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7.1 Electromotive Force 297

Material Resistivity Material Resistivity
Conductors: Semiconductors:
Silver 1.59 × 10−8 Sea water 0.2
Copper 1.68 × 10−8 Germanium 0.46
Gold 2.21 × 10−8 Diamond 2.7
Aluminum 2.65 × 10−8 Silicon 2500
Iron 9.61 × 10−8 Insulators:
Mercury 9.61 × 10−7 Water (pure) 8.3 × 103

Nichrome 1.08 × 10−6 Glass 109 − 1014

Manganese 1.44 × 10−6 Rubber 1013 − 1015

Graphite 1.6 × 10−5 Teflon 1022 − 1024

TABLE 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20◦ C). Data from
Handbook of Chemistry and Physics, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and
other references.

E = J/σ = 0 even if current is flowing. In practice, metals are such good con-
ductors that the electric field required to drive current in them is negligible. Thus
we routinely treat the connecting wires in electric circuits (for example) as equipo-
tentials. Resistors, by contrast, are made from poorly conducting materials.

Example 7.1. A cylindrical resistor of cross-sectional area A and length L is
made from material with conductivity σ . (See Fig. 7.1; as indicated, the cross
section need not be circular, but I do assume it is the same all the way down.) If we
stipulate that the potential is constant over each end, and the potential difference
between the ends is V , what current flows?

E

L

z

A

FIGURE 7.1

Solution
As it turns out, the electric field is uniform within the wire (I’ll prove this in a
moment). It follows from Eq. 7.3 that the current density is also uniform, so

I = J A = σ E A = σ A
L

V .
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Carga não se acumula em condutores em 
situação estacionária

7.1 Electromotive Force 303

Problem 7.4 Suppose the conductivity of the material separating the cylinders in
Ex. 7.2 is not uniform; specifically, σ (s) = k/s, for some constant k. Find the re-
sistance between the cylinders. [Hint: Because σ is a function of position, Eq. 7.5
does not hold, the charge density is not zero in the resistive medium, and E does
not go like 1/s. But we do know that for steady currents I is the same across each
cylindrical surface. Take it from there.]

7.1.2 Electromotive Force

If you think about a typical electric circuit—a battery hooked up to a light bulb,
say (Fig. 7.7)—a perplexing question arises: In practice, the current is the same all
the way around the loop; why is this the case, when the only obvious driving force
is inside the battery? Off hand, you might expect a large current in the battery and
none at all in the lamp. Who’s doing the pushing, in the rest of the circuit, and how
does it happen that this push is exactly right to produce the same current in each
segment? What’s more, given that the charges in a typical wire move (literally)
at a snail’s pace (see Prob. 5.20), why doesn’t it take half an hour for the current
to reach the light bulb? How do all the charges know to start moving at the same
instant?

Answer: If the current were not the same all the way around (for instance, dur-
ing the first split second after the switch is closed), then charge would be piling up
somewhere, and—here’s the crucial point—the electric field of this accumulating
charge is in such a direction as to even out the flow. Suppose, for instance, that
the current into the bend in Fig. 7.8 is greater than the current out. Then charge
piles up at the “knee,” and this produces a field aiming away from the kink.3 This
field opposes the current flowing in (slowing it down) and promotes the current
flowing out (speeding it up) until these currents are equal, at which point there is
no further accumulation of charge, and equilibrium is established. It’s a beautiful
system, automatically self-correcting to keep the current uniform, and it does it
all so quickly that, in practice, you can safely assume the current is the same all
around the circuit, even in systems that oscillate at radio frequencies.

FIGURE 7.7
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FIGURE 7.8

3The amount of charge involved is surprisingly small—see W. G. V. Rosser, Am. J. Phys. 38, 265
(1970); nevertheless, the resulting field can be detected experimentally—see R. Jacobs, A. de Salazar,
and A. Nassar, Am. J. Phys. 78, 1432 (2010).





Força eletromotriz (emf)







Resumindo

Força eletromotriz (emf):
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�B? = 0

�Bk = µ0K⇥ n̂

�A = 0 se r ·A = 0
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Percorrendo o circuito
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emf gerada por movimento





A lei é válida para movimentos genéricos 
do circuito (prova no livro)308 Chapter 7 Electrodynamics
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velocity of a charge at P . The infinitesimal element of area on the ribbon can be
written as

da = (v × dl) dt

(see inset in Fig. 7.13). Therefore

d!

dt
=

∮
B · (v × dl).

Since w = (v + u) and u is parallel to dl, we can just as well write this as
d!

dt
=

∮
B · (w × dl).

Now, the scalar triple-product can be rewritten:

B · (w × dl) = −(w × B) · dl,

so
d!

dt
= −

∮
(w × B) · dl.

But (w × B) is the magnetic force per unit charge, fmag, so

d!

dt
= −

∮
fmag · dl,

and the integral of fmag is the emf:

E = −d!

dt
. !

There is a sign ambiguity in the definition of emf (Eq. 7.9): Which way around
the loop are you supposed to integrate? There is a compensatory ambiguity in the
definition of flux (Eq. 7.12): Which is the positive direction for da? In applying

Lei do fluxo:

JB = r⇥M

KB = M⇥ n̂

r ·B = 0

r⇥B = µ0 (JB + JF )

= µ0 (r⇥M+ JF )

H =
B

µ0
�M

r ·B = 0

r⇥H = JF (se r · JF = 0)

B = µH

M = �mH

F = r (m ·B)

F = r (m ·B) ) U = �m ·B

J = �f

J = � (fs +E+ v ⇥B)

" =

I
f · dl =

I
(fs +E) · dl =

I
fs · dl

" = �V

" = V � 0 = V

" =

I

C[S(t)]
fm · dl =

I

C[S(t)]
(v ⇥B) · dl = � d

dt

 Z

S(t)
B · dS

!
= �d�B

dt

" = �d�B

dt
= � d

dt

✓Z

S
B · dS

◆

" =

I

C(S)
E · dl = � d

dt

✓Z

S
B · dS

◆
= �d�B

dt

" =

I

C(S)
f · dl = � d

dt

✓Z

S
B · dS

◆
= �d�B

dt

I (t)

) r⇥E = �@B

@t

11



Cuidado com o sinal na lei do fluxo

324 Chapter 7 Electrodynamics

This is also the flux a current I in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = µ0πa2n1n2l.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

E2 = −d"2

dt
= −M

d I1

dt
. (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

" = L I. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M , it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

E = −L
d I
dt

. (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.
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