Aula 5

F 502 - Eletromagnetismo I 2o semestre de 2020

$$
01 / 10 / 2020
$$

Aula passada

Lei de Coulomb

$$
\begin{gathered}
\mathbf{F}_{1}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}} \frac{\mathbf{r}_{1}-\mathbf{r}_{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|^{3}}=-\mathbf{F}_{2} \\
\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
\end{gathered}
$$

Princípio de superposição

$$
\mathbf{F}_{1}=\frac{q_{1}}{4 \pi \varepsilon_{0}} \sum_{i=2}^{N}\left(q_{i} \frac{\mathbf{r}_{1}-\mathbf{r}_{i}}{\left|\mathbf{r}_{1}-\mathbf{r}_{i}\right|^{3}}\right)
$$

Aula passada

$$
\mathbf{E}(\mathbf{r})=\frac{\mathbf{F}_{1}}{q_{1}}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=2}^{N}\left(q_{i} \frac{\mathbf{r}-\mathbf{r}_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|^{3}}\right)
$$

Aula passada

Distribuições contínuas de cargas

$$
\begin{aligned}
& \rho(\mathbf{r})=\lim _{\Delta V \rightarrow 0} \frac{\Delta Q}{\Delta V} \Rightarrow d Q=\rho(\mathbf{r}) d V \\
& \sigma(\mathbf{r})=\lim _{\Delta S \rightarrow 0} \frac{\Delta Q}{\Delta S} \Rightarrow d Q=\sigma(\mathbf{r}) d S \\
& \lambda(\mathbf{r})=\lim _{\Delta l \rightarrow 0} \frac{\Delta Q}{\Delta l} \Rightarrow d Q=\lambda(\mathbf{r}) d l
\end{aligned}
$$

(a) Continuous distribution

(c) Surface charge, σ

(b) Line charge, λ

(d) Volume charge, ρ

Aula passada

Distribuições contínuas de cargas

$$
\begin{aligned}
& \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \rho\left(\mathbf{r}^{\prime}\right) \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime} \\
& \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \sigma\left(\mathbf{r}^{\prime}\right) \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{| r - \mathbf { r } ^ { \prime }}\right|^{3}} d S^{\prime} \\
& \mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \lambda\left(\mathbf{r}^{\prime}\right) \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d l^{\prime}
\end{aligned}
$$

Problema 2.5

Problema 2.6

LIMITE EA QUE $|Z| \gg R:$

$$
\begin{aligned}
& \frac{1}{\sqrt{z^{2}+R^{2}}}=\frac{1}{|z|} \frac{1}{\sqrt{1+\frac{R^{2}}{z^{2}}}} \cong \frac{1}{|z|}\left(1-\frac{R^{2}}{2 z^{2}}\right) \\
& E_{z}(z)=\frac{\sigma}{2 \epsilon_{0}}\left[\operatorname{rgq}(z)-\operatorname{sgn}(z)\left(1-\frac{R^{2}}{2 z^{2}}\right)\right]=\frac{\sigma}{2 \epsilon_{0}} \operatorname{sg}(z) \frac{R^{2}}{2 z^{2}} \\
& \sigma=\frac{\theta}{\pi R^{2}} \Rightarrow E_{z}(z)=\operatorname{sgn}(z) \frac{\theta}{4 \pi \epsilon_{0}} \frac{1}{z^{2}}
\end{aligned}
$$

QUE é o campo de uma carga pontual 므!
LIMITE EM QUE $|z| K R: \sqrt{z^{2}+R^{2}} \cong R$

$$
E_{z}(z)=\frac{\sigma}{2 \epsilon_{0}}\left[\operatorname{sgn}(z)-\frac{z}{R}\right] \stackrel{\cong}{\cong} \frac{\sigma}{2 \epsilon_{0}} \operatorname{sgn}(z)
$$

QUE E' O CAMPO DE UN PLANO INFINITO DE DENSIDADE DE CARGA σ.

Diferenças de potencial elétrico
diferenca de potencial elétrico entre os pontos a e b é DEFINIDA COMO O TKABALHO REALIZADO CONTRA 0 EAMPO ELE'TRICO das outras cargas ($q_{1} \cdots q_{N}$) para levar uma carga $Q \quad q_{2} \cdots q_{i}$
 $D E$ a A b PELO CAOUNHO C DIVIDIDO PELA CARGA 区

$$
\left.\begin{array}{l}
W_{a b}=\int_{a}^{b} \vec{F}_{c} \cdot d \vec{l}=-Q \int_{a}^{b} \vec{E} \cdot d \vec{e} \\
\vec{F}_{c}=-Q \vec{E}
\end{array}\right\} \Rightarrow \Delta V=\frac{W_{a b}}{Q}=-\int_{a}^{b} \vec{E} \cdot d \vec{l}
$$

EM GERAL, AV DEPENDERIA DO CAMINHOS VAMOS MOSTRAR QUE NTO É O CASO.

O potencial elétrico não depende do caminho

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta & =\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \in[0, \pi] \\
\phi & =\arctan \left(\frac{y}{x}\right) \in[0,2 \pi]
\end{aligned}
$$

VAMOS PRIMEIRD CAL CULAR PARA UMA CARGA q NA ORIGEN

$$
\begin{array}{ll}
\vec{E}(\vec{r})=\frac{q}{4 \pi \epsilon_{0}} \frac{\hat{r}}{r^{2}} & d \vec{l}=d l_{\mu} \hat{r}+d l_{\theta} \hat{\theta}+d l_{\phi} \hat{\phi} \\
d l_{r}=d r \quad d l_{\theta}=r d \theta \quad d l_{\phi}=r \sin \theta d \phi \\
\Rightarrow \vec{E} \cdot d \vec{l}=\frac{q}{4 \pi \epsilon_{0}} \frac{\hat{\Omega}}{r^{2}}\left(d l_{\Omega} \hat{r}+d l_{\theta} \hat{\theta}+d l_{\phi} \hat{\phi}\right)=\frac{q}{4 \pi \epsilon_{0}} \frac{d l_{\Lambda}}{\Lambda^{2}}=\frac{q}{4 \pi \epsilon_{0}} \frac{d \Lambda}{\Lambda^{2}}
\end{array}
$$

$$
\Delta v=-\int_{a}^{b} \vec{E} \cdot d \vec{r}=-\frac{q}{4 \pi \epsilon_{0}} \int_{a}^{b} \frac{d r}{r^{2}}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{r_{b}}-\frac{1}{r_{a}}\right]
$$

QUE INDEPENDE DO CAMINHO!
USANDO O PRINCÍPIO DF SUPERPOSIGATOj PARA UMA CONFIGURAEATO QUALQUER DE CARGAS:

$$
\begin{aligned}
\Delta V & =-\int_{a}^{b} \vec{E} \cdot d \vec{l}=-\int_{a}^{b}\left(\vec{E}_{2}+\vec{E}_{2}+\cdots \vec{E}_{w}\right) \cdot d \vec{l} \\
& =\Delta V_{1}+\Delta V_{2}+\cdots \Delta V_{N}
\end{aligned}
$$

SENDO QUE CADA $\triangle V_{i}(i=1, \ldots, N)$ INDEPENDE DO CAMINHO, COMO PROVADO. LOGO, DV TAMBE'M INDEPEENDE DO CARINAD.

O potencial elétrico
DADO uM PONTO DE REFERÊNCIA \vec{n}_{0} PODE-SE DEFINIR UM CAMPO ESCALAR POTENCIAL ELE'TRICO:

$$
V(\vec{\lambda})=-\int_{\lambda_{0}}^{\lambda} \vec{E} \cdot d \vec{R} \quad \begin{aligned}
& \text { ASSOCIADO A UOA DADA } \\
& \text { CONFIGURACTO DE CARGAS }
\end{aligned}
$$

A diferenga de potencial entre dois pontos a $E \underline{b} E^{\prime}:$

$$
\Delta V=-\int_{\vec{r}_{a}}^{\vec{\Omega}_{b}} \vec{E} \cdot d \vec{R}=-\int_{\vec{\lambda}_{a}}^{\vec{\lambda}_{0}} \vec{E} \cdot d \vec{r}-\int_{\vec{\lambda}_{0}}^{\vec{\lambda}_{b}} \vec{E} \cdot d \vec{R}=+\int_{\overrightarrow{\lambda_{0}}}^{\lambda_{a}} \vec{E} \cdot d \vec{R} \int_{\vec{\lambda}_{0}}^{\vec{\lambda}_{b}} \vec{E} \cdot d \vec{R}
$$

PARA UMA CARQA NA ORIGEM:

$$
V(\vec{n})=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{n}-\frac{1}{n_{0}}\right]
$$

SE TOMARMOS O PONTO DE REFERÊUCIA \vec{r}_{0} NO INFINITO (OO SEJA, $n_{0} \rightarrow \infty$):

$$
\Rightarrow V(\vec{n})=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{2}
$$

SE A CARGAVESTIVER EM $\vec{n}_{1}: V(\vec{n})=\frac{q_{1}}{4 \pi \in 0} \frac{1}{\left|\vec{i}-\lambda_{1}\right|}$
para n careas:

$$
V(\vec{n})=\frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{\left|\vec{i}_{i}-\vec{\lambda}_{i}\right|}
$$

PARA uma dISTRIBUICAO CONTI'NUA dE CARGAS

$$
V(\vec{\lambda})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left(\vec{\pi}^{\prime}\right) d V^{\prime}}{\left|\vec{\lambda}-\vec{\lambda}^{\prime}\right|}, V(\pi)=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\sigma\left(\pi^{\prime}\right) d s^{\prime}}{\left|\pi-\vec{n}^{\prime}\right|}, \cdots
$$

COMO $V(\vec{A}) E^{\prime}$ UM ESCALAR E' MENOS TRABALHOSO CALCULA'-LO QUE O CAMPO ELÉtRICO $\vec{E}(\vec{N})$ QUE E' UM CAMPO VETOKIAL.

MAS, COMO ACHAR $\vec{E}(\vec{J})$ UrA VEZ QUE EU TENAA $V(\vec{\lambda})$?

A relação entre o potencial e o
campo elétricos
SEJAM DOIS PONTOS $\vec{r}_{A} E \vec{r}_{b}$ INFINITESIMALMENTE SEPARADOS: $\quad d \vec{\lambda}=\vec{n}_{B}-\vec{n}_{A}$

$$
\Delta V=V\left(\vec{\lambda}_{B}\right)-V\left(\vec{n}_{A}\right)=V\left(\vec{त}_{A}+d \vec{\lambda}\right)-V\left(\vec{\lambda}_{A}\right)
$$

Expandindo em tay lor:

$$
\begin{aligned}
V\left(\vec{r}_{A}+d \vec{R}\right) & =V\left(\vec{r}_{A}\right)+\left.\frac{\partial V}{\partial x}\right|_{\vec{r}_{A}} \cdot d x+\left.\frac{\partial V}{\partial y}\right|_{\vec{r}_{A}} d y+\left.\frac{\partial V}{\partial z}\right|_{\vec{r}_{A}} d z \\
& =V\left(\vec{r}_{A}\right)+\left.\vec{\nabla} V\right|_{\vec{r}_{A}} \cdot d \lambda \\
& \Delta V=\left.\vec{\nabla} V\right|_{\vec{r}_{A}} \cdot d \vec{r}_{A}
\end{aligned}
$$

$$
\begin{aligned}
\Delta v= & -\int_{\vec{r}_{A}}^{r_{B}} \vec{E} \cdot d \vec{l}=-\int_{\vec{\lambda}_{A}}^{r_{A}+d \vec{x}} \vec{E} \cdot d \vec{l} \\
& =-\vec{E}\left(\vec{r}_{A}\right) \cdot \int_{\vec{\lambda}_{A}}^{r_{A}+d r} d \vec{l}=-\vec{E}\left(\vec{r}_{A}\right) \cdot d \vec{\lambda}
\end{aligned}
$$

JUNTANDO:

$$
\begin{aligned}
& -\vec{E}\left(\vec{r}_{\Delta}\right) \cdot d \vec{r}=\left.\vec{\nabla} V\right|_{\vec{r}_{A}} \cdot d \vec{r} \\
& \Rightarrow \vec{B}\left(\vec{r}_{A}\right)=-\left.\vec{\nabla} V\right|_{\vec{r}_{A}} \\
& \Rightarrow \vec{F}(\vec{r})=-\vec{\nabla} V
\end{aligned}
$$

Potencial elétrico dentro e fora de uma casca esférica de raio R uniformemente carregada.

$$
\bar{y} V(\vec{\lambda})=\frac{1}{4 \pi \epsilon_{0}} \int_{s} \frac{\sigma\left(\lambda^{\prime}\right) d s^{\prime}}{\left|\pi-\vec{\lambda}^{\prime}\right|} \quad \sigma\left(\vec{\pi}^{\prime}\right)=\sigma
$$

$$
\hat{r}=z \hat{z} \quad \vec{r}^{\prime} \in \operatorname{CASCA} \text { ESFÉRICA }
$$

$$
\pi^{\prime}=R \hat{\imath}^{\prime}
$$

$$
d s^{\prime}=R^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}
$$

$$
\begin{aligned}
& |\vec{n}-\vec{n}|=\sqrt{\Omega^{2}+i^{\prime 2}-2 \vec{\pi} \cdot \pi^{\prime}}=\sqrt{z^{2}+R^{2}-2 z R \cos \theta^{\prime}} \\
& V(\vec{\pi})=\frac{1}{4 \pi \epsilon_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{\sigma R^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime}}{\sqrt{z^{2}+R^{2}-2 z^{R} \cos \theta^{\prime}}}=\frac{\sigma R^{2}}{2 \epsilon_{0}} \int_{0}^{\pi} \frac{\sin \theta^{\prime} d \theta^{\prime}}{\sqrt{z^{2}+R^{2}-2 z^{R} \cos \sigma^{\prime}}}=
\end{aligned}
$$

$$
\begin{aligned}
V(\pi) & =\left.\frac{\sigma R^{2}}{2 \epsilon_{0}} \frac{\sqrt{R^{2}+z^{2}-2 z R \cos \nabla^{\prime}}}{z R}\right|_{\theta^{\prime}=0} ^{\theta^{\prime}=\pi} \\
& =\frac{\sigma R}{2 \epsilon_{0} z}[\underbrace{\sqrt{R^{2}+z^{2}+2 z^{R}}}_{(z+R)^{2}}-\underbrace{\sqrt{R^{2}+z^{2}-2 z R}}_{(z-R)^{2}}] \\
& =\frac{\sigma R}{2 \epsilon_{0} z}[|z+R|-|z-R|]
\end{aligned}
$$

PARA $\} \geqslant 0$:

$$
V(\lambda)=\frac{\sigma R}{2 \epsilon_{0} z}[z+R-(z-R)]
$$

$$
\sigma=\frac{Q}{4 \pi R^{2}}
$$

PARA $z<R$ (DENTRO DA ESFERA):

$$
V(\vec{\lambda})=\frac{\sigma R}{2 \epsilon_{0} z}[z+R-(\alpha-z)]=\frac{\sigma R}{\epsilon_{0}}=\frac{\theta}{4 \pi \epsilon_{0}} \frac{1}{R}=\text { const. }
$$

PARA $Z>R$ (FORA DA ESFERA):

$$
V(\vec{\lambda})=\frac{\sigma R}{2 \epsilon_{0} z}[z+Q-(z-R)]=\frac{\sigma R^{2}}{\epsilon_{0} z}=\frac{\theta}{4 \pi \epsilon_{0}} \frac{1}{z}
$$

ou seja, o potencial éo mesmo, como se toda a carga estivesse concentrada na drigen.
para um ponto qualquer:

$$
\begin{aligned}
& \vec{E}=-\vec{\nabla} V=-\frac{\partial V}{\partial \imath} \hat{\imath}=E_{n}(\mu) \hat{\imath} \\
& E_{R}(\Omega)=\left\{\begin{array}{lll}
0 & \text { SE } & r<R \\
\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} & \text { SE } r>R
\end{array}\right.
\end{aligned}
$$

NOTE QUE QUALQUER DISTRIBUIGÑO DE CARGA COM SIHETRIA ESFÉRICA $\rho(\vec{\pi})=\rho(\sim)$ PARA $\mu<R$ GERA UM POTENCIALE UM CAMDO ELÉTRICOS para $r>R$ cooio se toda a cakgat Estivesse CONCENTRADA NA DKIGEM.

