Aula 7

F 502 – Eletromagnetismo I 2º semestre de 2020 08/10/2020

Aulas passadas

Equações fundamentais da eletrostática

$$\begin{array}{llll} \nabla \cdot \mathbf{E} &=& \frac{\rho}{\varepsilon_0} \\ \nabla \times \mathbf{E} &=& 0 \Longleftrightarrow \mathbf{E} = -\nabla V \end{array} \end{array} \right\} \Rightarrow \nabla^2 V = -\frac{\rho}{\varepsilon_0} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} = \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho} = & \boldsymbol{\rho} \\ \mathbf{Fq} \quad \boldsymbol{\rho}$$

Solução geral:

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV'$$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\mathbf{r}') \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dV'$$

Condições de contorno

Condições de contorno

$$B(V) = \int \mathcal{T} dS = \mathcal{T} A$$

$$\left(E_{ABOVE}^{\perp} - E_{BELOW}^{\perp}\right) A = \underbrace{\mathcal{T}}_{E_{e}}^{\perp}$$

$$E_{ABOVE}^{\perp} - E_{BELOW}^{\perp} = \underbrace{\mathcal{T}}_{E_{e}}^{\perp}$$

$$A \quad DESCONTINUIDADE \quad DA \quad COMPONENTE \quad NORMAL`A \quad SUPERFICIE$$

Condições de contorno

NA SUPERFÍCIE

Quando há condutores, não se sabe de antemão onde estão as cargas!

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Ac	⁹⁰ Th	Pa	92 U	93 Np	Pu	95 Am	96 Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	Fm	Md	¹⁰² No	¹⁰³ Lr

CONDUTORES SÃO MATERIAIS ONDE .HA' CARCAS LIVRES DISPONÍVEIS QUE PODEM SE MOVER DESIM-PEDIDAS PELO MATERIAL.

(i) O campo elétrico no interior dos condutores é <u>nulo</u>.

AS CARGAS LIURES SE MOVERÃO SOB ASÃO DE É. (CAMPO EXTERNO) ATE QUE O CAMPO CRIADO POL ELAS É. (CAMPO INDUZIPO) CANCELE É. E AS CARGAS NÃO SE

HOVAM MAIS.

AO FINAL, NA SITUASÃO ESTATICA

 \mathbf{E}_0

E=0 NO INTERIOR DO CONDOTOR

(iii) Qualquer carga líquida vai para a superfície do condutor.

(iv) O potencial elétrico é constante no interior de condutores.

$$V(Z) - V(Z_0) = - \int \vec{E} \cdot d\vec{Q} = 0$$
 SE O CIRCUITO ESTA
 \vec{Z}_0 TODO PENTRO DO CONDUTOR

(v) O campo elétrico imediatamente fora de um condutor é normal à sua superfície.

E^{II} FORA = E^{II} E^{II} COMPONENTE NORMAL À SUPERFICIE IMEDIATAMENTE FORA DO CONDUTOR

(vi) A densidade superficial de carga na superfície de um condutor está ligada ao campo imediatamente fora do condutor .

Pressão eletrostática QUAL E A FORGA SOBRE D DISCO n DEVIDA AO CAMPO ELETRICO DO BESTANTE DAS CARGAS ? **E**_{other} $\frac{1}{2}\sigma/\epsilon_0$ E = E DISCO + ERESTO σ Patch $\vec{E} = \begin{cases} \vec{T} & \hat{M} & (FORA) \\ \vec{E} & 0 \\ 0 & (DENTRO) \end{cases}$ $\frac{1}{2}\sigma/\epsilon_0$ 4 ín E = JEn (FORA) CAMPO CALCULADO ANTERIOR-

$$PISCO \qquad MENTO: Z=P$$

$$= \int_{260}^{1} \int_{2}^{1} \int_{260}^{1} \int_{260}$$

FORÇA SOBRE O DISCO: $F_{DISCO} = E_{RESTO} \times R_{PISCO} = \frac{\Gamma}{2E_{o}} (TA) = \frac{\Gamma^{2}}{2E_{o}} A$ $P = \frac{F_{DISCO}}{A} = \frac{\sigma^{2}}{2E_{o}}$ $E_{FORA} = \frac{\Gamma}{E_{o}}$ $P = \frac{C_{o}}{2} E_{FORA}^{2}$

Cargas induzidas em condutores

UN CONDUTOR NA PRESENÇA DE CARGAS EXTERNAS APRESENTARA' CARGAS INDUZIDAS _____

- A DISTRIBUIÇÃO DESSA CARGAS 5' NÃO TRIVIAL: +q
 - . DEPENDE DA FORMA DO CONDUTOR
 - . DEPENDE DA CONFIGURAÇÃO DAS

CARGAS EXTERNAS

Cargas induzidas em condutores

Qual é o campo elétrico dentro de uma cavidade vazia "cavada" dentro de um condutor? Pode haver cargas na superfície do condutor ou fora dele. MAS NÃO HA CARGAS DENTRO DA _00P CAVIDADE. CONSIDERE & DA FIGURA! $\oint \vec{E} \cdot d\vec{S} = \frac{\partial (v)}{\partial v} = 0$ 7=0 A CARGA TOTAL NA SUPERFICIE Surface S PA CAUIDADE E ZERO. MAS, O(R)= > NA SUPERFICIE DA CAVIDADE ? NÃO! POR DUE? SE HOUVER ACCHULD DE CARGAS + E -COND NAFIGURA, HAVERA CAMPO ELETRICO!

NESSE CASO,

Cargas induzidas em condutores

Cavidades em condutores

1. E=0 dentro do condutor, mesmo se há uma cavidade, desde que não haja carga líquida na cavidade.

BLINDAGEN ELETROSTATICA

Cavidades em condutores

2. Se há cargas dentro das cavidades, cargas são induzidas nas paredes da cavidade de forma a cancelar exatamente o campo fora da cavidade. Esse cancelamento acontece localmente: o conjunto carga no interior + carga na superfície não gera nenhum campo fora da cavidade.

AS CALGAS + q £ - q CIRCUMDADAS NA FIGURA GERAN È = D FORA DESSA CANIDADE É COMO SE A CAUVDADE NÃO EXISTINSE NA ANÁLISE DE È FORA DELA.

Exemplo 2.9

O condutor não tem carga líquida, mas há uma carga *q* dentro de uma cavidade de forma <u>irregular</u> dentro da **esfera**. Qual é o campo em *P* fora da esfera?

Resposta:

$$\mathbf{E}\left(\mathbf{r}\right) = \frac{q}{4\pi\varepsilon_0} \frac{\mathbf{\hat{r}}}{r^2}$$

Estudar com cuidado esse exemplo no livro.

Cavidades em condutores

3. Esse cancelamento acontece **localmente**, mesmo com várias cavidades.

Cavidades em condutores

 Se o condutor tem carga líquida nula, uma carga é induzida na superfície externa para compensar as cargas nas superfícies internas das cavidades.

