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Aulas passadas
Eletrostática de condutores:
•E=0 dentro do condutor.
•V=constante dentro do
•condutor.
•E é normal à superfície.
•r = 0 dentro do condutor.
•Qualquer carga líquida só pode ficar na 
superfície do condutor.



Aulas passadas
Eletrostática de condutores:
•O campo imediatamente fora do 
condutor está relacionado com a carga 
na superfície.

•Há uma pressão eletrostática na 
superfície
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Aulas passadas
Eletrostática de condutores:
•E=0 dentro do condutor, mesmo se há uma cavidade, 
desde que não haja carga líquida na cavidade:

Blindagem eletrostática



Aulas passadas
Eletrostática de condutores:
•Se há cargas dentro das cavidades, cargas são induzidas nas paredes 
da cavidade de forma a cancelar exatamente o campo fora da 
cavidade. Esse cancelamento acontece localmente: o conjunto carga 
no interior + carga na superfície não gera nenhum campo fora da 
cavidade.

É como se a cavidade não existisse
e o condutor fosse maciço.

100 Chapter 2 Electrostatics

+q
Conductor− +

+
+

++++

−
−
−− − −

−
−

−− − −

+
+

++++

FIGURE 2.44

+
Gaussian
surface

Conductor

q

E ≠ 0

E = 0

+
+

+
+
+
+
+
++++++

+
+

+
+ − −−

−
−

−−−−
−

− −
+

+

FIGURE 2.45

within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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Aulas passadas
Eletrostática de condutores:
• Esse cancelamento acontece localmente, mesmo com 
várias cavidades.



Aulas passadas
Eletrostática de condutores:
•Se o condutor tem carga líquida nula, uma carga é 
induzida na superfície externa para compensar as cargas 
nas superfícies internas das cavidades.
O campo fora do condutor só “sente” o valor total das 
cargas nas cavidades, através da carga na superfície 
externa e mesmo sua distribuição na superfície não é 
afetada pela forma das cavidades.



Problema 2.35

102 Chapter 2 Electrostatics

+

−

FIGURE 2.47

inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Uma esfera e uma casca esférica 
metálicas concêntricas. A esfera tem 
carga q e a casca não tem carga líquida.
(a) Encontre s em r=R, a e b.
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Uma esfera e uma casca esférica metálicas 
concêntricas. A esfera tem carga q e a 
casca não tem carga líquida.
(b) Encontre o potencial elétrico em r=0. 
Tome V(r=∞)=0.
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Uma esfera e uma casca esférica metálicas 
concêntricas. A esfera tem carga q e a 
casca não tem carga líquida.
(c) Agora a casca é aterrada: V(r=b)=0. 
Como as respostas (a) e (b) são 
modificadas?





Problema 2.36
Uma esfera neutra de raio R com duas 
cavidades esféricas. Cada cavidade tem uma 
carga no centro. 
(a) Ache as densidades superficiais sa, sb esR.
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Problema 2.36
Uma esfera neutra de raio R com duas 
cavidades esféricas. Cada cavidade tem uma 
carga no centro. 
(b) Qual é o campo elétrico fora do condutor?
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Problema 2.36
Uma esfera neutra de raio R com duas 
cavidades esféricas. Cada cavidade tem uma 
carga no centro. 
(c) Qual é o campo elétrico em cada cavidade?
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Problema 2.36
Uma esfera neutra de raio R com duas 
cavidades esféricas. Cada cavidade tem uma 
carga no centro. 
(d) Qual é a força em qa e qb?
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?
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Problema 2.36
Uma esfera neutra de raio R com duas 
cavidades esféricas. Cada cavidade tem uma 
carga no centro. 
(e) Qual dessas respostas mudaria se uma 
carga qc fosse trazida para perto da esfera?
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inside a grounded Faraday cage, to shield out stray electric fields. In practice,
the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The
shell carries no net charge.

(a) Find the surface charge density σ at R, at a, and at b.

(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which drains off charge
and lowers its potential to zero (same as at infinity). How do your answers to
(a) and (b) change?

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of
each cavity a point charge is placed—call these charges qa and qb.

(a) Find the surface charge densities σa , σb, and σR .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?

R

a

b

FIGURE 2.48

qa

a R

qb

b

FIGURE 2.49



Capacitores
O capacitor de placas paralelas

2.2 Divergence and Curl of Electrostatic Fields 75

or
E = σ

2ε0
n̂, (2.17)

where n̂ is a unit vector pointing away from the surface. In Prob. 2.6, you obtained
this same result by a much more laborious method.

It seems surprising, at first, that the field of an infinite plane is independent of
how far away you are. What about the 1/r2 in Coulomb’s law? The point is that as
you move farther and farther away from the plane, more and more charge comes
into your “field of view” (a cone shape extending out from your eye), and this
compensates for the diminishing influence of any particular piece. The electric
field of a sphere falls off like 1/r2; the electric field of an infinite line falls off like
1/r ; and the electric field of an infinite plane does not fall off at all (you cannot
escape from an infinite plane).

Although the direct use of Gauss’s law to compute electric fields is limited to
cases of spherical, cylindrical, and planar symmetry, we can put together combi-
nations of objects possessing such symmetry, even though the arrangement as a
whole is not symmetrical. For example, invoking the principle of superposition,
we could find the field in the vicinity of two uniformly charged parallel cylinders,
or a sphere near an infinite charged plane.

Example 2.6. Two infinite parallel planes carry equal but opposite uniform
charge densities ±σ (Fig. 2.23). Find the field in each of the three regions: (i)
to the left of both, (ii) between them, (iii) to the right of both.

Solution
The left plate produces a field (1/2ε0)σ , which points away from it (Fig. 2.24)—
to the left in region (i) and to the right in regions (ii) and (iii). The right plate,
being negatively charged, produces a field (1/2ε0)σ , which points toward it—to
the right in regions (i) and (ii) and to the left in region (iii). The two fields cancel
in regions (i) and (iii); they conspire in region (ii). Conclusion: The field between
the plates is σ/ε0, and points to the right; elsewhere it is zero.

(i) (ii) (iii)

+σ −σ

FIGURE 2.23

(i) (ii) (iii)

+σ −σ

E− E− E−

E+ E+ E+

FIGURE 2.24
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(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and
integrated φ from 0 to 2π , dz from 0 to l. I put a prime on the integration variable
s ′, to distinguish it from the radius s of the Gaussian surface.)

Now, symmetry dictates that E must point radially outward, so for the curved
portion of the Gaussian cylinder we have:∫

E · da =
∫

|E| da = |E|
∫

da = |E| 2πsl,

while the two ends contribute nothing (here E is perpendicular to da). Thus,

|E| 2πsl = 1
ε0

2
3
πkls3,

or, finally,

E = 1
3ε0

ks2ŝ.

Example 2.5. An infinite plane carries a uniform surface charge σ . Find its
electric field.

Solution
Draw a “Gaussian pillbox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:∮

E · da = 1
ε0

Qenc.

In this case, Qenc = σ A, where A is the area of the lid of the pillbox. By symme-
try, E points away from the plane (upward for points above, downward for points
below). So the top and bottom surfaces yield

∫
E · da = 2A|E|,

whereas the sides contribute nothing. Thus

2A |E| = 1
ε0

σ A,

E

E

A

FIGURE 2.22
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Capacitores e capacitância2.5 Conductors 105

+Q −Q

FIGURE 2.51

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1
4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q
V

. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)



Exemplo 2.11
A capacitância de duas esferas condutoras 
concêntricas de raios a e b.


