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f : força por unidade de carga dos portadores.
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Por exemplo:

Lei de Ohm num fio:
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r: resistividade do material
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Força eletromotriz (emf) num circuito V-R:
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A emf resulta de forças químicas dentro da bateria.

Força eletromotriz (emf):
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Força eletromotriz gerada por movimento

A emf é gerada pela força magnética fm em ab:

Lei do fluxo
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324 Chapter 7 Electrodynamics

This is also the flux a current I in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = µ0πa2n1n2l.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

E2 = −d"2

dt
= −M

d I1

dt
. (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

" = L I. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M , it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

E = −L
d I
dt

. (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.
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Lei de indução de Faraday

312 Chapter 7 Electrodynamics

the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note:
The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated.]

B a

a

ω

FIGURE 7.19 FIGURE 7.20

7.2 ELECTROMAGNETIC INDUCTION

7.2.1 Faraday’s Law

In 1831 Michael Faraday reported on a series of experiments, including three that
(with some violence to history) can be characterized as follows:

Experiment 1. He pulled a loop of wire to the right through a magnetic field
(Fig. 7.21a). A current flowed in the loop.

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.21b).
Again, a current flowed in the loop.

Experiment 3. With both the loop and the magnet at rest (Fig. 7.21c), he changed
the strength of the field (he used an electromagnet, and varied the current
in the coil). Once again, current flowed in the loop.

B (in)

II

B (in)

I

B

(a) (b) (c)
changing

magnetic field

v v

FIGURE 7.21





Lei de Lenz
Exemplo 7.5: um cilindro magnetizado 
longo passando por dentro de um loop.



Lei de Lenz
7.2 Electromagnetic Induction 315

builds up to a maximum of µ0 Mπa2 as the leading end passes through; and it
drops back to zero as the trailing end emerges (Fig. 7.23a). The emf is (minus)
the derivative of " with respect to time, so it consists of two spikes, as shown in
Fig. 7.23b.

L/v t

µ0Mπa2

φ

t

E

(a) (b)

FIGURE 7.23

Keeping track of the signs in Faraday’s law can be a real headache. For in-
stance, in Ex. 7.5 we would like to know which way around the ring the induced
current flows. In principle, the right-hand rule does the job (we called " positive
to the left, in Fig. 7.22, so the positive direction for current in the ring is counter-
clockwise, as viewed from the left; since the first spike in Fig. 7.23b is negative,
the first current pulse flows clockwise, and the second counterclockwise). But
there’s a handy rule, called Lenz’s law, whose sole purpose is to help you get the
directions right:10

Nature abhors a change in flux.

The induced current will flow in such a direction that the flux it produces tends
to cancel the change. (As the front end of the magnet in Ex. 7.5 enters the ring,
the flux increases, so the current in the ring must generate a field to the right—it
therefore flows clockwise.) Notice that it is the change in flux, not the flux it-
self, that nature abhors (when the tail end of the magnet exits the ring, the flux
drops, so the induced current flows counterclockwise, in an effort to restore it).
Faraday induction is a kind of “inertial” phenomenon: A conducting loop “likes”
to maintain a constant flux through it; if you try to change the flux, the loop re-
sponds by sending a current around in such a direction as to frustrate your efforts.
(It doesn’t succeed completely; the flux produced by the induced current is typi-
cally only a tiny fraction of the original. All Lenz’s law tells you is the direction of
the flow.)

10Lenz’s law applies to motional emfs, too, but for them it is usually easier to get the direction of the
current from the Lorentz force law.
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Problema 7.18

7.2 Electromagnetic Induction 321

(a) If the current in the solenoid is increasing at a constant rate (d I/dt = k), what
current flows in the loop, and which way (left or right) does it pass through the
resistor?

(b) If the current I in the solenoid is constant but the solenoid is pulled out of the
loop (toward the left, to a place far from the loop), what total charge passes
through the resistor?

Problem 7.18 A square loop, side a, resistance R, lies a distance s from an infinite
straight wire that carries current I (Fig. 7.29). Now someone cuts the wire, so I
drops to zero. In what direction does the induced current in the square loop flow,
and what total charge passes a given point in the loop during the time this current
flows? If you don’t like the scissors model, turn the current down gradually:

I (t) =
{

(1 − αt)I, for 0 ≤ t ≤ 1/α,

0, for t > 1/α.

a

a

s

I

FIGURE 7.29

Problem 7.19 A toroidal coil has a rectangular cross section, with inner radius a,
outer radius a + w, and height h. It carries a total of N tightly wound turns, and
the current is increasing at a constant rate (d I/dt = k). If w and h are both much
less than a, find the electric field at a point z above the center of the toroid. [Hint:
Exploit the analogy between Faraday fields and magnetostatic fields, and refer to
Ex. 5.6.]

Problem 7.20 Where is ∂B/∂t nonzero, in Figure 7.21(b)? Exploit the analogy
between Faraday’s law and Ampère’s law to sketch (qualitatively) the electric field.

Problem 7.21 Imagine a uniform magnetic field, pointing in the z direction and
filling all space (B = B0 ẑ). A positive charge is at rest, at the origin. Now somebody
turns off the magnetic field, thereby inducing an electric field. In what direction does
the charge move?16

7.2.3 Inductance

Suppose you have two loops of wire, at rest (Fig. 7.30). If you run a steady current
I1 around loop 1, it produces a magnetic field B1. Some of the field lines pass

16This paradox was suggested by Tom Colbert. Refer to Problem 2.55.

a) Qual é a direção da corrente?
b) Qual é a carga total que passa por um ponto?
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Exemplo 7.9
Achar o campo 
elétrico induzido
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through loop 2; let !2 be the flux of B1 through 2. You might have a tough time
actually calculating B1, but a glance at the Biot-Savart law,

B1 = µ0

4π
I1

∮
dl1 × r̂
r2 ,

reveals one significant fact about this field: It is proportional to the current I1.
Therefore, so too is the flux through loop 2:

!2 =
∫

B1 · da2.

Thus

!2 = M21 I1, (7.22)

where M21 is the constant of proportionality; it is known as the mutual induc-
tance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by
expressing the flux in terms of the vector potential, and invoking Stokes’ theorem:

!2 =
∫

B1 · da2 =
∫

(∇ × A1) · da2 =
∮

A1 · dl2.

Now, according to Eq. 5.66,

A1 = µ0 I1

4π

∮
dl1
r ,

and hence

!2 = µ0 I1

4π

∮ (∮
dl1
r

)
· dl2.

Evidently

M21 = µ0

4π

∮ ∮
dl1 · dl2
r . (7.23)







As indutâncias mútuas são simétricas
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This is also the flux a current I in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = µ0πa2n1n2l.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

E2 = −d"2

dt
= −M

d I1

dt
. (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

" = L I. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M , it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

E = −L
d I
dt

. (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.
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