## Aula 9

F 502 - Eletromagnetismo I 2o semestre de 2020
15/10/2020

## Aula passada

Capacitor: dois condutores com cargas opostas, $+Q$ e $-Q$


Capacitância: $\quad C=\frac{Q}{|\Delta V|}$
Só depende da geometria.

Capacitância de um condutor apenas: ponha $+Q$ no condutor em questão e o condutor com $-Q$ é posto no infinito.

$$
+Q
$$

Energia eletrostática
E' igual ao trabalho realizado contra A FORGA ELI'TRICA PARA TRAZER TODAS AS CARGAS DO INFINITD 'AS SUAS POSIGOES
FINAIS. PARA $N$ CARGAS $q_{1}, q_{2}, \cdots q_{N}$ EM POSICEOES FINAIS $\vec{r}_{2}, \vec{r}_{2} \ldots \vec{r}_{N}$ podemor cal cular esse trabalho:
 PRIMEIRO, TRA ZEMOS $q_{1}$ : COMO AINDA NATO HA' CARGAS PRO'xImAS: $W_{1}=0$
TRAZENDO AGORA \& $A T E \vec{त}_{2}$ :

$$
\begin{aligned}
w_{2} & =q_{2} \int_{\infty}^{\pi_{2}}\left(-\overrightarrow{\underline{I}}_{1}\right) \cdot d \vec{n}=q_{2} V_{1}\left(\vec{r}_{2}\right) \\
& =q_{2} \frac{q_{1}}{4 \pi \epsilon_{0}} \frac{1}{\left|\vec{n}_{2}-\vec{n}_{1}\right|}=\frac{f_{1} f_{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{2}-\vec{r}_{2}\right|}
\end{aligned}
$$

TOMANDO $V(|\vec{N}| \rightarrow \infty)=0$

TRAZENDO $\ell_{3}$ PARA $\vec{n}_{3}$ :

$$
\begin{aligned}
w_{3} & =q_{3}\left[-\int_{\infty}^{3} \vec{E}_{1}-d r-\int_{\infty}^{3} \vec{E}_{2} \cdot d \vec{r}\right]=q_{3}\left[V_{1}\left(\vec{r}_{3}\right)+V_{2}\left(\vec{r}_{3}\right)\right] \\
& =\frac{q_{3} q_{1}}{4 \pi \epsilon\left|\vec{r}_{3}-\vec{n}_{1}\right|}+\frac{g_{3} s_{2}}{4 \pi \epsilon_{0}\left|\vec{r}_{3}-\vec{r}_{2}\right|}
\end{aligned}
$$

ATE AGORA: $W=W_{1}+W_{2}+W_{3}=\frac{1}{4 \pi \in 0}\left[\frac{q_{1} q_{2}}{\Lambda_{12}}+\frac{q_{1} q_{3}}{\Lambda_{13}}+\frac{q_{2} q_{3}}{\Lambda_{23}}\right]$ ONDE $\quad \lambda_{i j}=\left|\vec{n}_{i}-\vec{\lambda}_{j}\right|$
para n cargas, há um termo rara cada par:

$$
W=\frac{1}{4 \pi \epsilon_{0}} \sum_{\substack{i j=1 \\ i<j}}^{N} \frac{q_{i} q_{j}}{\gamma_{i j}}
$$



$$
w=\underbrace{\frac{1}{4 \pi \epsilon_{0}} \frac{1}{2} \sum_{i=1}^{N} q_{i} \sum_{\substack{j=1 \\ j \neq i}}^{\sum_{V\left(\vec{n}_{i}\right)}^{N} \frac{q_{j}}{\left|\vec{i}_{i}-\lambda_{j}\right|}}=\frac{1}{2} \sum_{i=1}^{N} q_{i} V\left(\vec{r}_{i}\right) .}
$$

podemos usar essa expressão para urd distribu igão contínua de cargas:

$$
\begin{aligned}
& \sum_{i} q_{i} \longrightarrow \int d q=\int \rho d V \\
& \Rightarrow W=\frac{1}{2} \int \rho(\vec{\lambda}) V(\vec{\lambda}) d V \quad \begin{array}{l}
\text { ou } \frac{1}{2} \int \sigma(\lambda) V(\vec{r}) d s \\
\text { ou } \frac{1}{2} \int \lambda(\lambda) V(\lambda) d l
\end{array}
\end{aligned}
$$

PODEMOS ESCREVER: $W=\frac{1}{2} \int_{\substack{\text { TODO } \\ \text { ESPASD }}} S(\vec{\imath}) V(\vec{\lambda}) d V$
Já rue quandos $\rho(\vec{n})=0$ NÁO há CONTRIBUI\&

$$
\begin{aligned}
& \begin{array}{l}
W=\frac{1}{2} \int_{T \cdot E .} \rho(\vec{\lambda}) V(\vec{\pi}) d V=\frac{\epsilon_{0}}{2} \int_{T \cdot E .}(\vec{\nabla} \cdot \vec{I}) V d V \\
\rho(\vec{\pi})=\epsilon_{0} \vec{\nabla} \cdot \vec{E}
\end{array} \\
& \text { USANDO: } \vec{\nabla} \cdot[V \vec{E}]=(\vec{\nabla} V) \cdot \vec{E}+V \vec{\nabla} \cdot \vec{E} \\
& W=\frac{\epsilon_{0}}{2} \int_{T . E}[\vec{\nabla} \cdot(V \vec{E})-(\vec{\nabla} V) \cdot \vec{E}] d V=\frac{\epsilon_{0}}{2} \int_{S_{\infty}} V \vec{F} \int_{R}^{\theta} \cdot d \vec{S}-\frac{\epsilon_{0}}{2} \int_{R}^{T \cdot E} \vec{\nabla} V \cdot \vec{E} d V \\
& \text { So É UMA SUPERFÍCIE ESFERICA DE RAIO R } \\
& \text { ONDE } R \rightarrow \infty \text {. } \\
& \text { para uma distribuição localizada de cargas: } \\
& \text { (O QUE EXCLUI PLANO (NFINITO, LINHA INFINITA, CILINDRO INFINNTO) } \\
& \left.\begin{array}{l}
V \sim \frac{1}{R} \\
\vec{E} \sim \frac{1}{R^{2}}
\end{array}\right\} \begin{array}{l}
\text { COMO CARGAS } \\
\text { PONTUAIS }
\end{array} \quad V \vec{E} \sim \frac{1}{R^{3} ;} \int_{S_{\infty}} \sqrt{E} \cdot d \vec{S} \sim \frac{1}{R^{3}} R^{2} \sim \frac{1}{R \rightarrow 0} \underset{R \rightarrow \infty}{ }
\end{aligned}
$$

$$
\begin{aligned}
& W=-\frac{\epsilon_{0}}{2} \int_{T . E .}(\vec{\nabla} V) \cdot \vec{E} d V=\frac{\epsilon_{0}}{2} \int_{T . E .} \vec{E} \cdot \vec{E} d V=\int_{T . E .}\left[\frac{\epsilon_{0}}{2} E^{2}\right] d V=W \\
& U_{E}=\frac{\epsilon_{0}}{2} E^{2}: \text { DENSIDADE DE ENERGIA ELETROSTA'TICA }
\end{aligned}
$$

POSSO OLHAR PARA A ENERGIA ELETROSTA'TICA COMO toda contida no canpo ekétrico.

Energia armazenada em um capacitor

$$
\begin{gathered}
W=\frac{1}{2} \int \rho(\pi) V(\pi) d V \\
W=\frac{1}{2}\left[V_{+} \theta-V_{-} \theta\right]=\frac{\theta}{2}\left(V_{+}-V_{-}\right)=\frac{\theta \Delta V}{2} \\
\text { MAS: } C=\frac{Q}{\Delta V} \Rightarrow W=\frac{C}{2}(\Delta V)^{2} \\
O U V_{+} \rho_{+}(\pi) d V+V_{-} \underbrace{\left.\int_{-} \rho_{-}(\pi) d V\right]}_{-Q} \\
O V=\frac{Q^{2}}{2 C}
\end{gathered}
$$

Exemplo 2.8
Energia total de uma casca esférica de raio $R$ uniformemente carregada com carga total $Q$.

$$
\begin{aligned}
& Q \quad \sigma=\frac{\theta}{2 \pi R^{2}} \\
& \text { a) } w=\frac{1}{2} \int \sigma(\pi) v(\pi) d s \\
& V= \begin{cases}\frac{\theta}{4 \pi \epsilon_{0}} \sim & (n>R) \\
\frac{\theta}{4 \pi \epsilon_{0}} \frac{1}{R} & (n<R)\end{cases} \\
& R \\
& \Rightarrow W=\frac{1}{2} \sigma \frac{\theta}{4 \pi \epsilon_{0}} \frac{1}{R} \int d S=\frac{1}{2}\left(\frac{\theta}{4 \pi R^{2}}\right)\left(\frac{\theta}{4 \pi \epsilon_{0} R}\right) x \\
& \times 4 \pi R^{2}=\frac{Q^{2}}{8 \pi \epsilon_{0} R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } W=\frac{\epsilon_{0}}{2} \int_{T . \Sigma .} E^{2} d V=\frac{\epsilon_{0}}{2} \int_{R}^{\infty}\left(\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}}\right)^{2} 4 \pi r^{2} d r \\
& W E \text { (FORA DA CASCA) } \\
& W=\frac{\epsilon_{0}}{2} \frac{Q^{2}}{4 \pi \epsilon_{0}^{2}} \int_{R}^{\infty} \frac{R^{2}}{r^{42}} d n=\frac{Q^{2}}{8 \pi \epsilon_{0}}\left(-\frac{1}{\sim}\right) \prod_{n=R}^{n-\infty \infty}=\frac{Q^{2}}{8 \pi \epsilon_{0} R}
\end{aligned}
$$



$$
C=4 \pi \epsilon_{0} \frac{a b}{b-a}
$$

TOMANDO $a=R \quad E \quad b \rightarrow \infty$

$$
c=4 \pi \epsilon_{0} R
$$

$$
w=\frac{Q^{2}}{2 C}=\frac{\theta^{2}}{8 \pi \epsilon_{0} R}
$$

## Aulas passadas

Equações fundamentais da eletrostática

$$
\left.\begin{array}{rl}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\varepsilon_{0}} \\
\nabla \times \mathbf{E} & =0 \Longleftrightarrow \mathbf{E}=-\nabla V
\end{array}\right] \Rightarrow \nabla^{2} V=-\frac{\rho}{\varepsilon_{0}}
$$

Solução geral:
$V(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}$
Se a configuração de cargas for conhecida
$\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \rho\left(\mathbf{r}^{\prime}\right) \frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d V^{\prime}$ no espaço inteiro.

Problemas de valores de contorno
UMA SITUAGAD COMUM É QUERER ACHAR $V(\vec{r})$ OU $\vec{E}(\vec{A})$ NUMA REGIAD FINTAR CUJA BORDA E' $S=S_{1} \cup S_{2} \cup S_{N}$ TEREMOS $\rho(\vec{*}) \quad \forall \vec{i} \in R$ E EU TENHO INFORMACEDES SOBRE O PROBLEMA $\forall \vec{n} \in S$ COMO, POK EXEMPLO:

a) $V(\vec{\lambda}) \forall \vec{\lambda} \in S$
b) $\hat{\mu} \cdot \vec{\nabla} V \quad \forall \vec{\sim} \in S$ ou outaas ESSAS CONDIEÓES DEFINEM UM PROBLEMM DE VALDR DE CONTORNO

Um lema
DADA UMA ESFERA DE RAIO $R$, SEM CARGAS NO SEU INTERIOR, SEGUE QUE:

$$
\langle v\rangle_{s}=\frac{1}{4 \pi R^{2}} \int_{S(v)} V(\vec{r}) d s=V(C \mathbb{N T R O}\rangle
$$

VOU PROVAR PARA UMA CARGA E - resultaro segue pelo princípio De superposiçía.

$$
\begin{aligned}
& V(\hat{\lambda})=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left|\vec{\lambda}-z_{0} \hat{z}\right|} \\
& \left|\vec{\imath}-z_{0} \hat{z}\right|=\left[\mu^{2}+z_{0}^{2}-2 z_{0} \hat{z_{0}} \cdot \vec{\lambda}\right]^{1 / 2}=\left[\mu^{2}+z_{0}^{2}-2 z_{0} r \cos \theta\right]^{1 / 2} \\
& \langle V\rangle_{S}=\frac{1}{4 \pi R^{2}} \int \frac{q_{0}}{4 \pi \epsilon_{0}} \frac{R^{2} \sin \theta d \theta d \phi}{\left[R^{2}+z_{0}^{2}-2 z_{0} R \cos \theta\right]^{1 / 2}}=\frac{q}{8 \pi \epsilon_{0}} \int_{0}^{\pi} \frac{\sin \theta d \theta}{[]^{1 / 2}}=
\end{aligned}
$$

$$
\begin{aligned}
\angle V\rangle_{S} & =\left.\frac{Q}{8 \pi \epsilon_{0}} \frac{\sqrt{R^{2}+z_{0}^{2}-2 z_{0} R \cos \theta}}{z_{0} R}\right|_{\theta=0} ^{\theta=\pi} \\
& =\frac{f}{8 \pi \epsilon_{0}} \frac{1}{z_{0} R}\left[\sqrt{\left(R+z_{0}\right)^{2}}-\sqrt{\left(R-z_{0}\right)^{2}}\right]=\frac{q}{8 \pi \epsilon_{0} z_{0} R}\left[R+z_{0}-\left(z_{0}-R\right)\right] \\
& =\frac{q}{4 \pi \epsilon_{0} z_{0}}=V(\vec{n}=0) \quad \text { C.Q.D. }
\end{aligned}
$$

Corolário
SUMA CONSERU高NCIA DO LEMA E＇ QUE $V(\vec{\sim})$ NATO PODE TER MA＇ximOS OU MíNIMOSLEEAS QUALQUER PONTO DE UMA REGIÁO $R$ ．

SE HOUVER vM MA＇$^{\prime} \times 1$ MO EM $\overrightarrow{\text { AO }}$ basta construir vona bola BEM PERUENA COM CENTRO EM
久。E TERVAMOS
 $x$
$\langle V\rangle_{S}\left\langle V\left(刀_{0}\right) \quad O\right.$ QUE CONTRADIF O LEMA
ANALOGAMENTE PARA MÍNIrOS $\left.\left.\langle V\rangle_{S}\right\rangle V(T i)^{\prime}\right)$

10 teorema de unicidade
SIEJA VMA REGIAAO $R$ con BORDA $S=S_{1} U S_{2} \ldots S_{N}$ tal quer.
a) $\rho(\vec{\sim})$ É DADO EN $R$ I.

$$
\nabla^{2} v=-\frac{\rho}{\epsilon_{0}} \quad \forall \vec{\lambda} \in R
$$

b) $V(\vec{\lambda})=\left\{\begin{array}{c}V_{1}(\vec{n}) \text { Er } S_{1} \\ v_{2}(\vec{n}) \text { EM } S_{2} \\ \therefore\end{array}\right.$

$$
V(\vec{x}) I^{r} \text { DADO } \forall i \in S
$$



A soluçás drges proraEma é Única.

PROVA: SUPONHA QUE HAJA $V_{a}(\vec{r}) \neq V_{b}(\vec{n})$ SHTISFA ZENDO AS CONDIÇOES DO PROBLEMA.

SEJA $\quad V_{c}(\vec{\lambda})=V_{a}(\vec{\pi})-V_{b}(\vec{R})$
a) $\quad \nabla^{2} V_{a}=-\frac{\rho}{\epsilon_{0}} E \quad \nabla^{2} V_{b}=-\frac{\rho}{\epsilon_{0}} \quad \forall \vec{\lambda} \in R$

SUBTRAINDO: $\quad \nabla^{2}\left(V_{c}-V_{b}\right)=\nabla^{2} V_{c}=0 \quad \forall i \in R$
b) $V_{c}=0$ Er $S$

MAS $V_{C}(\vec{R})$ NAD PODE TER MA'XIMOS OU MÍNIMOS EM $R \Rightarrow V_{C}(\vec{A})$ NAO PODE SNER $>0$ EOH $R$ NEN <OEMR

$$
\Rightarrow V_{c}(\vec{n})=0 \quad \forall \vec{\lambda} \in R \Rightarrow V_{a}(\vec{n})=V_{b}(\vec{n})
$$

## Resumo

O potencial $V(\mathbf{r})$ é único num volume $V$ se especificarmos:

$$
\begin{array}{rlll}
\rho(\mathbf{r}) & \text { em } & V \\
V(\mathbf{r}) & \text { em } & S(V)
\end{array}
$$



2o teorema de unicidade
APROPRIADO PARA REGIOEES CUJAS BORDAS SÃO CONDUTORES:
a) $\nabla^{2} v=-\frac{\rho}{G_{0}} \quad r \in R$
b) AS CARGASTOTAIS BOAS BORDAS

CONDUTORAS SAOO DADAS
NESSE CASO:

$$
V(\geqq) \underline{N}^{r} \text { ÓNLCO EM R }
$$

 could be at infinity
(A MENOS DE UMA CONSTANTE) $\theta_{S}$
$\vec{E}(\vec{N}) E^{\prime}$ ÚNICO 玉M R

## Resumo

O potencial $V(\mathbf{r})$ é único (a menos de uma constante) e o campo elétrico $\mathbf{E}(\mathbf{r})$ é unico num volume $V$ cercado de condutores se especificarmos:
$\rho(\mathbf{r})$ em $V$
$Q_{i}$ em $S_{i}(V)(i=1,2, \ldots)$
Integration surfaces


## Exemplo 2.9

O condutor não tem carga líquida, mas há uma carga $q$ dentro de uma cavidade de forma irregular dentro da esfera. Qual é o campo em $P$ fora da esfera?

Resposta: $\quad \mathbf{E}(\mathbf{r})=\frac{q}{4 \pi \varepsilon_{0}} \frac{\hat{\mathbf{r}}}{r^{2}}$

Para resolver esse problema, assumimos que o campo criado fora da cavidade pela carga pontual $q$ mais a carga $-q$ induzida na parede da cavidade se anula completamente.

## Exemplo 2.9

Compare com o campo fora de uma esfera condutora maciça de mesmo raio, com carga $+q$ (na sua superfície):


Mas a região externa às duas esferas é a mesma e a condição de contorno na superfície também (cargas dadas). Portanto, a solução tem que ser a mesma: o lado de fora não "sabe" o que acontece do lado de dentro!

## Exemplo 2.9

Igualmente, para dentro da cavidade, podemos tomar uma esfera com carga total $-q$. Nesse caso, $\mathbf{E}=0$ em qualquer ponto fora da cavidade:


A região dentro da cavidade é a mesma e a condição de contorno na superfície também (cargas dadas). Portanto, a solução tem que ser a mesma: o lado de dentro não "sabe" o que acontece do lado de fora!

