Aula 25

F 502 - Eletromagnetismo I 2o semestre de 2020

$$
15 / 12 / 2020
$$

Aulas passadas

Experimentos de Faraday

Em (a) a fem é gerada pela força magnética (força de Lorentz) num circuito que se move

$$
\varepsilon=\oint_{C[S(t)]} \mathbf{f}_{m} \cdot d \mathbf{l}=-\frac{d}{d t}\left(\int_{S(t)} \mathbf{B} \cdot d \mathbf{S}\right)=-\frac{d \Phi_{B}}{d t}
$$

Aulas passadas

Experimentos de Faraday

Mas em (b) e (c) a emf é gerada por campo elétrico gerado pelo campo magnético variável

$$
\varepsilon=\oint_{C(S)} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t}\left(\int_{S} \mathbf{B} \cdot d \mathbf{S}\right)=-\frac{d \Phi_{B}}{d t}
$$

Aulas passadas

Lei de Faraday:

$$
\begin{gathered}
\varepsilon=\oint_{C(S)} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t}\left(\int_{S} \mathbf{B} \cdot d \mathbf{S}\right)=-\frac{d \Phi_{B}}{d t} \\
\Rightarrow \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
\end{gathered}
$$

Além de cargas, campos magnéticos dependentes do tempo geram campo elétrico.

Aulas passadas

Lei de Lenz: corrente induzida gera um fluxo magnético oposto à variação do fluxo magnético indutor da emf.

Aulas passadas

Analogia com a lei de Ampère (útil quando há alta simetria):

Lei de Ampère:

$$
\oint_{C(S)} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I(S)=\int_{S}\left(\mu_{0} \mathbf{J}\right) \cdot d \mathbf{S}
$$

Lei de Faraday: $\quad \oint_{C(S)} \mathbf{E} \cdot d \mathbf{l}=-\frac{d \Phi_{B}(S)}{d t}=\int_{S}\left(-\frac{\partial \mathbf{B}}{\partial t}\right) \cdot d \mathbf{S}$

$$
\begin{array}{|ccc|}
\hline \text { Ampère } & - & \text { Faraday } \\
\mu_{0} \mathbf{J} & \leftrightarrow & -\frac{\partial \mathbf{B}}{\partial t} \\
\mathbf{B} & \leftrightarrow & \mathbf{E}
\end{array}
$$

Aulas passadas

Indutância

$$
\begin{aligned}
& \Phi_{1}=M_{11} I_{1}+M_{12} I_{2} \\
& \Phi_{2}=M_{21} I_{1}+M_{22} I_{2}
\end{aligned}
$$

$$
M_{i j}=\frac{\mu_{0}}{4 \pi} \oint_{C_{i}} \oint_{C_{j}} \frac{d \mathbf{l}_{i} \cdot d \mathbf{l}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}=M_{j i}
$$

$$
L_{i}=\frac{\mu_{0}}{4 \pi} \oint_{C_{i}} \oint_{C_{i}} \frac{d \mathbf{l} \cdot d \mathbf{l}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{k}}
$$

Cuidado!

Exemplo 7.10: Indutância mútua de dois solenoides (um muito longo)

nesse caso, é mais fa'cil passar a corrente pelo solenotde mals lowgo e calcular o fluxo ATRAVE'S DAS ESPIRAS DO MENOR: $\Phi_{1}=M_{12} I_{2}$ O carpo pEVIDO A 2 NA REGIADO DE 1 E' CPNSTANTE

$$
\begin{gathered}
B_{2}=\mu_{0} \mu_{2} I_{2} \\
\Phi_{1}\left(\operatorname{Vor} A E S P(R A)=B_{2}\left(\pi a^{2}\right)=\mu_{0} \mu_{2}\left(\pi a^{2}\right) I_{2}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \Phi_{1}=N_{1} \Phi_{1}(\text { URA ESPIRA })=\mu_{1} l \mu_{0} \mu_{2} I_{2}\left(\pi a^{2}\right)=\mu_{12} I_{2} \\
& \Rightarrow \mu_{12}=\mu_{21}=\mu_{0} \mu_{1} \mu_{2} \underbrace{\left(\int_{2} a^{2}\right)}_{V_{1}} \\
& V_{1}=\text { VOLUNE DO SOLENOIDE } 1
\end{aligned}
$$

Correntes induzidas
USANDO A FÓRMULA DOS FLUXOS EO TERMOS DAS CORRENTES E DERIVANDO NO TEMPO:

$$
\begin{array}{lc}
-\varepsilon_{1}=\frac{d \Phi_{1}}{d t}=M_{12} \frac{d I_{2}}{d t}+M_{11} \frac{d I_{1}}{d t} & M_{11}=L_{1} \\
-\varepsilon_{2}=\frac{d \Phi_{2}}{d t}=M_{21} \frac{d I_{1}}{d t}+L_{22} \frac{d I_{2}}{d t} & M_{12}=M_{21}=M \\
\varepsilon_{1}=-L_{1} \frac{d I_{1}}{d t}-M \frac{d I_{2}}{d t} \\
\varepsilon_{2}=-M \frac{d I_{1}}{d t}-L_{2} \frac{d I_{2}}{d t} & \text { NO CASO DE UN } \\
& =\Sigma=-L \frac{d I}{d t}
\end{array}
$$

Correntes induzidas

$$
\begin{aligned}
& \varepsilon_{1}=-L_{1} \frac{d I_{1}}{d t}-M \frac{d I_{2}}{d t} \\
& \varepsilon_{2}=-M \frac{d I_{1}}{d t}-L_{2} \frac{d I_{2}}{d t} \\
& M_{11}=L_{1}
\end{aligned}
$$

$$
M_{22}=L_{2}
$$

$$
M_{12}=M_{21}=M
$$

Energia magnética
a energia magnética é aguela necessária para criar uma configuragáo DE CORRENTES, A PARTIR DO ZERO, CONTRA A FEM INDUZIDA. ESSA ENERGIA e' recuperável (por
 EXSMPLO, wUN CIRCUITO LC, CDMO ACIOMA) E NATO TEM NADA A VER COM PEROAS POR EFEITO JOUCE ($P=R I^{2}$), QUE E' IRREVIERSIVELMENTE TRANSFORMADA EM ENKRGCAA TEÉRMICA.

Para um circuit
$I(t)$ VA, DE ZERO ATE O VALOR FINAL I (t) CONTRA A fEM

$$
d w=-\varepsilon d q=+\frac{d \Phi_{B}}{d t} I d t=I d \Phi_{B}
$$

PARA UN CIRCUIT: $\Phi_{B}=L I \Rightarrow d \Phi_{B}=L d I$

$$
d W=L I d I
$$

- TRABALHO TOTAL E A INTEGRAL DE LW:

$$
W=\int d W=\int_{0}^{I} L I d I=\left.L \frac{I^{2}}{2}\right|_{I=0} ^{I=I}=\frac{1}{2} L I^{2}
$$

Para dois ou mais circuitos

$$
\left.\begin{array}{l}
d W_{1}=I_{1} d \Phi_{S_{1}}=I_{1}\left(L_{1} d I_{1}+M d I_{2}\right) \\
d W_{2}=I_{2} d \Phi_{B_{2}}=I_{2}\left(L_{2} d I_{2}+d d I_{1}\right)
\end{array}\right\} d W=d W_{1}+d W_{2}
$$

PARA N CIRCUITOS:

$$
W=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(I_{i} M_{i j} I_{j}\right) \quad(1)
$$

SE $N=2$:

$$
W=\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} I_{i} M_{i j} I_{j}=\frac{1}{2}\left(\mu_{11}^{L_{1}} I_{1}^{2}+M_{22} I_{2}^{2}+\mu_{12}^{M} I_{1} I_{2}+\right.
$$

च REOBTENHO A FÓRMULA ANTERIOR
LEMBRANDD QUE $\Phi_{i}=\sum_{j=1}^{N} M_{i j} I_{j}$, DE (1)ACIMA

$$
W=\frac{1}{2} \sum_{i=1}^{N} I_{i} \Phi_{i}
$$

$$
W=\frac{1}{2} \sum_{i} I_{i} \Phi_{i}=\frac{1}{2} \sum_{i} I_{i} \int_{S_{i}} \vec{B}\left(\vec{\Lambda}_{i}\right) \cdot d \vec{S}_{i}
$$

USANDO STOKES:

$$
\begin{aligned}
W & =\frac{1}{2} \sum_{i} I_{i} \oint_{c\left(s_{i}\right)} \vec{A}\left(\vec{n}_{i}\right) \cdot d \vec{e}_{i} \\
& =\frac{1}{2} \sum_{i=1}^{\infty} \oint_{c\left(s_{i}\right)} \vec{A}\left(\vec{r}_{i}\right) \cdot\left[I_{i} d \vec{l}_{i}\right]
\end{aligned}
$$

DE MANEIRA GERAL: $\sum_{i=1}^{N}\left(s_{i}\right) \quad I_{i} \cdot \overrightarrow{d l_{i}}=\int(7 \vec{J} d V$

$$
\begin{equation*}
\Rightarrow W=\frac{1}{2} \int_{V} \vec{A}(\vec{n}) \cdot \vec{J}(\vec{r}) d V=\frac{1}{2} \int_{T \cdot E} \vec{A}(\lambda) \cdot \vec{J}(\imath) d V \tag{2}
\end{equation*}
$$

COMPARE con: $W_{\text {er }}=\frac{1}{2} \int_{T . E .} \rho(\vec{r}) V(\vec{r}) d V$

Expressões gerais

$$
W=\frac{1}{2} \int_{T-E .} \vec{A}(\vec{R}) \cdot \vec{J}(\vec{\sim}) d V \quad \text { (2) }
$$

DA LEI DE AMPERE: $\bar{\nabla} \times \bar{B}=\mu_{0} \bar{J}$

$$
\Rightarrow W=\frac{1}{2 \mu_{0}} \int_{T . E .} \bar{A}(\bar{r}) \cdot(\bar{\nabla} \times \bar{B}) d v
$$

USANDO: $\bar{\nabla} \cdot(\bar{A} \times \bar{B})=\bar{B} \cdot(\bar{\nabla} \times \bar{A})-\bar{A} \cdot(\overline{\bar{D}} \times \bar{B})$ DO CA'LCULS VETORIAL

$$
\begin{aligned}
W & =\frac{1}{2 \mu_{0}}[\int_{T \cdot E} \bar{B} \cdot \underbrace{(\bar{\nabla} \times \bar{A}}_{\bar{B}}) d V-\int_{T \cdot E \cdot} \bar{\nabla} \cdot(\bar{A} \times \bar{B}) d V] \\
& =\frac{1}{2 \mu_{0}}\left[\int(\vec{B} \cdot \vec{B}) d V-\int_{S_{\infty}}(\bar{A} \times \bar{B}) \cdot d \vec{S}\right]
\end{aligned}
$$

PARA DISTRIBUISDEES LOCALIZADAS DE CORRENJBS:

$$
\left.\begin{array}{l}
\vec{B} \sim \frac{1}{r^{2}} \\
\vec{A} \sim \frac{1}{\sim}
\end{array}\right\} \begin{aligned}
& \vec{A} \times \bar{B} \sim \frac{1}{r^{3}} \\
& d \vec{S} \sim r^{2}
\end{aligned} \int_{\infty}(\vec{A} \times \vec{B}) \cdot \alpha \vec{S} \rightarrow 0
$$

COMAARE COM: $W_{a l}=\frac{\epsilon_{0}}{2} \int_{\text {T.E. }} E^{2} d V$

Auto-indutância de um solenoide Inngo: pelo fluxo magnético

PASSO UMA CORRENTE I I calculo o fluno magnético $\Phi_{\text {s }}$ $\Phi_{B}=L I$
$B=\mu_{0} \mu I$
FLUXS POR UMA ESPIRA:

$$
\Phi_{1}=B\left(\pi R^{2}\right)=\pi \mu_{0} \mu I R^{2}
$$

FLUXo TOTAL
$\Phi_{s}=N \Phi_{2}=(\mu l) \Phi_{2}=\mu_{0} \mu^{2}\left(l \pi R^{2}\right) I$

$$
\Rightarrow L=\mu_{0} \mu^{2}(\underbrace{\left.2 \pi R^{2}\right)}_{V \angle L U M E \text { DO SOLENDIDR }}=\mu_{0} \mu^{2}(V) ; \frac{L}{l}=\mu_{0} \mu^{2}\left(\pi R^{2}\right)
$$

Auto-indutância de um solenoide longo: pela energia

calculo a Energia total arrazenpas E iguALO A $W=\frac{1}{2} L I^{2}$

$$
\boldsymbol{l} \quad W=\frac{1}{2 \mu_{0}} \int B^{2} d V=\frac{B^{2}}{2 \mu_{0}} \text { (VOLUME) }
$$

Já que $\vec{b}_{\text {E }}$ É constante dentro DO SOLENOIDE E ZERO FORA DELE.

$$
\Rightarrow W=\frac{1}{2 \mu_{0}}\left(\mu_{0} \mu I\right)^{2}(\text { volume })=\frac{1}{2} \mu_{0} \mu^{2} P^{2}(\text { voluna })
$$

$\triangle L=\mu_{0} \mu^{2}$ (VOLUME) $=\mu_{0} \mu^{2}\left(e \pi R^{2}\right)$ COMO ANTES \Rightarrow TENTE CALCULAR $W=\frac{1}{2} \int \vec{A} \cdot \vec{K} d S \quad K=M I$

Auto-indutância de um solenoide longo com miolo de material magnético

para calcular o carso magnético USA-SE A LEI DE AMPÉERE PARA nECOS MATERIAIS: $\bar{O} \times \vec{H}=\vec{J}_{F} \Rightarrow \oint_{C(S)} \vec{H} \cdot d \vec{l}=I_{\delta}(s)$
$H=0$ FORA DO SOLENDIDE; $\mathbb{F}=H_{z} \hat{z}$

$$
\begin{aligned}
& H_{z}(\rho) g / 0=K l_{0}=\mu I g_{0} \\
& H_{z}(\rho)=\mu I \Rightarrow B_{z}=\mu H_{z}=\mu \mu I
\end{aligned}
$$

A indutância pode ser dbtida pela ENERGIA: $W=\frac{1}{2 \mu_{0}} B H($ VOLUME $)=\frac{\mu}{2 \mu_{0}}(\mu I)^{2}($ VOLUME $)$

$$
\Rightarrow L=\frac{\mu}{\mu_{0}} \mu^{2} I^{2}(V O L U M E)
$$

II
pode ser provada

Uso de miolos materiais:

caso elétrico x caso magnético

$$
C=\frac{\epsilon A}{d}=\frac{\epsilon}{\epsilon_{0}} C_{0}>C_{0}
$$

$$
W=\frac{1}{2} C V^{2}
$$

Aumenta a energia armazenada, para uma dada voltagem. Normalmente, controla-se a voltagem, não a carga ($Q=C V$).

$$
L=\mu n^{2} \pi \ell R^{2}=\frac{\mu}{\mu_{0}} L_{0}>L_{0}\left(\text { se } \mu>\mu_{0}\right)
$$

$$
W=\frac{1}{2} L I^{2}
$$

$\ell \quad$ Aumenta a energia armazenada, para uma dada corrente. Normalmente, controla-se a corrente, não o fluxo ($\Phi=L I)$.

