Aula 8

F 502 - Eletromagnetismo I 2o semestre de 2020
13/10/2020

Aulas passadas

Eletrostática de condutores:

- $\mathrm{E}=0$ dentro do condutor.
- $\mathrm{V}=$ constante dentro do
-condutor.
-E é normal à superfície.
- $\rho=0$ dentro do condutor.
- Qualquer carga líquida só pode ficar na superfície do condutor.

Aulas passadas

Eletrostática de condutores:

- O campo imediatamente fora do
$q_{1}^{\bullet} \quad \bullet q_{2}$
condutor está relacionado com a carga na superfície.

$$
E_{\mathrm{fora}}^{\perp}=\frac{\sigma}{\varepsilon_{0}}
$$

-Há uma pressão eletrostática na

- q_{3} superfície

$$
P=\frac{\sigma^{2}}{2 \varepsilon_{0}}=\frac{\varepsilon_{0}\left(E_{\text {fora }}^{\perp}\right)^{2}}{2}
$$

Aulas passadas

Eletrostática de condutores:

- $\mathrm{E}=0$ dentro do condutor, mesmo se há uma cavidade, desde que não haja carga líquida na cavidade:

Blindagem eletrostática

Aulas passadas

Eletrostática de condutores:

- Se há cargas dentro das cavidades, cargas são induzidas nas paredes da cavidade de forma a cancelar exatamente o campo fora da cavidade. Esse cancelamento acontece localmente: o conjunto carga no interior + carga na superfície não gera nenhum campo fora da cavidade.

É como se a cavidade não existisse e o condutor fosse maciço.

Aulas passadas

Eletrostática de condutores:

- Esse cancelamento acontece localmente, mesmo com várias cavidades.

Aulas passadas

Eletrostática de condutores:

- Se o condutor tem carga líquida nula, uma carga é induzida na superfície externa para compensar as cargas nas superfícies internas das cavidades.
O campo fora do condutor só "sente" o valor total das cargas nas cavidades, através da carga na superfície externa e mesmo sua distribuição na superfície não é afetada pela forma das cavidades.

Problema 2.35
Uma esfera e uma casca esférica metálicas concêntricas. A esfera tem carga q e a casca não tem carga líquida.
(a) Encontre σ em $r=R, a$ e b.

SIMETRIA ESFÉRICA: $\vec{E}=E_{n}(r) \hat{n}$

$$
\begin{aligned}
& \sigma_{R}=\frac{q}{4 \pi R^{2}}=\text { const. } \\
& \sigma_{a}=\frac{-q}{4 \pi a^{2}}=\text { CONST. } \\
& \sigma_{b}=\frac{q}{4 \pi b^{2}}=\text { const. }
\end{aligned}
$$

Problema 2.35
Uma esfera e uma casca esférica metálicas concêntricas. A esfera tem carga q e a casca não tem carga líquida.
(b) Encontre o potencial elétrico em $r=0$.

Tome $V(r=\infty)=0$.
achando \vec{E} porgauss:

$$
\oint \vec{E} \cdot d \vec{s}=E_{n}(n) 4 \pi \mu^{2}=\frac{\theta(v)}{\epsilon_{0}}
$$

$r<R: E_{n}(n)=0$
$R<n<a: 4 \pi n^{2} E_{n}(n)=\frac{c}{\epsilon 0} \Rightarrow E_{n}(n)=\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{n^{2}}$
$a<n<b: E_{N}(n)=0$
$n>b: 4 \pi \lambda^{2} E_{\mu}(\sim)=\frac{Q_{0}}{\epsilon_{0}} \Rightarrow E_{n}(n)=\frac{8}{4 \pi}\left(\frac{1}{n^{2}}\right.$

$$
\begin{aligned}
& V\left(\infty^{\infty}\right)^{0}-V(0)=-\int_{\vec{\lambda}=0}^{\infty} \vec{E} \cdot d \vec{\theta} \Rightarrow V(\vec{\lambda}=0)=\int_{\vec{\lambda}=0}^{\infty} \vec{E} \cdot d \vec{Q} \\
& d \vec{l}=d \mu \hat{\imath} \Rightarrow V(\vec{\imath}=0)=\int_{0}^{\infty} E_{n}(\Omega) \hat{\imath} \cdot(d \wedge \hat{\imath})=\int_{0}^{\infty} E_{\mu}(\mu) d r \\
& =\left[\int_{0}^{R}+\int_{R}^{0}+\int_{a}^{a}+\int_{b}^{p}\right] E_{\mu}(\mu) d r=\int_{R}^{a} \frac{a}{4 \pi \in 0} \frac{d \mu}{r^{2}}+\int_{b}^{\infty} \frac{G}{4 \pi \in 0} \frac{d n}{r^{2}} \\
& =\frac{a}{4 \pi \epsilon_{0}}\left[-\left.\frac{1}{n}\right|_{n=R} ^{n=a}-\left.\frac{1}{n}\right|_{n=b} ^{n \rightarrow \infty}\right]=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{R}-\frac{1}{a}+\frac{1}{b}\right]=V(\vec{n}=0)
\end{aligned}
$$

Problema 2.35

Uma esfera e uma casca esférica metálicas concêntricas. A esfera tem carga q e a casca não tem carga líquida.
(c) Agora a casca é aterrada: $V(r=b)=0$.

Como as respostas (a) e (b) são modificadas?
ATERRAR a casca é ligar um fio dela ate' o infinito, DE TAL FORPMA $V(n=b)=V(n=\infty)=0$. O TRABALHO REALIZAD SOBRE UMA GARGA DE $\Lambda=b$ ATE' $1 \rightarrow \infty$ E' ZERO.

- PRÓPRIO CAMPO EN(n) TEM QUE SER ZERO FORA DA cASCA.
PARA QUE En $(n)=0$ FORA DA CASEA, O ATERRAMENTO TROUKE CARGA $(-q)$ DO INFINITO DE FORMCA A CANCELAR A CAROA +G NA SUPERFÍCIE EXTERNA RA CASCA EM $\hat{=}=b$.

$$
\sigma_{R}=\frac{G}{4 \pi R}, \sigma_{a}=-\frac{a}{4 \pi a^{2}} \text { MAS } \sigma_{b}=0
$$

CAMPO ELE'TRICO:

$$
\begin{aligned}
& E_{n}(r)=\left\{\begin{array}{lll}
0 & \delta E & R<R \\
\text { au } & a<r<b \text { on } r>b \\
\frac{q}{4 \pi C_{0}} \frac{1}{r^{2}} & \text { SE } & R<\mu<a
\end{array}\right. \\
& V(n)=\int_{R}^{a} \frac{q}{4 \pi \epsilon_{0}} \frac{8 n}{r^{2}}=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{R}-\frac{1}{a}\right)
\end{aligned}
$$

Problema 2.36
Uma esfera neutra de raio R com duas cavidades esféricas. Cada cavidade tem uma carga no centro.
(a) Ache as densidades superficiais σ_{a}, σ_{b} e σ_{R}. COOIO A CARGA INDUZIDA - GO TEM QUE CANCELAR - campo ecuétrico de qa fora da esfera de

RAIO Q, A CARGA INDUZIDA VAI SE DISTRIBUIR UNIFORMEMENTE NA SUPERFICIE INTERNA DA CAVIDADE. PORTANTO: $\sigma_{0}=\frac{-\frac{4 a}{4 \pi a^{2}}}{4}$
analogamente para a outra cavidade: $\sigma_{R}=\frac{S_{\square}+g_{B}}{L_{1} R^{2}}$, OORQUE O EFEITO RAS

$$
\sigma_{b}=-\frac{q_{b}}{4 \pi b^{2}}
$$ cavidades é zero pora delas

Problema 2.36

Uma esfera neutra de raio R com duas cavidades esféricas. Cada cavidade tem uma carga no centro.
(b) Qual é o campo elétrico fora do condutor?

So HA'EFEITO DE gatqb:
$\vec{E}=\frac{q_{a}+q_{b}}{L_{\pi} \epsilon_{0}} \frac{\hat{\lambda}}{\Lambda^{2}}$ FORA DA ESFERA CONDUTORA

Problema 2.36

Uma esfera neutra de raio R com duas cavidades esféricas. Cada cavidade tem uma carga no centro.
(c) Qual é o campo elétrico em cada cavidade?
na cavidade c.

$$
\begin{gathered}
\vec{E}=\frac{q_{a}}{4 \pi \epsilon_{0}} \frac{\hat{n}_{a}}{\hat{n}_{a}^{2}} \text { ONDE } \hat{n}_{a} a \hat{r}_{a} \text { SAAO EM RELACAIOAO } \\
\text { CENTRO DA CANDADE DE } \\
\text { RAID a }
\end{gathered}
$$

NA cAVIDADE b:

$$
\begin{gathered}
\vec{E}=\frac{\rho_{b}}{4 T \epsilon_{0}} \frac{{\hat{n_{b}}}_{n_{b}^{2}}^{\text {AO CENTRO DA CAVIDADE DE }}}{\text { ONDE } r_{b} E \hat{r}_{b} \text { SAO EMRELASAID }} \\
\text { RAIO b }
\end{gathered}
$$

Problema 2.36
Uma esfera neutra de raio R com duas +cavidades esféricas. Cada cavidade tem uma carga no centro.
(d) Qual é a força em $q_{a} \mathrm{e} q_{b}$?
\vec{F} SOBRE qa ${ }^{\prime}$ É zERO RORQUE

- a FORGA DEVIDO a ($-q_{a}$) é zero (INTERIOR DE UMA CASCA ESFERICA)
- a forga devido ao par sb e-g é ZEro (CANCELAMENTO ForA dA cAvidade)
- a forga devido a gotgs é zero (intertor DE UMA CASCA ESFEERICA COM DENSIDADE DE CARGA UNIFORME) ANALOGAMENTE $\vec{F}=0$ SOBRESL

Problema 2.36

Uma esfera neutra de raio R com duas cavidades esféricas. Cada cavidade tem uma carga no centro.
(e) Qual dessas respostas mudaria se uma carga q_{c} fosse trazida para perto da esfera?
nada muda coor relagão ás canidades.
MAS, A CARGA $q_{C}+q_{D}$ NA SUPERFICIE EM $r=R$
agora se pistriburrá ná untformemente. OS OUTROS RESULTADOS CONTINUAN INALTERADOS.

Capacitores

Capacitância
a diferenca de potencial entre as placas:

$$
\begin{aligned}
& V_{+}-V_{-}=-\int_{\vec{r}_{-}}^{\vec{c}_{c}^{+}} \vec{E} \cdot d \vec{l}=\int_{-}^{+} E d e=\frac{\sigma}{\epsilon_{0}} \underbrace{+}_{d} d e=\frac{\sigma d}{\epsilon_{0}} \\
& \Delta V=\frac{\sigma d}{\epsilon_{0}}=\frac{\theta d}{A \epsilon_{0}} \Rightarrow \Delta V \propto Q \\
& \frac{Q}{\Delta V}=C A P I T \hat{A N C I A ~ D O ~ C A P A C I T O R ~} \equiv C \\
& \text {. Só DEPENDE } \triangle A \text { GEOMETRIA DOS } \\
& \text { CONPUTORES (FORMA E CONFIGURAGÃ } \\
& C=\frac{\epsilon_{0} A}{d} \\
& {\left[\frac{C}{\epsilon_{0}}\right]=L} \\
& \text { - UNIDADE SI dE cAPACITÂNCIA } \\
& \text { E F FARAD. }
\end{aligned}
$$

Capacitores e capacitância

GENERALIZANDO PARA DOIS CONDOTORES QUAISQUER, wen COM CARGA $+Q$ E OUTRO con CARGA-Q.
os potencials são constantes $\left(V_{+}\right.$e $\left.V_{-}\right)$nas REGIOES DOS CONDU TORES:

$$
\Delta v=v_{+}-v_{-}=-\int_{\vec{\pi}}^{\vec{n}_{-}} \vec{E} \cdot d \vec{l}
$$

PELO PRINCI'PIO DE SUPERPOSICATO, $V V \propto Q$

$$
\Rightarrow C=\frac{Q}{\Delta v}
$$

AS VEZES SE FALA DA CAPACITANCIA DE UN CONDUTOR APENAS. É COMO SE O OUTRO, ESTIVESSE NO INFINITO.

Exemplo 2.11
A capacitância de duas esferas condutoras concêntricas de raios a e b.

$$
\begin{aligned}
& \text { raios a e b. } \vec{\imath}_{+} \\
& \Delta v=?=v_{+}-v_{-}=-\int_{r_{-}}^{\vec{n}} \cdot \overrightarrow{n_{-}}=\int_{\vec{n}_{x}}^{\vec{E}} \vec{E} \cdot d \vec{l}
\end{aligned}
$$

canpo elétrico por gauss: $a<r<b: \vec{E}=E_{n}(n) \hat{r}$ (SIMETRIA ESTER(CA)

$$
\oint \vec{E} \cdot 8 \vec{S}=4 \pi r^{2} E_{n}(n)=\frac{\theta}{\epsilon_{0}}
$$

$$
E_{n}(n)=\frac{\theta}{4 \pi \epsilon} \cdot \frac{1}{n^{2}}
$$

$$
\Delta V=\int_{+}^{-} \frac{\theta}{4 \pi \epsilon_{0}} \frac{d \lambda}{\lambda^{2}}=\left.\frac{\theta}{4 \pi \epsilon_{0}}\left(-\frac{1}{\lambda}\right)\right|_{a=a} ^{n=b}=\frac{\theta}{4 \pi \epsilon_{0}} \widehat{\left(\frac{1}{a}-\frac{1}{b}\right)} \Rightarrow C=\frac{Q}{\Delta V}=\frac{4 \pi \epsilon_{0} a b}{a-b}
$$

