F 689 - Mecânica Quântica I

2o Semestre de 2022
 26/10/2022
 Aula 18

Aula passada

Aparato experimental de Stern-Gerlach: um feixe de átomos neutros percorre uma região com campo magnético não uniforme.

Aula passada

Descrição clássica: os átomos de prata têm carga zero, mas um momento magnético não nulo \mathbf{M}.

O momento magnético é proporcional ao momento angular $\mathbf{L}: \mathbf{M}=\gamma \mathbf{L}$
Os átomos estão sujeitos a torques devido ao campo magnético: precessão de Larmor. Na média, só sobrevive a componente L_{z}.
$\mathbf{N}=\mathbf{M} \times \mathbf{B} \Rightarrow \frac{d \mathbf{L}}{d t}=\gamma \mathbf{L} \times \mathbf{B} \Rightarrow \overline{\mathbf{L}}=L_{z} \hat{\mathbf{z}}$
Os átomos sofrem uma força devido à não homogeneidade do campo, proporcional a L_{z} :

$$
\mathbf{F}=\boldsymbol{\nabla}(\mathbf{M} \cdot \mathbf{B})=\left(\gamma \frac{\partial B_{z}}{\partial z}\right) L_{z}
$$

A deflexão devido à força é proporcional a L_{z} : o aparato mede L_{z}

Aula passada

Classicamente, esperam-se deflexões em um intervalo contínuo:

$$
L_{z} \in[-|\mathbf{L}|,|\mathbf{L}|]
$$

Ao contrário, observam-se apenas dois valores discretos de L_{z}

$$
L_{z}=-\frac{\hbar}{2} \text { ou } \frac{\hbar}{2}
$$

Aula passada

Descrição quântica do momento angular de spin $1 \not 12$: espaço \mathcal{E} de dimensão 2 .
Base de $\mathcal{E} \Rightarrow\{|+\rangle,|-\rangle\} \quad\langle+\mid+\rangle=\langle-\mid-\rangle=1,\langle+\mid-\rangle=0$
Fechamento: $|+\rangle\langle+|+|-\rangle\langle-|=\mathbb{1}$
Observável associado a $L_{z} \rightarrow S_{z} \quad \begin{aligned} & S_{z}|+\rangle=\frac{\hbar}{2}|+\rangle \\ & S_{z}|-\rangle=-\frac{\hbar}{2}|-\rangle\end{aligned}$
Outras componentes (representação matricial na base acima):

$$
S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Matrizes de Pauli:

$$
\mathbf{S}=\frac{\hbar}{2} \boldsymbol{\sigma} \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Aula passada

Componente genérica do spin numa direção arbitrária u:

$$
\mathbf{S} \cdot \hat{\mathbf{u}} \equiv S_{u}=S_{x} \sin \theta \cos \phi+S_{y} \sin \theta \sin \phi+S_{z} \cos \theta
$$

Representação matricial de S_{u} :

$$
S_{u}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right)
$$

Qualquer projeção de \mathbf{S} tem os mesmos auto-valores:

$$
\text { Auto - valores de } S_{x}, S_{y}, S_{z}, S_{u} \rightarrow \pm \frac{\hbar}{2}
$$

Aula passada

Na Base de $\mathcal{E} \Rightarrow\{|+\rangle,|-\rangle\}$, os auto-vetores das componentes de \mathbf{S} são:

Para S_{u} (convenção de fase diferente da do livro):

Para S_{u} (convenção do livro):
$e^{i \phi / 2} \times\left\{\begin{array}{l}|+\rangle_{u}=e^{-i \phi / 2} \cos \frac{\theta}{2}|+\rangle+e^{i \phi / 2} \sin \frac{\theta}{2}|-\rangle \\ |-\rangle_{u}=-e^{-i \phi / 2} \sin \frac{\theta}{2}|+\rangle+e^{i \phi / 2} \cos \frac{\theta}{2}|-\rangle\end{array}\right.$

Aula passada

Preparação de estados: $|+\rangle,|-\rangle$

Preparação de estados: $|+\rangle_{x},|-\rangle_{x}$

Preparação de estados: girando o aparato apropriadamente $\rightarrow|+\rangle_{u},|-\rangle_{u}$

Preparação de estados genéricos
UM ESTADO QUALQUER DE F:

$$
\begin{array}{ll}
|\psi\rangle=\alpha|+\rangle+\beta \mid \rightarrow & \alpha_{1} \beta \in \mathbb{C} \\
& |\alpha|^{2}+|\beta|^{2}=1
\end{array}
$$

PODE SER ESCRITO COMO $1+\lambda$
AJUSTANDO APROPRIADARENTE θ, ϕ

$$
\begin{aligned}
& \text { PRONA: }|\alpha|=\cos \frac{\theta}{2} ;|\beta|=\sin \frac{\theta}{2} \quad \tan \frac{\theta}{2}=\frac{|\beta|}{|\alpha|} \\
& \alpha=e^{i \lambda_{1}} \cos \frac{\theta}{2} \quad i \beta=\sin \frac{\theta}{2} e^{i \lambda_{2}} \\
& \lambda_{1}=\mu-\frac{\phi}{2} ; \lambda_{2}=\mu+\frac{\phi}{2} \Leftrightarrow \mu=\frac{\lambda_{1}+\lambda_{2}}{2} ; \phi=\lambda_{2}-\lambda_{1} \\
& \left.|\psi\rangle=e^{i \mu} e^{-i \phi / 2} \cos \frac{\theta}{2}|+\rangle+e^{i \mu} e^{i i \phi / 2} \sin \frac{\theta}{2} \right\rvert\, \rightarrow \\
& \left.\left.=e^{i \mu}\left[\left.e^{-i \phi / 2} \cos \frac{\theta}{2} \right\rvert\, t\right)+e^{i \phi / 2} \sin \frac{\theta}{2} \right\rvert\,->\right]=e^{i \mu} \mid+>u
\end{aligned}
$$

Testando os postulados
Experimento 1:

Medida

$$
|\psi|\rangle=|+\rangle
$$

APO'S 0 1D S-G, 0 SISTEMA E PREPARADO wO ESTADO $1+7$ No $2 \because S-G, M E D E-S E$ Sz

$$
\begin{aligned}
& P\left(+\frac{\hbar}{2}\right)=1=\left|\left\langle+\mid \psi^{\prime}\right\rangle\right|^{2}=|\langle+\mid+\rangle|^{2}=1 \\
& P\left(-\frac{\hbar}{2}\right)=0=\left|\left\langle-\mid \psi^{\prime}\right\rangle\right|^{2}=|\langle-\mid+\rangle|^{2}=0
\end{aligned}
$$

1- S-G: PREPARA O SISTEMA NO ESTADO:

2:S-G: S_{z}

$$
\begin{aligned}
& P\left(+\frac{\hbar}{2}\right\rangle=|\langle+\mid+\rangle u|^{2}=\cos ^{2} \frac{\theta}{2} \\
& P\left(-\frac{\hbar}{2}\right)=|\langle-\mid+\rangle u|^{2}=\sin ^{2} \frac{\theta}{2}
\end{aligned}
$$

$$
\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left[z_{1}^{*} z_{2}\right]
$$

Experimento 3: 1^{2} sg PREPARA NO ESTADO:

- 2O SG MEDE S_{x} :

$$
\begin{aligned}
& P\left(+\frac{\hbar}{2}\right)=\left|x+|+2 u|^{2}=\left|\frac { 1 } { \sqrt { 2 } } \left(\left.\left\langle+1+\langle-1\rangle\left(\left.\cos \frac{\theta}{2}|+\rangle+e^{i \phi} \min \frac{\theta}{2} \right\rvert\,-\right)\right)\right|^{2}\right.\right.\right. \\
& =\frac{1}{2}\left|\cos \frac{\theta}{2}+e^{i \phi} \sin \frac{\theta}{2}\right|^{2}=\frac{1}{2}[\underbrace{\cos ^{2} \frac{\theta}{2}+\operatorname{in}^{2} \frac{\theta}{2}}_{1}+\underbrace{2 \operatorname{in} \frac{\theta}{2} \cos \frac{\theta}{2}}_{\operatorname{in} \theta} \cos \phi] \\
& P\left(+\frac{\hbar}{2}\right)=\frac{1}{2}(1+\sin \theta \cos \phi) \\
& P\left(-\frac{\hbar}{2}\right)=\frac{1}{2}(1-\sin \theta \cos \phi\rangle
\end{aligned}
$$

Valores médios
VALORES MÉdIOS DE $S_{\lambda}, S_{y_{1}} S_{z}$ EM ESTADOS GENÉRICOS.
1)NO ESTADO $\left.|t\rangle_{\theta}=\cos \frac{\theta}{2}|t\rangle+\sin \frac{\theta}{2} \right\rvert\, \rightarrow$:

$$
\left\langle s_{z}\right\rangle=\frac{\hbar}{2} \cos ^{2} \frac{\theta}{2}-\frac{\hbar}{2} \sin ^{2} \frac{\theta}{2}=\frac{\hbar}{2} \cos \theta
$$

2) ESTADO GENER1CO: $|+\rangle_{u}=\cos \frac{\theta}{2}|+\rangle+e^{i \phi} \sin \frac{\theta}{2}|-\rangle$

$$
\begin{aligned}
\left\langle S_{x}\right\rangle & =\frac{\hbar}{4}(1+\sin \theta \cos \phi)-\frac{\hbar}{4}(x-\sin \theta \cos \phi\rangle \\
& =\frac{\hbar}{4} \sin \theta(2 \cos \phi)=\frac{\hbar}{2} \sin \theta \cos \phi
\end{aligned}
$$

$$
\begin{aligned}
\text { ALTERNATIVAMENTE: } 1) & \langle | S_{z}|H\rangle_{\theta}=\left(\cos \frac{\theta}{2} \operatorname{in} \frac{\theta}{2}\right)\left(\begin{array}{cc}
\hbar / 2 & 0 \\
0 & -\hbar / 2
\end{array}\right)\binom{\cos \frac{\theta}{2}}{\operatorname{in} \frac{\theta}{2}} \\
& =\frac{\hbar}{2} \cos \theta
\end{aligned}
$$

$D A D O: \quad|+\rangle_{u}=\cos \frac{\theta}{2}|+\rangle+e^{i \phi} \sin \frac{\theta}{2}|-\rangle$

1) $\langle+| S_{x}|+\rangle_{u}=\frac{\hbar}{2}\left(\cos \frac{\theta}{2} \quad e^{-i d} \sin \frac{\theta}{2}\right)$
2)

$$
\begin{aligned}
\langle+| s_{y}|t u\rangle & =\frac{\hbar}{2}(\\
& =\frac{\hbar}{2} \sin \theta \sin \phi
\end{aligned}
$$

$$
\text { 3) } \zeta_{v}\langle+| S_{z}|+\rangle_{u}=\frac{\hbar}{2} \cos \theta
$$

$\langle\vec{S}\rangle=\frac{\hbar}{2} \widehat{u}=V E T D R C L A ' S S I C O$

$$
u\langle+| \vec{S}|+\rangle_{u}=\frac{\hbar}{2} \hat{u}
$$ NA DIRECATO \hat{u} com modpuzo $\frac{\hbar}{2}$

Dinâmica em um campo magnético
Hamiltoniano (energia de um momento magnético num campo externo):

$$
\begin{aligned}
& H=-\mathbf{M} \cdot \mathbf{B}=-\gamma \mathbf{L} \cdot \mathbf{B}=-\gamma B_{0} S_{z} \equiv \omega_{0} S_{z} \\
& \omega_{0}=-\gamma B_{0}>0
\end{aligned}
$$

Auto-vetores/valores de H :

$$
\begin{aligned}
& H|+\rangle=\omega_{0} S_{z}|+\rangle=\frac{\hbar \omega_{0}}{2}|+\rangle \equiv E_{+}|+\rangle \\
& H|-\rangle=\omega_{0} S_{z}\left|-2=-\frac{\hbar \omega_{0}}{2}\right|->=E_{-}|-\rangle
\end{aligned}
$$

FREQUENCIA DE BOHR:

$$
V=\frac{E+E-E}{h}=\frac{\hbar \omega_{0}}{h}=\frac{\omega_{0}}{2 \pi}=\gamma_{0}
$$

SUPONHA O ESTADO IMICIAL GENE'RICO:

$$
\left.|\psi(0)\rangle=\cos \frac{\theta}{2} e^{-i \phi / 2}|+\rangle+\min \frac{\theta}{2} e^{i \phi / 2}|->\equiv|+\right\rangle u
$$

QUAL E' $\mid \psi(t)>$?

$$
\begin{aligned}
\operatorname{\theta UAL} E^{\prime}|\psi(t)\rangle ? \\
\begin{aligned}
|\psi(t)\rangle & \left.=\cos \frac{\theta}{2} e^{-i \phi / 2} e^{-i \Sigma t / \hbar}|+\rangle+\operatorname{in} \frac{\theta}{2} e^{i \phi / 2} e^{-i \Sigma t / \hbar} \right\rvert\, \rightarrow \\
& \left.=\cos \frac{\theta}{2} e^{-i \phi / 2} e^{-i \frac{\omega_{0} t}{2}}|+\rangle+\sin \frac{\theta}{2} e^{i \phi / 2} e^{+i \frac{\omega_{0} t}{2}} \right\rvert\, \rightarrow \\
& \left.=\cos \frac{\theta}{2} e^{-i\left(\phi+\omega_{0} t\right) / 2}|+\rangle+\sin \frac{\theta}{2} e^{i\left(\phi+\omega_{0} t\right) / 2} \right\rvert\, \rightarrow
\end{aligned}
\end{aligned}
$$

OU SEJA, PARA $t \neq 0$, OSTADO $1 t>u$ MANTE OL A SUA FORMA cOM: $\theta(t)=\theta \quad \phi(t)=\phi+\omega_{0} t$.

$$
\begin{aligned}
& \left.\left\langle S_{x}\right\rangle(t\rangle=\frac{\hbar}{2} \sin \theta \cos \left(\phi+\omega_{0} t\right)\right] \text { OSCILAM NA ÚNICA FKIOUVINCIA } \\
& \left.\left\langle S_{y}\right\rangle(t)=\frac{\hbar}{2} \sin \theta \sin \left(\phi+\omega_{0} t\right)\right]^{[D E}\left[S O H, T A A^{\prime} \text { QUE }\left[S_{x}, H\right] \neq 0\right. \\
& {[S y, H] \neq 0} \\
& \left\langle S_{z}\right\rangle(t)=\frac{\hbar}{2} \cos \theta \rightarrow \text { CONSTANTE, JA' QUE }\left[H_{1} S_{z}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \langle\vec{S}\rangle(t)=\frac{\hbar}{2} \hat{u}(t) \\
& \hat{u}(t)=\left[\sin \theta \cos \left(\phi+\omega_{0} t\right) \hat{x}+\sin \theta \sin \left(\phi+\omega_{0} t\right) \hat{y}+\cos \theta \hat{z}\right]
\end{aligned}
$$

QUE E' A PRECESSATO DE LARMOL.
1350 JUSTIFICA A ANA'LISE CLA'SSICA DO S-G
ATRAVE'S DA QUAR, DESPREZAMOS AS COMPONENFES DE $\vec{L}(0 U \vec{S}) \perp A \vec{B}$ APÓS PROMEDIACCATO temporal.

Sistemas de dois níveis
FISICAMENTE, E' COMUM OUE A ESTRUTURA IE WIUEIS DE UM SISTEMA SEJA DO TIPO:

$$
\Delta_{1}, \Delta_{2}, \cdots \gg \Delta_{0}
$$

DDIS WIVEIS MU ITO PRÓXIMOS, MUITO SEPARADOS DOS OUTROS NIVEIS
É CONVENIENTE SEPARAR O HAMILTONLANO DO PROBLEMA EM DUAS PARTES: $H=H_{0}+W \quad\|W\|<\angle\left\|H_{0}\right\|$

$$
\begin{array}{ll}
H_{0}\left|\varphi_{1}\right\rangle=E_{2}\left|\varphi_{1}\right\rangle & \text { ESPACO GERADO PELA BASE } \\
H_{0}\left|\varphi_{2}\right\rangle=E_{2}\left|\varphi_{2}\right\rangle & \left\{\left|\varphi_{1}\right\rangle\left|\varphi_{2}\right\rangle\right\}\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j}
\end{array}
$$

$$
\begin{array}{cc}
H\left|\psi_{+}\right\rangle=E_{+}\left|\psi_{+}\right\rangle & \left\langle\psi_{s} \mid \psi_{s^{\prime}}\right\rangle=\delta s_{1} s^{\prime} \\
H\left|\psi_{-}\right\rangle=E_{-}\left|\psi_{-}\right\rangle & s= \pm
\end{array}
$$

NA BASE $\left\{\left|\varphi_{1}\right\rangle,\left|\varphi_{2}\right\rangle\right\}: \quad H_{0}=\left(\begin{array}{cc}E_{1} & 0 \\ 0 & E_{2}\end{array}\right)$
na mesma base:

$$
w=\left(\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right) \quad \begin{aligned}
& w_{11} w_{22} \in \mathbb{R} \\
& w_{12}=w_{21}^{*} \in \mathbb{C}
\end{aligned}
$$

éclaro ove: $\left|\psi_{s}\right\rangle \rightarrow\left|\varphi_{i}\right\rangle$ oviando $W \rightarrow$ NESSA BASE:

$$
\begin{gathered}
H=S S A \quad B A D E \cdot W=\left(\begin{array}{cc}
E_{1}+W_{11} & W_{12} \\
W_{21} & E_{2}+W_{22}
\end{array}\right) \equiv\left(\begin{array}{ll}
\tilde{E}_{1} & W_{12} \\
W_{21} & \widetilde{E}_{2}
\end{array}\right) \\
\tilde{E}_{1}=E_{1}+W_{11} ; \tilde{E}_{2}=E_{2}+W_{22}
\end{gathered}
$$

Rearranjando o Hamiltoniano

$$
\begin{aligned}
H & =\left(\begin{array}{cc}
\widetilde{E}_{1} & W_{12} \\
W_{21} & \widetilde{E}_{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2} & 0 \\
0 & \frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2}
\end{array}\right)+\left(\begin{array}{cc}
\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2} & W_{12} \\
W_{21} & -\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
E_{m} & 0 \\
0 & E_{m}
\end{array}\right)+\left(\begin{array}{cc}
\Delta & W_{12} \\
W_{21} & -\Delta
\end{array}\right)=E_{m} \mathbb{1}+\left(\begin{array}{cc}
\Delta & W_{12} \\
W_{21} & -\Delta
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { onde: } E_{m} & =\frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2} & W_{12}=a+i b \\
\Delta & =\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2} & W_{21}=a-i b \\
\left(\begin{array}{cc}
\Delta & W_{12} \\
W_{12} & -\Delta
\end{array}\right) & =\left(\begin{array}{cc}
\Delta & a+i b \\
a-i b & -\Delta
\end{array}\right) & =\Delta\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+a\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-b\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& =\Delta \sigma_{3}+a \sigma_{x}-b \sigma_{y}
\end{array}
$$

