F 689 - Mecânica Quântica I

2o Semestre de 2022
 24/10/2022
 Aula 17

Aplicações dos postulados a casos simples: partícula de spin $1 / 2$ e sistemas de dois níveis

O experimento de Stern-Gerlach

Otto Stern e Walther Gerlach (1921-22)

O experimento de Stern-Gerlach OS A'TOMOS DE PRATA SAO NEUTROS: CARGA NULA

$$
\vec{F}=g(\vec{v} \times \vec{B})=0
$$

OS Átomos de prata tien MOMENTO MAGNÉTICO NAO NULO: \vec{M}

$$
{\underset{I}{2} \vec{M}}_{\rightarrow} A \quad|\vec{M}|=I A
$$

NESSE CASO, O MOMENTO MAGNE'TICO ESTA' ASSOCIADO

 A ROTACEAO DAS CARGAS:

$$
\vec{M}=\gamma \vec{L} \quad \gamma: \text { FATOR GIROHACNEITICO }
$$

Descrição clássica
UM HOMENTO MAGNE'TICO \vec{M} SUJEITO A UM CAMPO MAGNÉTICO贾 SOFRE: UMA FORGA E UM TORQUE
TORQUE: $\vec{N}=\vec{M} \times \vec{B}$
FORGA: $\vec{F}=\vec{\nabla}(\vec{M} \cdot \vec{B}) \quad\left\{\begin{array}{l}\text { PARA CAMPOS UNIFORH } \\ \vec{N} \text { MAS NAD } H A \hat{F} \\ \vec{F}\end{array}\right.$
LEMBRANDO: $\vec{H}=\gamma \vec{L}$
EFEITO DO TORQUE: $\vec{N}=\frac{d \vec{L}}{d t}=\vec{M} \times \vec{B}=\gamma \vec{L} \times \vec{B}$

$$
\frac{d \vec{L}}{d t}=\gamma \vec{L} \times \vec{B} \Longrightarrow \text { PRECESSAO DE LARMOR }
$$

TOMANDS $\left.\vec{L} \cdot(): \vec{L} \cdot \frac{d \vec{L}}{d t}=\frac{1}{2} \frac{d}{d t}|\vec{L}|^{2}\right)=\gamma \vec{L} \cdot(\vec{L} \times \vec{B})=0$
\Rightarrow MÓDULO DE $\vec{\imath}$ É CONSTANTE

A precessão de Larmor
SE $\vec{B}=B_{z} \hat{z} \Rightarrow \vec{L} \times \vec{B}=B_{z}(\vec{L} \times \hat{z})=B_{z}\left(-L_{x} \hat{y}+L_{y} \hat{x}\right)$

$$
\Rightarrow \frac{d L_{z}}{d t}=\gamma(\vec{L} \times \vec{B})_{z}=0 \Rightarrow L_{z}=\operatorname{cons} T .
$$

resolvendo para L_{x}, L_{y} :

$$
\begin{aligned}
& L_{x}=L_{\perp} \sin \left(\omega_{0} t\right) \\
& L_{y}=L_{1} \cos \left(\omega_{0} t\right) \\
& |\vec{L}|=\sqrt{L_{\perp}^{2}+L_{z}^{2}}
\end{aligned}
$$

$\Delta y=1 \mathrm{~m} \quad B_{z}=1 T \quad T=400 \mathrm{~K} \Rightarrow \theta \mathrm{ME} D I A$ DAS PARTI'CULAS $\Rightarrow \Delta t$

$$
\omega_{0} \Delta t \cong 10^{9}
$$

A força sobre a partícula
como a PRECESSÃO E' MUITO RÁPIDA, PODEMOS TOMAR:

$$
\begin{aligned}
& \vec{L} \cong \vec{\jmath}=L_{z} \hat{z} \\
& \\
& \text { MEDAA TEMPORAL }
\end{aligned}
$$

FORGA SOBRE OS ÁTOMOS: $\vec{F}=\vec{\nabla}(\vec{M} \cdot \vec{B})$

$$
\vec{H} \cdot \vec{B}=\gamma \vec{L} \cdot \vec{B} \cong \gamma B_{z} L_{z} \Rightarrow \vec{F}=\gamma \vec{\nabla}\left(B_{z} L_{z}\right) \cong \gamma L_{z} \vec{\nabla} B_{z}
$$

MAS: $\frac{\partial B_{z}}{\partial y}=0$. NA REGAO DA ORLGEM $\frac{\partial B_{7}}{\partial x}=0$ (POR SIMITRIA)) FINACMENTE: $\frac{\partial B_{z}}{\partial z} \neq 0$

$$
\Rightarrow F_{z}=\gamma \frac{\partial B_{z}}{\partial z} L_{z}=K L_{z}
$$

FORRA SOBRE O Átoms ${ }_{E} \propto L_{z}$

CLASSICAMENTE, SE OS A'TOMOS TODOS TEM MOMENTO ANGULAR \vec{l}, A COMPONENTE $L z$ PODE ASSUMIR VALDRES no intervalo:

$$
L_{z} \in[-(\vec{L}),+(\vec{L} \mid]
$$

HA' UM CONTÍNUO DE VALORES DE LZ E PORTANTO DA FORCA F

$$
F_{z} \in[-k|\vec{L}|,+k|s|]
$$

E, portanto, un contiñuo de deflexoes DO FEIXE (EXPECTATIVA CLASSICA)

Expectativa clássica x observações
 ISSO SUGERE A QUANTIZACA'O DO MOMENTO ANGULAR: OS VALORES OBSERVADOS SAD COMPATIVEIS COH:

$$
L_{z}=+\frac{\hbar}{2} \text { ou }-\frac{\hbar}{2}
$$

Configuração eletrônica do átomo de prata

$$
\mathrm{Ag}=[\mathrm{Kr}] 4 d^{10} 5 s^{1}
$$

[Kn] i a cagada $4 d^{10}$ são cammanas completas $\cos \vec{L}_{\text {totar }}=0$
$5 s^{\prime}: 1$ eo NA CAMADA $5 \mathrm{~s}: ~ s \Rightarrow l=0$
morento angurar pe spin: $S=\frac{1}{2}$

O espaço de estados e os observáveis S_{x}, S_{y}, e S_{z}
VAMOS, A PARTIR DE AGORA,: $L_{x} \rightarrow S_{x}, L_{y} \rightarrow S_{y}, L_{z} \rightarrow S_{z}$ E' RAZOA'VEL ASSUMIR QUE S_{Z} TENHA OS SEGUINTES AUTO-VALORES E AUTO-VETORES:

$$
\begin{array}{ll}
S_{z}|+\rangle=\frac{\hbar}{2}|+\rangle \quad E \quad S_{z}|-\rangle=-\frac{\hbar}{2}|\rightarrow\rangle \\
\langle+\mid-\rangle=0 & \langle+\mid+\rangle=\langle-\mid-\rangle=1
\end{array}
$$

Sf SOZINHO FORMA UM CCOC NRSSE ESPACO BIDIMENSIONK

$$
1+><+1+1-)<-1=1
$$

NESSA BASE:

$$
S_{z}=\left(\begin{array}{cc}
\hbar / 2 & 0 \\
0 & -\hbar / 2
\end{array}\right)=S_{z}^{+}
$$

0 ESTADO MAIS GERAL NESSE ESPACO:

$$
\begin{gathered}
|\psi\rangle=\alpha|+\rangle+\beta|-\rangle \quad, \quad \alpha_{1} \beta \in \mathbb{C} \\
|\alpha|^{2}+|\beta|^{2}=1
\end{gathered}
$$

AS OUTRAS COMPONENTES CARTESIGNAS DO SRIN:

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{x}=S_{x}^{+} ; S_{y}=S_{y}^{+}
$$

NA MESMA BASE: $\{|+\rangle, \mid-)\}$
NOTE QUE: $\quad S_{i}=\frac{\hbar}{2} \sigma_{i}$

$$
\sigma_{x}, \sigma_{y}, \sigma_{z}: \operatorname{MATR}, z E S \text { DE }
$$ pauli

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) ; \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \quad \sigma_{z}=\left(\begin{array}{cc}
+1 & 0 \\
0 & -1
\end{array}\right)
$$

(i) SÃo todas hermitinanas
(ii) NÃO COMUTAM ENTRE SI.

Componente arbitrárica de \mathbf{S} DADO UM UNITA'RIS u CARACTERIZADO DOR ANGULOS ESFE'RICOS COMO NA FIGURA:

$$
\hat{u}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
$$

$$
S_{u}=\vec{S} \cdot \hat{u}=\left(S_{x} \sin \theta \cos , S_{y} \sin \theta \sin \phi, S_{z} \cos \theta\right)
$$

MATRIZ DE $\vec{S} \cdot \hat{u}($ NA BASE $\{\mid \rightarrow, \rightarrow 7\})$ F .

$$
\begin{array}{r}
\vec{S} \cdot \hat{u}=\frac{\hbar}{2}\binom{\cos \theta \quad \sin \theta e^{-i \phi}}{\sin \theta e^{i \phi}-\cos \theta} \\
\theta=0 ; S_{z} \quad \theta=\frac{\pi}{2} ; \quad \phi=0: S_{x} \\
\phi=\frac{\pi}{2}: S_{y}
\end{array}
$$

Auto-vetores e auto-valores de componentes de \mathbf{S}
por invariância dos resultados sob uma rotaçato ARBITRA'RIA DO APARATO DE S-G:

AUTO-UALARES DE $S_{r 1}$, Sy, S_{u} SAO TAMREOU: $\frac{\hbar}{2},-\frac{\hbar}{2}$ FICA COMO EXERCÍCIO PROVAR ISSO A PARTIR DAS Mat RIZES.
OS AUTO-VETORES SĀOT.

Preparação de estados

SUPONHA QUE O EIXO DO S-G SEJA \hat{z} :

$$
F_{z}=\gamma \frac{\partial B_{q}}{\partial z} L_{z}=k L_{z}
$$

$$
k>0
$$

O FEIXE DEFLETIDO PARA CIMOA TEM ÁTOMOS COM $S_{z}=\frac{\hbar}{2}$ E O DEFLETIDO PARA BAIXO TEM $S_{z}=-\frac{t}{2}$ SE HA' UNA FENDA W, TODOS OS ATTOMOS QUE PASSAM POR ELA ESTÂO PRE DARADOS NO ESTADO H> $\mathrm{N}_{2} \rightarrow 1 \rightarrow$

EIXO NA DIRE दृ̄ग \hat{X} :

$$
\begin{aligned}
& \left.N_{1} \rightarrow|+\rangle_{x}=\frac{1}{\sqrt{2}}[1+\rangle+|-\rangle\right] \\
& \left.\left.N_{2} \rightarrow|\rightarrow\rangle_{x}=\frac{1}{\sqrt{2}}[1+\rangle-1 \rightarrow\right\rangle\right]
\end{aligned}
$$

GIRANDO PARA EIXOS GENERICOS POSSO PREPARAR:

$$
\begin{aligned}
& \left.N_{1} \longrightarrow 1+\lambda_{u}=\cos \frac{\theta}{2} e^{-i \phi / 2} \right\rvert\,+>+\sin \frac{\theta}{2} e^{i \phi / 2} 1-> \\
& N_{2} \longrightarrow 1-\lambda_{u}=-\operatorname{in} \frac{\theta}{2} e^{-i \phi / 2}\left|+>+\cos \frac{\theta}{2} e^{i \phi / 2}\right| \rightarrow
\end{aligned}
$$

