Aula 23

F 502 - Eletromagnetismo I 2o semestre de 2020

03/12/2020

Eletrodinâmica

Lei de Ohm
para que cargas en condutores se movam E PERMANEGAM EM oCovimewto É NECESSA'RIO QUE HAJA UMA FORĢA ATUANDO SOBRE ELAS. - CASO MaLS COMUM E' A FORGA ELE'TRICA. de maneira gerac:

$$
\vec{J} \times \vec{E} \Rightarrow \vec{J}=\sigma \vec{E} \rightarrow \text { LEI DE OHM }
$$

σ : CONDUTIVIDADE DO matErIal
I PRECISO QUE SEMPRE HAJA UMA fORGA, OU OSELE'TRONS IRĀO PARAR: SOBRE ELES SEMPRE AGE UMA ESPE'CIE DE "FOREA VISCOSA" (DEUIDS A REDE DO CRISTAL, MPUREZAF, ETC.) QUE PRECISA SER CONTRAposta para due haja uma corrente permanente.

A FORGA QUE AGE SOBRE OSELE'TRONS POPE TAMBE'M SER MAGNE'TICA:

$$
\vec{J} \propto \vec{ज} \times \vec{B} \Rightarrow \vec{J}=\sigma(\vec{v} \times \vec{B})
$$

de maneira geral:

$$
\vec{J}=\sigma \vec{f}
$$

ONDE \vec{f} É A FORGA EM QUESTAD, POR UNIDADE DE CARGA.
CONDUTIVIDADE DO COBEE:

$$
\sigma_{c u}=1,68 \times 10^{-8}(0 \mathrm{hm}-m)^{-1}
$$

$$
O H M=\frac{V O L T}{A A M P E R E}
$$

I WVERSO DA CONDUTINCPADE É A RESISTIVIDADE:

$$
\rho=\frac{1}{\sigma}
$$

Material	Resistivity	Material	Resistivity
Conductors:		Semiconductors:	
Silver	1.59×10^{-8}	Sea water	0.2
Copper	1.68×10^{-8}	Germanium	0.46
Gold	2.21×10^{-8}	Diamond	2.7
Aluminum	2.65×10^{-8}	Silicon	2500
Iron	9.61×10^{-8}	Insulators:	
Mercury	9.61×10^{-7}	Water (pure)	8.3×10^{3}
Nichrome	1.08×10^{-6}	Glass	$10^{9}-10^{14}$
Manganese	1.44×10^{-6}	Rubber	$10^{13}-10^{15}$
Graphite	1.6×10^{-5}	Teflon	$10^{22}-10^{24}$

TABLE 7.1 Resistivities, in ohm-meters (all values are for $1 \mathrm{~atm}, 20^{\circ} \mathrm{C}$). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and other references.

A corrente e o campo elétrico em um condutor cilíndrico

$$
\vec{J}=\sigma \vec{E}
$$

SE O CAMPO E' DNIFORME
NO FIO, a CORRENTE \vec{J} TAMBÉM SERA'.
VAMOS ASSUMIR ISSO (ver apiante).

$$
\begin{aligned}
& I=J A=\sigma A E \Longrightarrow I=\sigma A V \\
& \Delta V=-\int \vec{E} \cdot d \vec{l}=\underbrace{\left(\frac{\sigma A}{L}\right) V}_{1 / R} \\
& \Delta V=V-O=V=-\int_{E s e}^{D, R} \cdot d \vec{l}=-\vec{E} \cdot \int_{\text {Ese }}^{D / R} d \vec{l}=E L \Rightarrow V=E L
\end{aligned}
$$

$$
\begin{aligned}
& V=R I \quad(L E I D E O H O I) \\
& R=\frac{L}{\sigma A}=\frac{\rho L}{A} \quad \text { RESISTÊNCIA DO FIO } \\
& G=\frac{1}{R}=\frac{\sigma A}{L}=\frac{A}{\rho L} \quad \text { CONDUTANNCIA DO FIO } \\
& {[R]=[\rho] \frac{L}{L^{2}}=\frac{[\rho]}{L}=\frac{1}{[\sigma] L}} \\
& {[\sigma]=\frac{1}{[R] L} \quad[\rho]=[R] L}
\end{aligned}
$$

NO SI: $\quad[\rho]=01+m-\omega=[R] L$

$$
\Rightarrow[R]=O \mathrm{Hm}
$$

Prova de que o campo elétrico num fio de corrente é uniforme

$$
\begin{aligned}
& \text { (a) } \vec{\nabla} \cdot \vec{E}=\vec{\nabla} \cdot\left(\frac{\vec{J}}{\sigma}\right) \\
& =\frac{1}{\sigma} \vec{\nabla} \cdot \vec{J}(F 10 \\
& \text { UNIFORME) } \\
& \vec{\nabla} \cdot \vec{E}=0 \text { (CPRRENTE } \\
& \text { EStacIona'R,A) } \\
& \text { (b) } \bar{\nabla} \times \overrightarrow{\underline{I}}=0 \longleftrightarrow \overrightarrow{\underline{I}}=-\vec{\nabla} V
\end{aligned}
$$

$\Rightarrow \nabla^{2} V=0 \quad \theta$ POTENCIAL NO FIO SATISAAZ a Eq. DE laplace
(c) CONDIÇOES DE CONTORNO SOBRE V : NAS TAMPAS: $V(\bar{\pi})=$ CONST. $\left\{\begin{array}{l}0 \\ N A \\ V \\ \text { NA ESQUERDA }\end{array}\right.$ NA VERDADE, O FLO NĀO TEM TAMPA (CORRENTE ESTACIONARIA)

NAS PAREDES LATERAIS:

$$
\vec{J} \cdot \hat{\mu}=0
$$

nào há correate SAINDO PELA LATERAL DO Fio

$$
\Rightarrow \frac{\vec{E}}{\sigma} \cdot \hat{n}=0 \Rightarrow \vec{E} \cdot \hat{\mu}=0
$$

$$
\Rightarrow \hat{\mu} \cdot \vec{\nabla} V=0 \quad \text { ou } \quad \frac{\partial V}{\partial \hat{\mu}}=0
$$

NA REGIAAO DO FIO: $\{V=$ CONST. EM ALGUMAS PARTES DE s(VOLUME) $\frac{\partial V}{\partial \bar{m}}=0$ EM OUTRAS
\Rightarrow SOLUÇÃO ÚNICA

CONSIDERE A SEGUINTE
 SOLUCAO:

$$
\begin{aligned}
& V(\vec{\lambda})=\frac{V}{L} z \\
& \nabla^{2} V=0
\end{aligned}
$$

NAS LATERAIS $\hat{\mu} \perp \hat{z}$

$$
\vec{\nabla} v=\frac{v}{L} \hat{z} \Rightarrow \hat{\mu} \cdot \vec{\nabla} v=0
$$

NAS TAMPAS:

$$
\begin{aligned}
& V(0)=0 V \\
& V(L)=\frac{V}{L} L=V
\end{aligned}
$$

ESSA É A SOLU\&AO:

$$
\vec{E}=-\vec{\nabla} v=-\frac{V}{L} \hat{z}
$$

\Rightarrow UNIFORME Q.E.D.

Carga não se acumula em condutores em situação estacionária

fisicamente:

- desbalanço de corrente gera

CAMPO ELÉTRIC.O LOCAL QUE
age contra o desbalanco eo DESTRO'I.
MATEMATI CAMENTE: $\frac{\partial \rho}{\partial t}=-\vec{\nabla} \cdot \vec{J} \begin{gathered}\text { (LEI CONS. } \\ \text { CARGA) }\end{gathered}$
$=-\sigma \vec{\nabla} \cdot \vec{E}$ (LEI PE
OHM)

$$
=-\sigma\left(\frac{\rho}{\epsilon_{0}}\right) \quad \text { (LIE) QE }
$$

$$
\begin{aligned}
\Rightarrow \frac{\partial \rho}{\partial t}=-\frac{\sigma}{\epsilon_{0}} \rho \Rightarrow & \rho(\vec{\pi} t)=\rho_{0}(\vec{\lambda}) e^{-\sigma / \epsilon_{0} t}=\rho_{0}(\vec{\pi}) e^{-t / \tau} \\
& \rho_{0}(\vec{r})=C A R \in A \text { Vor } t=0
\end{aligned}
$$

A CARGA INICIAL ACUMULADA DECAI A ZERO COM O TEMPO NUMA ESCALA TEMPORAL:

$$
\tau=\frac{\epsilon_{0}}{\sigma} \Rightarrow \tau_{c_{u}}=1.5 \times 10^{-19} \mathrm{~s}
$$

TEMPO CURTISSIMO!

Força eletromotriz (emf)
pala que a corrente ciacule
 permanentemente, coro viros, Tem que haver forga externa.
ela pode ser puramente ELÉERICA?
INTEGRANDO A CORRENTE \vec{J}
AO LONGO DE TO DO O CIRCUITO:

$$
\partial \neq \oint \vec{J} \cdot d \vec{l}=\oint \sigma \vec{E} \cdot d \vec{l}=\sigma \oint \vec{E} \cdot d \vec{l}
$$

$\Longrightarrow \oint \vec{E} \cdot d \vec{l} \neq 0$ O QUE E' ABSURDO NUMA SITUACXI eletrostática

IITEM QUE HAVEK OUTRAS FORCLAS ATUdNDO NAS cargas.

DENTKO DA BATERIA, DUTRAS FORGAS (名UÍnICAS") atuam, ale'm de \vec{E}, que chamareros de:
\vec{f}_{S} (FORGAS OUTRAS POR unidade de carga)
HA' VÁrias ORIGENS ROSSI'VEIS PARA \vec{f}_{S} ($\operatorname{m\in CA}$ AICA, MAGNETICA, ETC.)
FORGA TOTA $L: \quad \vec{f}=\vec{\sigma}+\vec{f}_{S}$
POR uNIDADE DE
carga
DEFINO, PARA UM CIRCUITO Cja FORCA ELETROMOTRIZ ε (よEM):

$$
\Sigma=\oint_{C} \vec{f} \cdot d \vec{l}=\oint_{C}\left(\vec{f}_{s}+\vec{E}\right) \cdot d \vec{l}=\oint \overrightarrow{f_{s}} \cdot d \vec{l}
$$

numa situ ação eletoostática
$\vec{f}_{s} \nmid \frac{v \quad}{0 T} \downarrow \vec{E}$
SUPONHAMOS QUE A BATERIA SEJA IDEAL: NĀO TEA RESISTÎNCIA INTERNA
NESSE CASO: $\sigma=\infty, \rho=0$

$$
\begin{aligned}
\Rightarrow \vec{J}=0 \vec{f} & \longrightarrow \vec{J} \neq 0 \text { con } \vec{f}=0 \\
\Rightarrow \vec{f}= & \vec{f}_{S}+\vec{F}=0 \Rightarrow \begin{array}{l}
\vec{f}_{S}=-\vec{E} \\
\\
\\
\overrightarrow{\text { DENTRO DA }} \\
\text { BATERIA }
\end{array}
\end{aligned}
$$

NOS Flos $(\sigma=\infty) \Rightarrow \vec{f}=\vec{i}=0$
No RESISTOR $(\sigma \neq \infty): \vec{J}=\sigma \vec{E}, \vec{f}_{S}=0$

$$
I \| \sum_{\{ } R \mid \vec{E}
$$

Resumindo

Força eletromotriz (emf):
$=V(A)-V(D)=V$

$$
\varepsilon=\oint \mathbf{f} \cdot d \mathbf{l}=\oint\left(\mathbf{f}_{s}+\mathbf{E}\right) \cdot d \mathbf{l}=\oint \mathbf{f}_{s} \cdot d \mathbf{l}
$$

Percorrendo o circuito

Percorrendo o circuito

emf gerada por movimento

- CAMPO MAGNÉTICO UNIFORME
- cIRCUITO É PUXADO PAFA a direita con velocidade

ESSA FORGA GERA CORRENTE NO CIRCUIT

$$
\begin{aligned}
& \varepsilon=\oint_{c} \vec{f} \cdot d \vec{l}=\oint_{c} \vec{f}_{\mu} \cdot d \vec{l}=\int_{a}^{b} \vec{f}_{m} \cdot d \vec{l}=D B h \\
& \Rightarrow I=\frac{V}{R}=\frac{q}{R}=\frac{\sigma B h}{R}
\end{aligned}
$$

Qual E' O fluxo de \vec{b} pela superfície
S CUJA BORDA E'O CIRCUITO C: $d \vec{s}=d S \hat{y}$

$$
\begin{aligned}
& \Phi_{B}(s)=\int_{S} \vec{B} \cdot d \vec{s}=B \int d S=B h x \\
& \frac{d \Phi_{B}}{d t}=B h \frac{d x}{d t}=-B h \sigma \\
& \Rightarrow \varepsilon=-\frac{d \Phi_{B}}{d t} \quad \text { LII DO FLUXO }
\end{aligned}
$$

A lei é válida para movimentos genéricos do circuito (prova no livro)

Lei do fluxo:

$$
\varepsilon=\oint_{C(S)} \stackrel{\rightharpoonup}{\mathbf{\rho}} \cdot d \mathbf{l}=-\frac{d}{d t}\left(\int_{S} \mathbf{B} \cdot d \mathbf{S}\right)=-\frac{d \Phi_{B}}{d t}
$$

Cuidado com o sinal na lei do fluxo

$$
\varepsilon=\oint_{C(S)} \mathbf{f} \cdot d \mathbf{l}=-\frac{d}{d t}\left(\int_{S} \mathbf{B} \cdot d \mathbf{S}\right)=-\frac{d \Phi_{B}}{d t}
$$

$$
\varepsilon=-\frac{d \Phi_{B}}{d t}
$$

