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Lei de Coulomb
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Distribuições contínuas de cargas2.1 The Electric Field 63

r

r

r PP

P

dq

da!

dl!

dτ!

(a) Continuous
distribution

(c) Surface charge, σ (d) Volume charge, ρ

r
P

(b) Line charge, λ

FIGURE 2.5

2.1.4 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4) assumes that the source of the field
is a collection of discrete point charges qi . If, instead, the charge is distributed
continuously over some region, the sum becomes an integral (Fig. 2.5a):

E(r) = 1
4πε0

∫
1
r2 r̂ dq. (2.5)

If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length
λ, then dq = λ dl ′ (where dl ′ is an element of length along the line); if the
charge is smeared out over a surface (Fig. 2.5c), with charge-per-unit-area σ , then
dq = σ da′ (where da′ is an element of area on the surface); and if the charge fills
a volume (Fig. 2.5d), with charge-per-unit-volume ρ, then dq = ρ dτ ′ (where dτ ′

is an element of volume):

dq → λ dl ′ ∼ σ da′ ∼ ρ dτ ′.

Thus the electric field of a line charge is

E(r) = 1
4πε0

∫
λ(r′)

r2 r̂ dl ′; (2.6)

for a surface charge,

E(r) = 1
4πε0

∫
σ (r′)

r2 r̂ da′; (2.7)

and for a volume charge,

E(r) = 1
4πε0

∫
ρ(r′)

r2 r̂ dτ ′. (2.8)
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Problema 2.5

2.1 The Electric Field 65

For points far from the line (z ! L),

E ∼= 1
4πε0

2λL
z2

.

This makes sense: From far away the line looks like a point charge q = 2λL . In
the limit L → ∞, on the other hand, we obtain the field of an infinite straight
wire:

E = 1
4πε0

2λ

z
. (2.9)

Problem 2.3 Find the electric field a distance z above one end of a straight line
segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your
formula is consistent with what you would expect for the case z ! L .
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FIGURE 2.9

Problem 2.4 Find the electric field a distance z above the center of a square loop
(side a) carrying uniform line charge λ (Fig. 2.8). [Hint: Use the result of Ex. 2.2.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop
of radius r (Fig. 2.9) that carries a uniform line charge λ.

Problem 2.6 Find the electric field a distance z above the center of a flat circular
disk of radius R (Fig. 2.10) that carries a uniform surface charge σ . What does your
formula give in the limit R → ∞? Also check the case z ! R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface!
of radius R (Fig. 2.11) that carries a uniform charge density σ . Treat the case z < R
(inside) as well as z > R (outside). Express your answers in terms of the total charge
q on the sphere. [Hint: Use the law of cosines to write r in terms of R and θ . Be
sure to take the positive square root:

√
R2 + z2 − 2Rz = (R − z) if R > z, but it’s

(z − R) if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a solid
sphere of radius R that carries a uniform volume charge density ρ. Express your
answers in terms of the total charge of the sphere, q . Draw a graph of |E| as a
function of the distance from the center.
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Problema 2.6
66 Chapter 2 Electrostatics
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2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the
force on a charge Q placed in this field will be. Unfortunately, as you may have
discovered in working Prob. 2.7, the integrals involved in computing E can be
formidable, even for reasonably simple charge distributions. Much of the rest of
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these
integrals. It all begins with the divergence and curl of E. I shall calculate the
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you
a more qualitative, and perhaps more illuminating, intuitive approach.

Let’s begin with the simplest possible case: a single point charge q, situated at
the origin:

E(r) = 1
4πε0

q
r2

r̂. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in
Fig. 2.12a. Because the field falls off like 1/r2, the vectors get shorter as you go
farther away from the origin; they always point radially outward. But there is a

(a)

E

(b)

E

FIGURE 2.12

Campo elétrico em P devido ao disco
de raio R com densidade superficial s. 





Diferenças de potencial elétrico

2.4 Work and Energy in Electrostatics 91

Problem 2.30

(a) Check that the results of Exs. 2.5 and 2.6, and Prob. 2.11, are consistent with
Eq. 2.33.

(b) Use Gauss’s law to find the field inside and outside a long hollow cylindrical
tube, which carries a uniform surface charge σ . Check that your result is con-
sistent with Eq. 2.33.

(c) Check that the result of Ex. 2.8 is consistent with boundary conditions 2.34 and
2.36.

2.4 WORK AND ENERGY IN ELECTROSTATICS

2.4.1 The Work It Takes to Move a Charge

Suppose you have a stationary configuration of source charges, and you want to
move a test charge Q from point a to point b (Fig. 2.39). Question: How much
work will you have to do? At any point along the path, the electric force on Q is
F = QE; the force you must exert, in opposition to this electrical force, is −QE.
(If the sign bothers you, think about lifting a brick: gravity exerts a force mg
downward, but you exert a force mg upward. Of course, you could apply an even
greater force—then the brick would accelerate, and part of your effort would be
“wasted” generating kinetic energy. What we’re interested in here is the minimum
force you must exert to do the job.) The work you do is therefore

W =
∫ b

a
F · dl = −Q

∫ b

a
E · dl = Q[V (b) − V (a)].

Notice that the answer is independent of the path you take from a to b; in mechan-
ics, then, we would call the electrostatic force “conservative.” Dividing through
by Q, we have

V (b) − V (a) = W
Q

. (2.38)

In words, the potential difference between points a and b is equal to the work per
unit charge required to carry a particle from a to b. In particular, if you want to
bring Q in from far away and stick it at point r, the work you must do is

W = Q[V (r) − V (∞)],

q1

q2
qi

a

b

Q

FIGURE 2.39
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Exemplo 2.7

86 Chapter 2 Electrostatics

remember that we got that equation from the potential of a point charge at the ori-
gin, (1/4πε0)(q/r), which is valid only when O = ∞. If you try to apply these
formulas to one of those artificial problems in which the charge itself extends to
infinity, the integral will diverge.

Example 2.8. Find the potential of a uniformly charged spherical shell of radius
R (Fig. 2.33).

Solution
This is the same problem we solved in Ex. 2.7, but this time let’s do it using
Eq. 2.30:

V (r) = 1
4πε0

∫
σ

r da′.

We might as well set the point P on the z axis and use the law of cosines to
express r:

r2 = R2 + z2 − 2Rz cos θ ′.

x

z

y

z

P

R

θ′
r

FIGURE 2.33

An element of surface area on the sphere is R2 sin θ ′ dθ ′ dφ′, so

4πε0V (z) = σ

∫
R2 sin θ ′ dθ ′ dφ′

√
R2 + z2 − 2Rz cos θ ′

= 2π R2σ

∫ π

0
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Potencial elétrico dentro e fora de 
uma casca esférica de raio R
uniformemente carregada.








