F 689 – Mecânica Quântica I

2º Semestre de 2022 15/08/2022 Aula 1

Site da disciplina na minha página:

http://sites.ifi.unicamp.br/emiranda

Aba <u>Ensino</u>

Google Classroom: G_F 689A_2022S2:

- Blog para avisos, troca de informações, discussão de dúvidas, perguntas, postagem de coisas interessantes, etc.
- Listas de exercícios (submissão).
- Slides das aulas (também no site).

≡ G_F 689A_2022S2	Mural Atividades Pessoas No	tas
a	b	/ Personalizar
G_F 689A_20	22S2	Ĵ
Gerar link	Escreva um aviso para sua turma	¢
Código da turma: : cdfkl5p []	Eduardo Miranda 10:38 Pessoal, bem vindos à disciplina F 689 - Mecânica Quântica I, do segu Informações relevantes sobre a disciplina. Muitas dessas informaçõe nome page. O endereço é:	undo semestre de 2022. Nesse mural, postarei todas as 2s estão duplicadas na página da disciplina na minha
····	https://sites.ifi.unicamp.br/emiranda/f-689-mecanica-quantica-i-2o-si	em-de-2022/

Livro adotado:

Quantum Mechanics, Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë, Vol. I, 1^a edição, Wiley, 1977.

Fontes adicionais:

Introduction to Quantum Mechanics, D. J. Griffiths, 2ª edição, Addison-Wesley, 2004.

Quantum Mechanics, Nouredine Zettili, 2a edição, Wiley, 2009.

The Feynman Lectures on Physics - vol. III, R. P. Feynman, R. B. Leighton e M. Sands, Addison-Wesley, 1964.

Ementa: Caps. 1 ao 6 do Cohen-Tannoudji.

1. Introdução às ideias fundamentais da mecânica quântica.

2. As ferramentas matemáticas da mecânica quântica.

3. Os postulados da mecânica quântica.

4. Partículas de spin 1/2 e átomos de dois níveis.

5. O oscilador harmônico unidimensional.

6. Momento angular.

Prof. Eduardo Miranda Universidade Estadual de Campinas (The University of Campinas)										
Quem sou	Pesquisa	Publicações	Teses e dissertações	Ensino ~	Notas de aulas	Links	GFSMC	Contato		
Estrutura de aulas de F 689 (2o. sem. de 2022) ATENÇÃO: ARTIGOS DE REVISTAS CIENTÍFICAS PODEM SER BAIXADOS DE DENTRO DA UNICAMP (OU DE FORA, USANDO O VPN). Capítulo 1: Introdução às ideias fundamentais da mecânica quântica (3 aulas) (Notas de aula: Chap1a, Chap1b, Chap1c) Monitorias: 15/08 - (Video da aula)) mpasses da física clássica no primeiro quarto do séc. XX e as ideias iniciais da física quântica: a radiação de corpo negro, o efeito fotoelétrico, o espalhamento Compton, a proposta de de Brogile e a difração de elétrons, o modelo de Bohr para o átomo. A dualidade onda-partícula: o experimento de dupla fenda. 17/08 - Não haverá aula.								posts comentários css.org		Q

Slides anotados das aulas

Avaliação:

8 Listas (L1, ..., L8) de problemas: um problema escolhido de cada lista será corrigido. A média das listas é L.
Adicionalmente, haverá 3 Provas (P1, P2, P3)
M = (L+P1+P2+P3)/4
Se M ≥ 5.0, aprovado.
Se M < 5.0, MF = (M + E)/2, onde E = Exame final. Se MF ≥ 5.0, aprovado. Do contrário, reprovado.

Datas das provas:

P1: 28 de setembro (Caps. 1 e 2) P2: 07 de novembro (Caps. 3 e 4) P3: 07 de dezembro (Caps. 5 e 6)

Exame: 19 de dezembro (Caps. 1 ao 6)

Ideias fundamentais da mecânica quântica

Impasses da física clássica no início do século XX

Radiação eletromagnética de corpos:

- a) Todo corpo emite radiação eletromagnética pela superfície. Ele também aborve e reflete radiação incidente.
- b) Corpo negro: absorve toda a radiação incidente (não reflete nada). Em equilíbrio, ele emite tanto quanto absorve.
- c) Realização prática de um corpo negro: um orifício em uma cavidade grande; tudo que entra ali é absorvido pelas paredes internas; a radiação que sai do orifício é uma amostra da radiação dentro cavidade: um "gás" de luz (fótons).
- d) espectro universal de um corpo negro: só depende da temperatura.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, Robert Resnick

Radiação de corpo negro (cont.)

 $R_T(v)$: radiância espectral $R_T(v) dv$: potência total irradiada com frequência entre $v \in v + dv$, por unidade de área da superfície do corpo negro. $\rho_T(v) dv$: densidade de energia da radiação entre $v \in v + dv$.

 $R_T\left(\nu\right) = \frac{c}{4}\rho_T\left(\nu\right)$

c = velocidade da luz no vácuo

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, Robert Resnick

Radiação de corpo negro (cont.)

Mas:

$$\rho_T(\nu) = n(\nu) \langle E \rangle_{(\nu,T)}$$
 onde $n(\nu) = \frac{8\pi}{c^3} \nu^2$

n(v): densidade de número de modos.

Da física <u>clássica</u>:

$$\langle E \rangle_{(\nu,T)} = k_B T$$

(teorema da equipartição)

 k_B = constante de Boltzmann

Quantum Physics of Atoms, Molecules, Solids, Nucleand Particles, Robert Eisberg, Robert Resnick

Radiação de corpo negro (cont.)

$$\rho_T(\nu) = n(\nu) \langle E \rangle_{(\nu,T)} \qquad \text{onde} \quad n(\nu) = \frac{8\pi}{c^3} \nu^2$$

Planck (1900): A energia de cada modo eletromagnético de frequência ν é quantizada.

$$E = nh\nu \ (n = 0, 1, 2, \ldots)$$

Usando física estatística: distribuição de Planck

$$\langle E \rangle_{(\nu,T)} = \frac{\sum_{n=0,1,\dots} \left(nh\nu e^{-nh\nu/k_B T} \right)}{\sum_{n=0,1,\dots} e^{-nh\nu/k_B T}} = \frac{h\nu}{e^{h\nu/k_B T} - 1} \xrightarrow[\nu \ll T]{k_B T}$$

Excelente acordo com os dados experimentais se:

$$h = 6,63 \times 10^{-34} \text{ J.s}$$

Efeito fotoelétrico

- a) Emissão de elétrons pela superfície de metais, sob a incidência de luz.
- b) Para uma intensidade fixa de luz monocromática, a corrente de fotoelétrons satura com o aumento da voltagem aceleradora V; a corrente máxima é proporcional à intensidade.
- c) A energia cinética máxima dos fotoelétrons (voltagem desaceleradora máxima) só depende do metal e da frequência da luz.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, Robert Resnick

Efeito fotoelétrico (cont.)

Einstein (1905): a luz é composta de *quanta* (fótons) de energia E=hv. Os fótons são absorvidos um a um pelos elétrons.

Notem que a intensidade da luz está ligada ao número de fótons incidentes, não à sua energia.

Espalhamento Compton (1923)

Espalhamento inelástico de raios-X pelos elétrons de um sólido.

Difração de elétrons

Em 1924, de Broglie fez um enorme salto conceitual. Se a luz pode se comportar como partículas, talvez a matéria também possa se comportar como ondas! Usando as mesmas relações de Compton:

$$\nu = \frac{E}{h}$$
$$\lambda = \frac{h}{p}$$

Isso foi confirmado por Davisson e Germer em 1926 e por G. P. Thomson em 1927: difração de elétrons por cristais.

Difração de elétrons

Figure 3-4 *Top:* The experimental arrangement for Debye-Scherrer diffraction of x rays or electrons by a polycrystalline material. *Bottom left:* Debye-Scherrer pattern of x-ray diffraction by zirconium oxide crystals. *Bottom right:* Debye-Scherrer pattern of electron diffraction by gold crystals.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, Robert Resnick

Interferência de elétrons

Formação do padrão de interferência de elétrons num experimento de dupla fenda. Veja como os "pontinhos" vão formando gradativamente o padrão de franjas. O número ao lado conta os elétrons detectados.

A.Tonomura et al., Am. J. of Phys., 57, 117 (1989)

Interferência

Figure 2 Interference pattern produced by C_{60} molecules. **a**, Experimental recording (open circles) and fit using Kirchhoff diffraction theory (continuous line). The expected zeroth and first-order maxima can be clearly seen. Details of the theory are discussed in the text. **b**, The molecular beam profile without the grating in the path of the molecules.

M. Arndt *et al.* Wave–particle dualit of C₆₀ molecules. *Nature* **401**, 680 (1999)

Figure 4 | Comparison of interference patterns for PcH₂ and F_{24} PcH₂. a,b, False-colour fluorescence images of the quantum interference patterns of PcH₂ (a) and F_{24} PcH₂ (b). We can deduce both the mass and the velocity

T. Juffmann *et al.* Real-time single-molecule imaging of quantum interference. *Nature Nanotech* **7**, 297 (2012).

Modelo de Bohr

A física clássica não podia explicar a estabilidade dos átomos: elétrons orbitando em torno de um núcleo estão acelerados e irradiariam ondas eletromagnéticas, perdendo energia e colapsando no núcleo. Bohr (1913) propôs uma saída baseado em ideias ondulatórias:

- as órbitas circulares seriam quantizadas e os elétrons não irradiariam.
- apenas quando mudassem de uma órbita para outra haveria emissão de radiação.
- a circunferência da órbita "abriga" um número inteiro de comprimentos de onda de de Broglie.

$$2\pi r_n = n\lambda = \frac{hn}{p_n}$$
$$\Rightarrow L_n = r_n p_n = n\frac{h}{2\pi} \equiv n\hbar \ (n = 1, 2, \ldots)$$

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, Robert Resnick

Modelo de Bohr (cont.)

Usando raciocínios, de resto clássicos, para átomos de um elétron:

$$F = \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{r_n^2} = m \frac{v_n^2}{r_n}$$
 Força elétrica é a força centrípeta

$$E = \frac{1}{2}mv_n^2 - \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{r_n}$$
 Energia mecânica total é cinética + elétrica

Bohr obteve, entre outras coisas, o espectro de energias quantizadas:

$$E_n = -\frac{Z^2 e^4 m}{(4\pi\epsilon_0)^2 2\hbar^2} \frac{1}{n^2} = -13,6 \text{ eV } \frac{Z^2}{n^2}$$
$$r_n = \frac{4\pi\epsilon_0\hbar^2}{Ze^2m} n^2 = 0,53 \text{ Å } \frac{n^2}{Z}$$
$$v_n = \frac{Ze^2}{4\pi\epsilon_0\hbar} \frac{1}{n} = 2,2 \times 10^6 \text{ m/s } \frac{Z}{n}$$

Modelo de Bohr (cont.)

Excelente concordância com os experimentos:

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Robert Eisberg, Robert Resnick