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312 Chapter 7 Electrodynamics

the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note:
The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated.]
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7.2 ELECTROMAGNETIC INDUCTION

7.2.1 Faraday’s Law

In 1831 Michael Faraday reported on a series of experiments, including three that
(with some violence to history) can be characterized as follows:

Experiment 1. He pulled a loop of wire to the right through a magnetic field
(Fig. 7.21a). A current flowed in the loop.

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.21b).
Again, a current flowed in the loop.

Experiment 3. With both the loop and the magnet at rest (Fig. 7.21c), he changed
the strength of the field (he used an electromagnet, and varied the current
in the coil). Once again, current flowed in the loop.
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Experimentos de Faraday

Em (a) a fem é gerada pela força magnética (força de 
Lorentz) num circuito que se move
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Experimentos de Faraday

Mas em (b) e (c) a emf é gerada por campo elétrico gerado 
pelo campo magnético variável
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Além de cargas, campos magnéticos dependentes 
do tempo geram campo elétrico.
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314 Chapter 7 Electrodynamics

Note that Faraday’s law reduces to the old rule
∮

E · dl = 0 (or, in differential
form, ∇ × E = 0) in the static case (constant B) as, of course, it should.

In Experiment 3, the magnetic field changes for entirely different reasons, but
according to Faraday’s law an electric field will again be induced, giving rise to
an emf −d!/dt . Indeed, one can subsume all three cases (and for that matter any
combination of them) into a kind of universal flux rule:

Whenever (and for whatever reason) the magnetic flux through a
loop changes, an emf

E = −d!

dt
(7.17)

will appear in the loop.

Many people call this “Faraday’s law.” Maybe I’m overly fastidious, but I find this
confusing. There are really two totally different mechanisms underlying Eq. 7.17,
and to identify them both as “Faraday’s law” is a little like saying that because
identical twins look alike we ought to call them by the same name. In Faraday’s
first experiment it’s the Lorentz force law at work; the emf is magnetic. But in the
other two it’s an electric field (induced by the changing magnetic field) that does
the job. Viewed in this light, it is quite astonishing that all three processes yield
the same formula for the emf. In fact, it was precisely this “coincidence” that led
Einstein to the special theory of relativity—he sought a deeper understanding of
what is, in classical electrodynamics, a peculiar accident. But that’s a story for
Chapter 12. In the meantime, I shall reserve the term “Faraday’s law” for electric
fields induced by changing magnetic fields, and I do not regard Experiment 1 as
an instance of Faraday’s law.

Example 7.5. A long cylindrical magnet of length L and radius a carries a uni-
form magnetization M parallel to its axis. It passes at constant velocity v through
a circular wire ring of slightly larger diameter (Fig. 7.22). Graph the emf induced
in the ring, as a function of time.

L

aM
v

FIGURE 7.22

Solution
The magnetic field is the same as that of a long solenoid with surface current
Kb = M φ̂. So the field inside is B = µ0M, except near the ends, where it starts
to spread out. The flux through the ring is zero when the magnet is far away; it
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through loop 2; let !2 be the flux of B1 through 2. You might have a tough time
actually calculating B1, but a glance at the Biot-Savart law,

B1 = µ0

4π
I1

∮
dl1 × r̂
r2 ,

reveals one significant fact about this field: It is proportional to the current I1.
Therefore, so too is the flux through loop 2:

!2 =
∫

B1 · da2.

Thus

!2 = M21 I1, (7.22)

where M21 is the constant of proportionality; it is known as the mutual induc-
tance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by
expressing the flux in terms of the vector potential, and invoking Stokes’ theorem:

!2 =
∫

B1 · da2 =
∫

(∇ × A1) · da2 =
∮

A1 · dl2.

Now, according to Eq. 5.66,

A1 = µ0 I1

4π

∮
dl1
r ,

and hence

!2 = µ0 I1

4π

∮ (∮
dl1
r

)
· dl2.

Evidently

M21 = µ0

4π

∮ ∮
dl1 · dl2
r . (7.23)

324 Chapter 7 Electrodynamics

This is also the flux a current I in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = µ0πa2n1n2l.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

E2 = −d"2

dt
= −M

d I1

dt
. (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

" = L I. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M , it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

E = −L
d I
dt

. (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.
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Exemplo 7.10: Indutância mútua de 
dois solenoides (um muito longo)
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This is also the flux a current I in the short solenoid would put through the long
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Inductance is measured in henries (H); a henry is a volt-second per ampere.
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Energia magnética



Para um circuito



Para dois ou mais circuitos







Expressões gerais





Auto-indutância de um solenoide 
longo: pelo fluxo magnético



Auto-indutância de um solenoide 
longo: pela energia



Auto-indutância de um solenoide longo 
com miolo de material magnético



Uso de miolos materiais: 
caso elétrico x caso magnético
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Example 4.6. A parallel-plate capacitor (Fig. 4.23) is filled with insulating
material of dielectric constant εr . What effect does this have on its capacitance?

Solution
Since the field is confined to the space between the plates, the dielectric will
reduce E, and hence also the potential difference V , by a factor 1/εr . Accordingly,
the capacitance C = Q/V is increased by a factor of the dielectric constant,

C = εr Cvac. (4.37)

This is, in fact, a common way to beef up a capacitor.

Dielectric

FIGURE 4.23

A crystal is generally easier to polarize in some directions than in others,12 and
in this case Eq. 4.30 is replaced by the general linear relation

Px = ε0(χexx Ex + χexy Ey + χexz Ez)

Py = ε0(χeyx Ex + χeyy Ey + χeyz Ez)

Pz = ε0(χezx Ex + χezy Ey + χezz Ez)





, (4.38)

just as Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The nine
coefficients, χexx , χexy , . . . , constitute the susceptibility tensor.

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24)
is filled with two slabs of linear dielectric material. Each slab has thickness a, so
the total distance between the plates is 2a. Slab 1 has a dielectric constant of 2, and
slab 2 has a dielectric constant of 1.5. The free charge density on the top plate is σ

and on the bottom plate −σ .

12A medium is said to be isotropic if its properties (such as susceptibility) are the same in all
directions. Thus Eq. 4.30 is the special case of Eq. 4.38 that holds for isotropic media. Physicists tend
to be sloppy with their language, and unless otherwise indicated the term “linear dielectric” implies
“isotropic linear dielectric,” and suggests “homogeneous isotropic linear dielectric.” But technically,
“linear” just means that at any given point, and for E in a given direction, the components of P are
proportional to E—the proportionality factor could vary with position and/or direction.
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Aumenta a energia armazenada, para uma 
dada voltagem. Normalmente, controla-se 
a voltagem, não a carga (Q=CV).

Aumenta a energia armazenada, para uma 
dada corrente. Normalmente, controla-se a 
corrente, não o fluxo (F=LI).


