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Equações fundamentais da eletrostática
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2.2 DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the
force on a charge Q placed in this field will be. Unfortunately, as you may have
discovered in working Prob. 2.7, the integrals involved in computing E can be
formidable, even for reasonably simple charge distributions. Much of the rest of
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these
integrals. It all begins with the divergence and curl of E. I shall calculate the
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you
a more qualitative, and perhaps more illuminating, intuitive approach.

Let’s begin with the simplest possible case: a single point charge q, situated at
the origin:

E(r) = 1
4πε0

q
r2

r̂. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in
Fig. 2.12a. Because the field falls off like 1/r2, the vectors get shorter as you go
farther away from the origin; they always point radially outward. But there is a

(a)

E

(b)

E

FIGURE 2.12

Casca esférica uniformemente 
carregada

É possível prever a continuidade 
ou descontinuidade de E e V de 
antemão?
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contribute nothing to the flux, in the limit as the thickness ε goes to zero, so we
are left with

E⊥
above − E⊥

below = 1
ε0

σ, (2.31)

where E⊥
above denotes the component of E that is perpendicular to the surface im-

mediately above, and E⊥
below is the same, only just below the surface. For consis-

tency, we let “upward” be the positive direction for both. Conclusion: The normal
component of E is discontinuous by an amount σ/ε0 at any boundary. In partic-
ular, where there is no surface charge, E⊥ is continuous, as for instance at the
surface of a uniformly charged solid sphere.

The tangential component of E, by contrast, is always continuous. For if we
apply Eq. 2.19,

∮
E · dl = 0,

to the thin rectangular loop of Fig. 2.37, the ends give nothing (as ε → 0), and
the sides give (E‖

abovel − E‖
belowl), so

E‖
above = E‖

below, (2.32)

where E‖ stands for the components of E parallel to the surface. The boundary
conditions on E (Eqs. 2.31 and 2.32) can be combined into a single formula:

Eabove − Ebelow = σ

ε0
n̂, (2.33)
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where n̂ is a unit vector perpendicular to the surface, pointing from “below” to
“above.”8

The potential, meanwhile, is continuous across any boundary (Fig. 2.38), since

Vabove − Vbelow = −
∫ b

a
E · dl;

as the path length shrinks to zero, so too does the integral:

Vabove = Vbelow. (2.34)

However, the gradient of V inherits the discontinuity in E; since E = −∇V ,
Eq. 2.33 implies that

∇Vabove − ∇Vbelow = − 1
ε0

σ n̂, (2.35)

or, more conveniently,

∂Vabove

∂n
− ∂Vbelow

∂n
= − 1

ε0
σ , (2.36)

where

∂V
∂n

= ∇V · n̂ (2.37)

denotes the normal derivative of V (that is, the rate of change in the direction
perpendicular to the surface).

Please note that these boundary conditions relate the fields and potentials just
above and just below the surface. For example, the derivatives in Eq. 2.36 are the
limiting values as we approach the surface from either side.

8Notice that it doesn’t matter which side you call “above” and which “below,” since reversal would
switch the direction of n̂. Incidentally, if you’re only interested in the field due to the (essentially
flat) local patch of surface charge itself, the answer is (σ/2ε0)n̂ immediately above the surface, and
−(σ/2ε0)n̂ immediately below. This follows from Ex. 2.5, for if you are close enough to the patch it
“looks” like an infinite plane. Evidently the entire discontinuity in E is attributable to this local patch
of surface charge.



Eletrostática de condutores
Quando há condutores, não se sabe de antemão onde 
estão as cargas!
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From this definition, the basic electrostatic properties of ideal conductors
immediately follow:

(i) E = 0 inside a conductor. Why? Because if there were any field, those
free charges would move, and it wouldn’t be electrostatics any more. Hmm . . .

that’s hardly a satisfactory explanation; maybe all it proves is that you can’t have
electrostatics when conductors are present. We had better examine what happens
when you put a conductor into an external electric field E0 (Fig. 2.42). Initially,
the field will drive any free positive charges to the right, and negative ones to the
left. (In practice, it’s the negative charges—electrons—that do the moving, but
when they depart, the right side is left with a net positive charge—the stationary
nuclei—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right
side, minus on the left. Now, these induced charges produce a field of their own,
E1, which, as you can see from the figure, is in the opposite direction to E0. That’s
the crucial point, for it means that the field of the induced charges tends to cancel
the original field. Charge will continue to flow until this cancellation is complete,
and the resultant field inside the conductor is precisely zero.9 The whole process
is practically instantaneous.

(ii) ρρρ = 0 inside a conductor. This follows from Gauss’s law: ∇ · E = ρ/ε0.
If E is zero, so also is ρ. There is still charge around, but exactly as much plus as
minus, so the net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only place left.
(iv) A conductor is an equipotential. For if a and b are any two points

within (or at the surface of) a given conductor, V (b) − V (a) = −
∫ b

a E · dl = 0,
and hence V (a) = V (b).

(v) E is perpendicular to the surface, just outside a conductor. Otherwise,
as in (i), charge will immediately flow around the surface until it kills off the
tangential component (Fig. 2.43). (Perpendicular to the surface, charge cannot
flow, of course, since it is confined to the conducting object.)

E1

E0

− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +
− +

FIGURE 2.42

9Outside the conductor the field is not zero, for here E0 and E1 do not tend to cancel.

(i) O campo elétrico no interior dos condutores é nulo.
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(ii) r = 0 no interior de condutores.

(iii) Qualquer carga líquida vai para a 
superfície do condutor.

(iv) O potencial elétrico é constante no 
interior de condutores.
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(v) O campo elétrico imediatamente fora de um condutor é 
normal à sua superfície.
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(vi) A densidade superficial de carga na superfície de um condutor 
está ligada ao campo imediatamente fora do condutor .
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?

Conductor

P

Cavity

−q

+q
q

r

FIGURE 2.46
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Qual é o campo elétrico dentro de uma 
cavidade vazia “cavada” dentro de um 
condutor? Pode haver cargas na 
superfície do condutor ou fora dele.
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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Mas e se houver cargas na cavidade?
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1. E=0 dentro do condutor, mesmo se há uma cavidade, 

desde que não haja carga líquida na cavidade.
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2. Se há cargas dentro das cavidades, cargas 

são induzidas nas paredes da cavidade de 
forma a cancelar exatamente o campo fora 
da cavidade. Esse cancelamento acontece 
localmente: o conjunto carga no interior + 
carga na superfície não gera nenhum campo 
fora da cavidade.
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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O condutor não tem carga 
líquida, mas há uma carga q
dentro de uma cavidade de 
forma irregular dentro da 
esfera. Qual é o campo em P
fora da esfera?
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Resposta: Estudar com cuidado esse 
exemplo no livro.
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3. Esse cancelamento acontece localmente, mesmo 

com várias cavidades.
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4. Se o condutor tem carga líquida nula, uma carga é 

induzida na superfície externa para compensar as 
cargas nas superfícies internas das cavidades.


