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Capacitor: dois condutores com cargas opostas, +Q e -Q2.5 Conductors 105
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2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1
4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q
V

. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)
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Capacitância de um condutor apenas: ponha +Q no condutor 
em questão e o condutor com –Q é posto no infinito.2.5 Conductors 105
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FIGURE 2.51

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1
4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q
V

. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)

Só depende da geometria.
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so, if you have set the reference point at infinity,

W = QV (r). (2.39)

In this sense, potential is potential energy (the work it takes to create the system)
per unit charge (just as the field is the force per unit charge).

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges?
Imagine bringing in the charges, one by one, from far away (Fig. 2.40). The first
charge, q1, takes no work, since there is no field yet to fight against. Now bring in
q2. According to Eq. 2.39, this will cost you q2V1(r2), where V1 is the potential
due to q1, and r2 is the place we’re putting q2:

W2 = 1
4πε0

q2

(
q1

r12

)

(r12 is the distance between q1 and q2 once they are in position). As you bring in
each charge, nail it down in its final location, so it doesn’t move when you bring
in the next charge. Now bring in q3; this requires work q3V1,2(r3), where V1,2 is
the potential due to charges q1 and q2, namely, (1/4πε0)(q1/r13 + q2/r23). Thus
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Energia armazenada em um 
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2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and −Q on the
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu-
ously of the potential difference between them:

V = V+ − V− = −
∫ (+)

(−)

E · dl.

We don’t know how the charge distributes itself over the two conductors, and
calculating the field would be a nightmare, if their shapes are complicated, but
this much we do know: E is proportional to Q. For E is given by Coulomb’s law:

E = 1
4πε0

∫
ρ

r2 r̂ dτ,

so if you double ρ, you double E. [Wait a minute! How do we know that dou-
bling Q (and also −Q) simply doubles ρ? Maybe the charge moves around into
a completely different configuration, quadrupling ρ in some places and halving it
in others, just so the total charge on each conductor is doubled. The fact is that
this concern is unwarranted—doubling Q does double ρ everywhere; it doesn’t
shift the charge around. The proof of this will come in Chapter 3; for now you’ll
just have to trust me.]

Since E is proportional to Q, so also is V . The constant of proportionality is
called the capacitance of the arrangement:

C ≡ Q
V

. (2.53)

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and
separation of the two conductors. In SI units, C is measured in farads (F); a farad
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more
practical units are the microfarad (10−6 F) and the picofarad (10−12 F).

Notice that V is, by definition, the potential of the positive conductor less
that of the negative one; likewise, Q is the charge of the positive conductor. Ac-
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will
occasionally hear someone speak of the capacitance of a single conductor. In this
case the “second conductor,” with the negative charge, is an imaginary spherical
shell of infinite radius surrounding the one conductor. It contributes nothing to
the field, so the capacitance is given by Eq. 2.53, where V is the potential with
infinity as the reference point.)



Exemplo 2.8
Energia total de uma casca esférica de raio R
uniformemente carregada com carga total Q. 
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Aulas passadas
Equações fundamentais da eletrostática
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Problemas de valores de contorno



3.1 Laplace’s Equation 117

roll over to one side and fall off—it will not find a “pocket” somewhere to
settle into, for Laplace’s equation allows no such dents in the surface. From
a geometrical point of view, just as a straight line is the shortest distance
between two points, so a harmonic function in two dimensions minimizes
the surface area spanning the given boundary line.

3.1.4 Laplace’s Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one
dimension) nor offer a suggestive physical example to guide your intuition (as I
did in two dimensions). Nevertheless, the same two properties remain true, and
this time I will sketch a proof.3

1. The value of V at point r is the average value of V over a spherical surface
of radius R centered at r:

V (r) = 1
4π R2

∮

sphere

V da.

2. As a consequence, V can have no local maxima or minima; the extreme
values of V must occur at the boundaries. (For if V had a local maximum
at r, then by the very nature of maximum I could draw a sphere around r
over which all values of V —and a fortiori the average—would be less than
at r.)

Proof. Let’s begin by calculating the average potential over a spherical surface
of radius R due to a single point charge q located outside the sphere. We may as
well center the sphere at the origin and choose coordinates so that q lies on the
z-axis (Fig. 3.3). The potential at a point on the surface is

V = 1
4πε0

q
r ,

q

z

daθ
R

r

x

y

FIGURE 3.3

3For a proof that does not rely on Coulomb’s law (only on Laplace’s equation), see Prob. 3.37.

Um lema
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R
x

y

V

FIGURE 3.2

equation.1 (The one-dimensional analog would be a rubber band stretched
between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in
one dimension:

1. The value of V at a point (x, y) is the average of those around the point.
More precisely, if you draw a circle of any radius R about the point (x, y),
the average value of V on the circle is equal to the value at the center:

V (x, y) = 1
2π R

∮

circle

V dl.

(This, incidentally, suggests the method of relaxation, on which computer
solutions to Laplace’s equation are based: Starting with specified values for
V at the boundary, and reasonable guesses for V on a grid of interior points,
the first pass reassigns to each point the average of its nearest neighbors.
The second pass repeats the process, using the corrected values, and so on.
After a few iterations, the numbers begin to settle down, so that subsequent
passes produce negligible changes, and a numerical solution to Laplace’s
equation, with the given boundary values, has been achieved.)2

2. V has no local maxima or minima; all extrema occur at the boundaries. (As
before, this follows from (1).) Again, Laplace’s equation picks the most
featureless function possible, consistent with the boundary conditions: no
hills, no valleys, just the smoothest conceivable surface. For instance, if
you put a ping-pong ball on the stretched rubber sheet of Fig. 3.2, it will

1Actually, the equation satisfied by a rubber sheet is

∂
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(
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]−1/2

;

it reduces (approximately) to Laplace’s equation as long as the surface does not deviate too radically
from a plane.
2See, for example, E. M. Purcell, Electricity and Magnetism, 2nd ed. (New York: McGraw-Hill, 1985),
problem 3.30.
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Resumo
O potencial V(r) é único num volume V se 
especificarmos:
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ρ
specified

Integration surfaces

Outer boundary-
could be at infinity
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FIGURE 3.6

And both obey Gauss’s law in integral form for a Gaussian surface enclosing each
conductor:

∮

i th conducting
surface

E1 · da = 1
ε0

Qi ,

∮

i th conducting
surface

E2 · da = 1
ε0

Qi .

Likewise, for the outer boundary (whether this is just inside an enclosing conduc-
tor or at infinity),

∮

outer
boundary

E1 · da = 1
ε0

Qtot,

∮

outer
boundary

E2 · da = 1
ε0

Qtot.

As before, we examine the difference

E3 ≡ E1 − E2,

which obeys

∇ · E3 = 0 (3.7)

in the region between the conductors, and
∮

E3 · da = 0 (3.8)

over each boundary surface.
Now there is one final piece of information we must exploit: Although we

do not know how the charge Qi distributes itself over the i th conductor, we do
know that each conductor is an equipotential, and hence V3 is a constant (not



Resumo
O potencial V(r) é único (a menos de uma 
constante) e o campo elétrico E(r) é unico num 
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Exemplo 2.9
O condutor não tem carga líquida, mas há 
uma carga q dentro de uma cavidade de 
forma irregular dentro da esfera. Qual é o 
campo em P fora da esfera?
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Resposta:
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?

Conductor

P

Cavity

−q

+q
q

r

FIGURE 2.46

E=0

Para resolver esse problema, assumimos que o campo criado fora 
da cavidade pela carga pontual q mais a carga –q induzida na 
parede da cavidade se anula completamente.



Exemplo 2.9

Mas a região externa às duas esferas é a mesma e a condição de 
contorno na superfície também (cargas dadas). Portanto, a 
solução tem que ser a mesma: o lado de fora não “sabe” o que 
acontece do lado de dentro! 
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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FIGURE 2.46

E=0

Compare com o campo fora de uma esfera condutora maciça 
de mesmo raio, com carga +q (na sua superfície):
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(iv) Potential obeys the superposition principle. The original superposition
principle pertains to the force on a test charge Q. It says that the total force on Q
is the vector sum of the forces attributable to the source charges individually:

F = F1 + F2 + . . .

Dividing through by Q, we see that the electric field, too, obeys the superposition
principle:

E = E1 + E2 + . . .

Integrating from the common reference point to r, it follows that the potential also
satisfies such a principle:

V = V1 + V2 + . . .

That is, the potential at any given point is the sum of the potentials due to all the
source charges separately. Only this time it is an ordinary sum, not a vector sum,
which makes it a lot easier to work with.

(v) Units of Potential. In our units, force is measured in newtons and charge
in coulombs, so electric fields are in newtons per coulomb. Accordingly, potential
is newton-meters per coulomb, or joules per coulomb. A joule per coulomb is
a volt.

Example 2.7. Find the potential inside and outside a spherical shell of radius R
(Fig. 2.31) that carries a uniform surface charge. Set the reference point at infinity.

R

P
r

FIGURE 2.31

Solution
From Gauss’s law, the field outside is

E = 1
4πε0

q
r2

r̂,

where q is the total charge on the sphere. The field inside is zero. For points
outside the sphere (r > R),

V (r) = −
∫ r

O
E · dl = −1

4πε0

∫ r

∞

q
r ′2 dr ′ = 1

4πε0

q
r ′

∣∣∣∣
r

∞
= 1

4πε0

q
r
.

+q

No caso da direita, sabemos que 

r ·E =
⇢

"0
r⇥E = 0

r ·E =
⇢

"0
r⇥E = 0 () E = �rV

) r2V = � ⇢

"0

E?
b � E?

a =
�

"0

Ek
b = Ek

a

Vb = Va

E (r) =
q

4⇡"0

r̂

r2

3



Exemplo 2.9

A região dentro da cavidade é a mesma e a condição de contorno 
na superfície também (cargas dadas). Portanto, a solução tem que 
ser a mesma: o lado de dentro não “sabe” o que acontece do lado 
de fora! 

Igualmente, para dentro da cavidade, podemos tomar uma 
esfera com carga total -q. Nesse caso, E=0 em qualquer ponto 
fora da cavidade:
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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FIGURE 2.46

E=0

q=0
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within that cavity you put some charge, then the field in the cavity will not be zero.
But in a remarkable way the cavity and its contents are electrically isolated from
the outside world by the surrounding conductor (Fig. 2.45). No external fields
penetrate the conductor; they are canceled at the outer surface by the induced
charge there. Similarly, the field due to charges within the cavity is canceled,
for all exterior points, by the induced charge on the inner surface. However, the
compensating charge left over on the outer surface of the conductor effectively
“communicates” the presence of q to the outside world. The total charge induced
on the cavity wall is equal and opposite to the charge inside, for if we surround the
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45),∮

E · da = 0, and hence (by Gauss’s law) the net enclosed charge must be zero.
But Qenc = q + q induced , so q induced = −q. Then if the conductor as a whole is
electrically neutral, there must be a charge +q on its outer surface.

Example 2.10. An uncharged spherical conductor centered at the origin has a
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the
cavity is a charge q. Question: What is the field outside the sphere?
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FIGURE 2.46

E=0


