Aula 23

F 502 – Eletromagnetismo I 2º semestre de 2020 03/12/2020

Eletrodinâmica

Lei de Ohm

PARA QUE CARGAS EN CONDUTORES SE HOVAM E <u>PERMANEÇAM EM DIQUIMENTO</u> E NECESSA^TRIO QUE HAJA UMA FORÇA ATUANOO SOBRE ELAS. O LASO MAIS COMUM E A FORÇA ELE TRICA. DE MANEIRA GERAL:

デメビ → J=0 ビ → LEI DE 0401

J: CONDUTIVIDADE DO MATERIAL

É PRECISO QUE SEMPRE HAJA UMA FORÇA, OU OSELE'TRONS IRÃO PARAR: SOBRE ELES SEMPRE AGE UMA ESPECIE DE "FORÇA VISCOSA" (DEVIDO À REDE PO CRISTAL, IMPUREZAS, ETC.) QUE PRECISA SER CONTRA-POSTA PARA QUE HAJA UMA CORRENTE PERMANENTE. A FORÇA QUE AGE SOBRE OS ELETRONS POPE TAMBEN SER MAGNETICA:

了又下来了 = 了=0(下下)

DE MANEIRA GERAL:

ONDE FEA FORGA EN QUESTÃO, POR UNIDADE

PE CARGA.

CONDUT (U DADE DO COBRE!

OHM = VOLT AMPÈRE INVERSO DA CONDUTIVIPADE E A RESISTIVIDADE:

8 = F

Material	Resistivity	Material	Resistivity
Conductors:		Semiconductors:	
Silver	1.59×10^{-8}	Sea water	0.2
Copper	1.68×10^{-8}	Germanium	0.46
Gold	2.21×10^{-8}	Diamond	2.7
Aluminum	2.65×10^{-8}	Silicon	2500
Iron	9.61×10^{-8}	Insulators:	
Mercury	9.61×10^{-7}	Water (pure)	8.3×10^{3}
Nichrome	1.08×10^{-6}	Glass	$10^9 - 10^{14}$
Manganese	1.44×10^{-6}	Rubber	$10^{13} - 10^{15}$
Graphite	1.6×10^{-5}	Teflon	$10^{22} - 10^{24}$

TABLE 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20° C). *Data from Handbook of Chemistry and Physics*, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and other references.

A corrente e o campo elétrico em um condutor cilíndrico

 V=RI (LEI DE OHON)

R = L = 3L RESISTÊNCIA DO FIO CONDUTANCIA DO FIO $G = \frac{1}{R} = \frac{\sigma A}{1} = \frac{A}{RL}$ $[R] = [S] \frac{L}{r^2} = \frac{[S]}{L} = \frac{1}{[O]L}$ $\begin{bmatrix} \sigma \end{bmatrix} = \frac{1}{\lceil R \rceil \lfloor} \qquad \begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} r \end{bmatrix} \lfloor$ NO ST. (P] = OHN-M = [R]L = [K] = OHM

D M. DV = D DN DV = D DA NA REGIÃO DO FIO: { V = CONST. EN ALGUMAS PARTES DE S(VOLUME) DV = D EN OUTRAS DA = D EN OUTRAS PARTES PARTES

Carga não se acumula em condutores em situação estacionária

FISICAMENTE: DESBALANÇO DE CORRENTE GERA CAMPO ELETRICO LOCAL QUE AGE CONTRA O PESBALANCO E O DESTROI MATEMATICAMENTE: 23 = -7.7 (LEI CONS. DE -7.7 (LEI CONS. CARGA) -0 THE (LEI PE OHM) $= -\sigma \left(\frac{1}{\epsilon_0} \right) \left(\frac{1}{\epsilon_0} \right) = \frac{1}{\epsilon_0} \left(\frac{1}{\epsilon_0} \right) \left(\frac{1}{\epsilon_0$

A CARGA INICIAL ACOMULADA DECAI A ZERO CON D TEMPO NUMA ESCALA TEMPORAL: $Z = \frac{E_0}{6} = C_{cu} = 1.5 \times 10^{-15} \text{ s}$

TENPO CURTISSIMO!

Força eletromotriz (emf)

PALA QUE A CORRENTE CIRCULE PERMANENTEMENTE, COMO VINOS, TEM QUE HAVER FORSA EXTERNA. R ELA PODE SER PURAMENTE ELÉTRICA ? INTEGRANDO A CORRENTE F AO LONGO DE TOPO O CIRCUITO: のまらず、」え = りてを、は = てらぞ、は 7 JE. de to O BUE E ABSURDO NUMA SITUAÇÃO ELETROSTATICA

ATEM QUE HAVER OUTRAS FORÇAS ATUANDO NAS

DENTRO DA BATERIA, OUTRAS FORÇAS (QUÍNICAS") ATUAN, ALEM DE É, QUE CHAMALENOS DE: f. (FORGAS OUTRAS POR UNIDADE DE CARGA) HA' VARIAS ORIGENS POSSIVEIS PARA FS (MECÂNICA, MAGNETICA, ETC.) FORGA TOTAL: f=E+fs POR UNIDADE DE CALGA DEFINO, PARA UM CIRCUITO SIA FORÇA ELETRO-MOTRIZ & (FEM):

> $\mathcal{E} = \oint \vec{f} \cdot d\vec{l} = \oint (\vec{f}_s + \vec{E}) \cdot d\vec{l} = \oint \vec{f}_s \cdot d\vec{l}$ NUMA SITU AÇÃQ ELE TQOSTATICA

SUPONHANDS DUE A BATERIA SEJA IDEAL: NÃO TEM RESISTÊNCIA INTERNA

NESSE CASO: $T = \infty$, S = 0 $\Rightarrow J = 0$, f = 0 $\exists f = f_s + E = 0$ $D = D = T_s = -E$ D = D = D

BATERIA

NOS FIOS $(\sigma = \omega) = \tilde{f} = \tilde{E} = 0$ NO RESISTOR $(\sigma \neq \omega)$; $\tilde{f} = \sigma \tilde{E}$, $\tilde{f}_{S} = 0$

IL

Força eletromotriz (emf):

$$\varepsilon = \oint \mathbf{f} \cdot d\mathbf{l} = \oint (\mathbf{f}_s + \mathbf{E}) \cdot d\mathbf{l} = \oint \mathbf{f}_s \cdot d\mathbf{l}$$

Percorrendo o circuito

Percorrendo o circuito

S

emf gerada por movimento

ESSA FORÇA GERA CORRENTE NO CIRCUID $\mathcal{E} = \oint \vec{f} \cdot d\vec{k} = \oint \vec{f} \cdot d\vec{k} = \int \vec{f} \cdot d\vec{k} = \Delta Bh$

 $\exists r \quad I = \frac{V}{R} = \frac{2}{R} = \frac{NBh}{R}$

$$\theta \cup AL \in O \quad FL \cup XO \quad DE \quad B \quad PELA \quad SUPERFICIE$$

 $\leq C \cup JA \quad BORDA \quad E \quad O \quad CIRCUITO \quad \subseteq : \quad d\vec{s} = dS\vec{g}$
 $\Phi_{B}(s) = \int \vec{B} \cdot d\vec{s} = O \quad \int dS = Bh X$
 $d\Phi_{B} = Bh \quad dX = -Bh \sigma$
 $dt = -Bh \sigma$
 $dt = -Bh \sigma$
 $LEI \quad DO \quad FL \cup NO$

A lei é válida para movimentos genéricos do circuito (prova no livro)

Cuidado com o sinal na lei do fluxo

$$\varepsilon = \oint_{C(S)} \mathbf{f} \cdot d\mathbf{l} = -\frac{d}{dt} \left(\int_{S} \mathbf{B} \cdot d\mathbf{S} \right) = -\frac{d\Phi_{B}}{dt}$$

