms of E.

Susceptibilidade de alguns materiais
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�B? = 0

�Bk = µ0K⇥ n̂

�A = 0 se r ·A = 0
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Em meios lineares isotrópicos:

Leis da magnetostácia em meios 
materiais


