F 689 – Mecânica Quântica I

2º Semestre de 2022 24/10/2022 Aula 17 Aplicações dos postulados a casos simples: partícula de spin ½ e sistemas de dois níveis

O experimento de Stern-Gerlach

Otto Stern e Walther Gerlach (1921-22)

O experimento de Stern-Gerlach

Descrição clássica

UN HOMENTO MAGNÉTICO & SUJEITO A UN CAMPO MAGNÉTICO E SOFRE: UMA FORÇA E UM TORQUE TORQUE: $\vec{N} = \vec{H}_{\vec{N}}\vec{B}$ (PARA CAMPOS UNIFORMES, HA FORGA: $\vec{F} = \vec{\nabla}(\vec{M}\cdot\vec{B})$) \vec{N} MAS NAD HA \vec{F} . LEMBRANDO: $\vec{M} = \vec{X}$ EFEITO DO TORQUE : N= di = NxB= VIXB di = y i x i - PRECESSÃO DE LARMOR TOMANDO $\vec{l} \cdot (7)$: $\vec{l} \cdot \vec{l} = l \cdot \vec{l} \cdot \vec{$ JUDOULO DE 2 É CONSTANTE

 $\omega_{\Delta} \Delta t \approx 10^{9}$

A força sobre a partícula
CORO A PRECESSÃO É MUNTO RAPIDA, PODEMOS
TOMAR:
LE Z = LZZ
MÉDIA TEMPORAL
FORÇA SOBRE OS ÁTOMOS: F=
$$\nabla(\overline{M},\overline{E})$$

 $\overline{M},\overline{E} = \overline{X} \overline{L},\overline{E} = \overline{X} \overline{R}_{Z}LZ$ $\rightarrow \overline{F} = \overline{X} \overline{V}(\underline{R}_{Z}LZ) = \overline{X}LZ \overline{\nabla}\underline{R}_{Z}$
HAS: $\frac{\partial B_{Z}}{\partial y} = 0$. NA REGIÃO DA ORIGEM $\frac{\partial B_{Z}}{\partial x} = 0$ (POR SIMETRIM)
FINAL MENTE: $\frac{\partial B_{Z}}{\partial Z} \neq 0$
 $\Rightarrow F_{Z} = \overline{X} \frac{\partial B_{Z}}{\partial Z} = KLZ$
 $E \propto LZ$

CLASSICAMENTE, SE OS ÁTONOS TODOS TÉM MOMENTO ANGULAR Z, A COMPONENTE LZ PODE ASSUMIR VALORES NO INTERVALO:

 $L_{z} \in [H\overline{L}], H\overline{L}]$ HA UN CONTINUO DE VALORES z L_z DE LZ E PORTANTO DA FORÇA FZ $F_{z} \in [-\kappa(\tilde{c}), +\kappa(\tilde{c})]$ E, PORTANTO, UN CONTIÑO DE DEFLEXÕES PO FEIRE (EXPECTATIVA CLASSICA)

Expectativa clássica x observações

Configuração eletrônica do átomo de prata

Ag = [Kr] $4d^{10} 5s^{1}$ [Kn] E A CAMADA $4d^{\circ}$ São CAMADAS COMPLETAS COM $\vec{L}_{total} = 0$ $5s': \Delta e_{o} NA CAMADA 5s : S = PQ = 0$ MOMENTO ANGULAR PE SPIN : $S = \frac{1}{2}$

O espaço de estados e os observáveis S_x , S_y , e S_z VAMOS, A PARTIR DE AGORA, : Lx - Sx, Ly - Sy, Lz - Sz É RAZOAVEL ASSUMIR QUE STENHA OS SEGUINTES AUTO-VALORES E AUTO-VETOR ES! Sz 1+>= = 1+> E Sz 1-> = -== -> <+1->=0 <+1+>=<-1->=1SZ SOZINHO FORMA UN COOC NESSE ESPACO BIDIMENSIONA 1+><+1+1-><-1= NESSA BASE. $S_{z} = \begin{pmatrix} \pi/2 & \bigcirc \\ \bigcirc & -\pi/2 \end{pmatrix} = S_{z}^{+}$

 $|\alpha|^{2} + |\beta|^{2} = 1$ AS OUTRAS COMPONENTES CARTESIANAS DO SRIN. $S_{x} = \frac{t_{x}}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} , S_{y} = \frac{t_{x}}{2} \begin{pmatrix} 0 & -\lambda \\ 1 & 0 \end{pmatrix} S_{x} = S_{x}^{+} ; S_{y} = S_{y}^{+}$ NA MESMA BASE: { 1+>, 1->} NOTE QUE: $S_i = \frac{\pi}{2} \sigma_i$ $\sigma_i \sigma_j \sigma_j \sigma_j$ MATRIZES DE PAULI $\mathcal{T}_{\mathcal{T}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathcal{T}_{\mathcal{T}} = \begin{pmatrix} 0 & -\tilde{k} \\ 1 & 0 \end{pmatrix}, \quad \mathcal{T}_{\mathcal{T}} = \begin{pmatrix} 1 & 0 \\ 0 & -\tilde{k} \end{pmatrix}, \quad \mathcal{T}_{\mathcal{T}} = \begin{pmatrix} 1 & 0 \\ 0 & -\tilde{k} \end{pmatrix}$

 $|\psi\rangle = \chi |+\rangle + \beta |-\rangle , \quad \chi \beta \in \mathbb{C}$

(i) SÃO TODAS HERMITINANAS (ii) NÃO COMUTAM ENTRE SI.

D ESTADO MAIS GERAL NESSE ESPAÇO.

Auto-vetores e auto-valores de componentes de S

POR INVARIÂNCIA DOS RESULTADOS SOB UNA ROTAÇão ARBITRA^IRIA DO APARATO DE S-G:

AUTO-VALDRES DE ST, Sy, Su SAO TAMBÉN: 1/2, - 1/2 FICA COMO EXERCÍCIO PROVAR 1550 A PARTIR DAS MATRIZES. OS AUTO-VETORES SÃOS 1 = >3 = 1 = > 1キ>x= (う[1+> エレ->] (エンタ= 「「「「(+) エンレー?」 $|+ \lambda_{u} = \cos \frac{\theta}{2} e^{-i\frac{\phi}{2}}|+ \lambda_{u} + \sin \frac{\theta}{2} e^{-i\frac{\phi}{2}}|- \lambda_{u}| = -\frac{i\frac{\phi}{2}}{2}e^{-i\frac{\phi}{2}}|+ \lambda_{u} + \cos \frac{\theta}{2} e^{-i\frac{\phi}{2}}|- \lambda_{u}| = -\frac{1}{2}e^{-i\frac{\phi}{2}}|+ \lambda_{u} + \cos \frac{\theta}{2} e^{-i\frac{\phi}{2}}|- \lambda_{u}| = -\frac{1}{2}e^{-i\frac{\phi}{2}}|+ \lambda_{u} + \cos \frac{\theta}{2}|+ \lambda_{u}| = -\frac{1}{2}e^{-i\frac{\phi}{2}}|+ \lambda_{$

F₃= X <u>BR</u> L₃= K L₃ O FEIKE DEFLETIDO PARA CIMA TEN ÁTOHOJ COM S₃= $\frac{1}{2}$ E O DEFLETIDO PARA BAIKO TEN S₃= $\frac{1}{2}$ SE IHA UMA FENDA M₁ TODOS OS ATOMOS QUE PASSAM POR ELA ESTÃO PRE PLARADOS NO ESTADO IT> N₂-9 (->

