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Figure 8-5 The Stern-Gerlach apparatus. The field between the two magnet pole pieces  

is indicated by the field lines drawn at the near end of the magnet. The field intensity  

increases most rapidly in the positive z direction (upward). 

8-3 THE STERN-GERLACH EXPERIMENT AND ELECTRON SPIN  

In 1922 Stern and Gerlach measured the possible values of the magnetic dipole  

moment for silver atoms by sending a beam of these atoms through a nonuniform  

magnetic field. A drawing of their apparatus is shown in Figure 8-5. A beam of neutral  

atoms is formed by evaporating silver from an oven. The beam is collimated by a  

diaphragm, and it enters a magnet. The cross-sectional view of the magnet shows that  

it produces a field that increases in intensity in the z direction defined in the figure,  
which is also the direction of the magnetic field itself in the region of the beam. As the  

atoms are neutral overall, the only net force acting on them is the force F  of (8-15),  
which is proportional to µz  .. Since the force acting on each atom of the beam is pro-
portional to its value of pl. , each atom is deflected in passing through the magnetic  

field by an amount which is proportional to pl=. Thus the beam is analyzed into  
components according to the various values of pi.. The deflected atoms strike a  

metallic plate, upon which they condense and leave a visible trace.  

If the orbital magnetic moment vector of the atom has a magnitude µi,  then in 
classical physics the z component µis  of this quantity can have any value from —  µi 
to +µi . The reason is that classically the atom can have any orientation relative to the  

z axis, and so this will also be true of its orbital angular momentum and its magnetic  
dipole moment. The predictions of quantum mechanics, as summarized by (8-11), are  

that µii  can have only the discretely quantized values  
µi s  = — giµbmi  (8-16a) 

where m 1  is one of the integers 
mi =- 1, - 1+1,...,0,...,+1 - 1,+ 1  (8-16b)  

Thus the classical prediction is that the deflected beam would be spread into a con-
tinuous band, corresponding to a continuous distribution of values of pi=  from one 
atom to the next. The quantum mechanical prediction is that the deflected beam 
would be split into several discrete components. Furthermore, quantum mechanics 
predicts that this should happen for all orientations of the analyzing magnet. That is, 
the magnet is essentially acting as a measuring device which investigates the quanti-
zation of the component of the magnetic dipole moment along a z axis, which it  
defines as the direction in which its field increases in intensity most rapidly. Since,  

according to quantum mechanics, A. should be quantized for any choice of the z 
 direction because LZ  is quantized for any choice of that direction, the same results 

should be obtained for all positions of the analyzing magnet. 

A. SPIN 1/2 PARTICLE: QUANTIZATION OF THE ANGULAR MOMENTUM
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Figure 1: Schematic diagram of the Stern-Gerlach experiment. Figure a shows the trajec-
tory of a silver atom emitted from the high-temperature furnace . This atom is deflected
by the gradient of the magnetic field created by the electromagnet and then condenses
at on plate .
Figure b shows a cross section in the plane of the electromagnet ; the lines of
force of the magnetic field are shown in dashed lines. has been assumed to be positive
and , negative. Consequently, the trajectory of figure a corresponds to a negative
component M of the magnetic moment, that is, to a positive component of S ( is
negative for a silver atom).

Of course, since the magnetic field has a conserved flux (divB = 0), it must also have a
component along which varies with the distance from the plane of symmetry.

A-1-b. Classical calculation of the deflection2

Note, first, that the silver atoms, being neutral, are not subjected to the Lorentz
force. On the other hand, they possess a permanent magnetic moment MMM (they are
paramagnetic atoms); the resulting forces are derived from the potential energy:

= MMM B (A-1)

The existence, for an atom, of an electronic magnetic moment MMM and an angular
momentum SSS is due to two causes: the motion of the electrons about the nucleus (the
corresponding rotation of the charges being responsible for the appearance of an orbital
magnetic moment) and the intrinsic angular momentum, or spin, (cf. Chapter IX) of the
electrons, with which is associated a spin magnetic moment. It can be shown (as we shall

2We only give here an outline of the calculation.
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Aparato experimental de Stern-Gerlach: um feixe de átomos neutros percorre 
uma região com campo magnético não uniforme.
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Descrição clássica: os átomos de prata têm carga zero, mas um momento 
magnético não nulo M.

O momento magnético é proporcional ao momento angular L:
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Os átomos estão sujeitos a torques devido ao campo magnético: 
precessão de Larmor. Na média, só sobrevive a componente Lz.

14

⇢ (r, t) = | (r, t)|2

J (r, t) =
~

2mi
[ ⇤ (r, t)r (r, t)�  (r, t)r 

⇤ (r, t)]

d hA (t)i
dt

=

⌧
@A (t)

@t

�
+

1

i~ h[A (t) , H (t)]i

H =
P2

2m
+ V (R) )

(
dhRi
dt = hPi

m
dhPi
dt = �hrV (R)i

(
dhRi
dt = hPi

m
dhPi
dt = �hrV (R)i

) m
d
2rc
dt2

= � rV (r)|r=rc(t)
= F [rc (t)]

i~d | (t)i
dt

= H | (t)i

H |'n⌧ i = En |'n⌧ i , (⌧ = 1, 2, . . . , gn)

| (t0)i =
X

n,⌧

cn⌧ (t0) |'n⌧ i ) | (t)i =
X

n,⌧

cn⌧ (t0) e
�iEn(t�t0)/~ |'n⌧ i , (t 6= t0)

@A

@t
= 0

[A,H] = 0

d hAi
dt

= 0,

dP (ap)

dt
= 0.

hBi (t) =
X

n,n0,⌧,⌧ 0

Bn⌧n0⌧ 0e
�i⌫nn0 (t�t0)

⌫nn0 =
En � En0

~
Bn⌧n0⌧ 0 = Bn⌧n0⌧ 0 [| (t0)i]

�t�E & ~

�t ⌘ �B (t)���dhBi
dt

���

�t�E � ~
2

M = �L

N = M⇥B ) dL

dt
= �L⇥B ) L = Lz ẑ

CHAPTER IV SIMPLE CASES: SPIN 1/2 AND TWO-LEVEL SYSTEMS
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Figure 2: The silver atom possesses a mag-
netic moment MMM and an angular momentum
S which are proportional. Consequently, the
e�ect of a uniform maguetic field B is to
cause M to turn about B with a constant
angular velocity (Larmor precession).

assume here without proof) that, for a given atomic level, MMM and SSS are proportional3:

MMM = SSS (A-2)

The proportionality constant is called the gyromagnetic ratio of the level under con-
sideration.

Before the atoms traverse the electromagnet, the magnetic moments of the silver
atoms that form the atomic beam are oriented randomly (isotropically). Let us study
the action of the magnetic field on one of these atoms, whose magnetic moment MMM has
a given direction at the entrance of the air-gap. From expression (A-1) for the potential
energy, it is easy to deduce that the resultant of the forces exerted on the atom is:

F = r(MMM B) (A-3)

(this resultant would be equal to zero if the field B were uniform), and that their total
moment relative to the position of the atom is:

� = MMM B (A-4)

The angular momentum theorem can be written:

dSSS
d = � (A-5)

3In the case of silver atoms in the ground state (like those of the beam), the angular momentum S
is simply equal to the spin of the outer electron, which is therefore solely responsible for the existence
of the magnetic moment M . This is because the outer electron has a zero orbital angular momentum,
and the resultant orbital and spin angular momenta of the inner electrons are also zero. Moreover the
experimental conditions realized in practice are such that e�ects linked to the spin of the nucleus are
negligible. This is why the silver atom in the ground state, like the electron, has a spin 1/2.
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Os átomos sofrem uma força devido à não homogeneidade do campo, 
proporcional a Lz:
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A deflexão devido à força é proporcional a Lz: o aparato mede Lz
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Classicamente, esperam-se deflexões em um intervalo contínuo:
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Ao contrário, observam-se apenas dois valores discretos de Lz
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CHAPTER IV SIMPLE CASES: SPIN 1/2 AND TWO-LEVEL SYSTEMS
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Figure 3: Spots observed on the plate in the
Stern-Gerlach experiment. The magnetic moments
MMM of the atoms emitted from the furnace are dis-
tributed randomly in all directions of space, so classi-
cal mechanics predicts that a measurement of M can
yield with equal probability all values included between
+ MMM and MMM . One should therefore observe only
one large spot centered in (dashed lines in the fig-
ure). In reality, the result of the experiment is com-
pletely di�erent: two spots, centered at 1 and 2,
are observed. This means that a measurement of M
can yield only two possible results (quantization of the
measurement result).

packets whose width � and momentum dispersion � are negligible. � and �
must satisfy the Heisenberg relation:

� � & ~ (A-8)

Numerically, the mass of a silver atom is equal to 1 8 10 25 kg. � and the velocity
uncertainty � = � must be such that:

� � & ~ 10 9 M K S A (A-9)

Now what are the lengths and velocities involved in the problem? The width of the slit
is about 0.1 mm and the separation 1 2 of the two spots, that is several millimeters.

The distance over which the magnetic field varies appreciably can be deduced from
the values of the field in the middle of the air-gap ( 104 gauss) and its gradient
( 105 gauss/cm), which yields 1 mm. In addition, the velocity of the
silver atoms leaving a furnace at an absolute temperature of 1000 K is of the order of
500 m/s. However well-defined the beam is, the dispersion of the velocities along
is not much less than several meters per second. It is then easy to find uncertainties
� and � , which, while satisfying (A-9), are negligible on the scale of the experiment
being considered. As far as the external variables r and p of each atom are concerned,
it is therefore not necessary to resort to quantum mechanics. It is possible to reason in
terms of quasi-pointlike wave packets moving along classical trajectories. Consequently,
it is correct to claim that measurement of the deflection constitutes a measurement
of M or S .

The results of the experiment thus lead us necessarily to the following conclusion:
if we measure the component S of the intrinsic angular momentum of a silver atom in
its ground state, we can find only one or the other of two values corresponding to the
deflections 1 and 2. We are therefore obliged to reject the classical image of a
vector SSS whose angle with the magnetic field can take on any value: S is a quantized
physical quantity whose discrete spectrum includes only two eigenvalues. When we study
the quantum theory of angular momentum (Chap. VI), we shall see that these eigenvalues
are +~ 2 and ~ 2; we shall assume this here and say that the spin of the silver atom
in its ground state is 1/2.

398

T
H

E
 STE

RN
-G

ER
LAC

H
 EXPE

R
IM

EN
T  A

N
D

 ELEC
T

R
O

N
 SPIN

 

Figure 8-6 The deflection pattern recorded on 
the detecting plate in a Stern-Gerlach measure-
ment of the z component of the magnetic dipole 
moment of silver atoms. Maximum deflection oc-
curs at the center of the beam because the atoms 
there pass through the region of maximum field 
gradient, ôB Z/8z. The observed pattern consists of 
two discrete components due to space quantiza-
tion. According to the classical prediction a con-
tinuous band would be expected. 

Stern and Gerlach found that the beam of silver atoms is split into two discrete 
components, one component being bent in the positive z direction and the other bent 
in the negative z direction. Figure 8-6 shows the type of pattern observed on the 
detecting plate. They also found that these results were obtained independent of the 
choice of the z direction. The experiment was repeated using several other species of 
atoms, and in each case investigated it was found that the deflected beam is split into 
two, or more, discrete components. The results are, qualitatively, very direct experi-
mental proof of the quantization of the z component of the magnetic dipole moments 
of atoms and, therefore, of their angular momenta. In other words, the experiments 
showed that the orientation in space of atoms is quantized. The phenomenon is called 
space quantization. 

But the results of the Stern-Gerlach experiment are not quantitatively in agreement 
with (8-16a) and (8-16b), the equations summarizing the predictions of the theory we 
have developed. According to these equations, the number of possible values of j 
is equal to the number of possible values of m l, which is 21 + 1. Since l is an integer, 
this is always an odd number. Also for any value of l one of the possible values of m 1  
is zero. Thus the fact that the beam of silver atoms is split into only two components, 
both of which are deflected, indicates either that something is wrong with the 
Schroedinger theory of the atom, or that the theory is incomplete. 

The theory is not wrong (we shall see later that atoms do have orbital angular 
momenta and magnetic dipole moments with the predicted properties); but, as it 
stands, the Schroedinger theory of the atom is incomplete. This is shown most clearly 
by an experiment performed in 1927 by Phipps and Taylor, who used the Stern-
Gerlach technique on a beam of hydrogen atoms. The experiment is particularly 
significant because the atoms contain a single electron, so the theory we have de-
veloped makes unambiguous predictions. Since the atoms in the beam are in their 
ground state because of the relatively low temperature of the oven, the theory predicts 
that the quantum number / has the value l = 0. Then there is only one possible value 
of m1 , namely mi  = 0, and we expect that the beam will be unaffected by the magnetic 
field since pi. will be equal to zero. However, Phipps and Taylor found that the beam 
is split into two symmetrically deflected components. Thus there is certainly some 
magnetic dipole moment in the atom which we have not hitherto considered. 

One possibility is a magnetic dipole moment associated with motion of charges in 
the nucleus. The magnitude of such a magnetic dipole moment would be of the order 
of ehl2M, where M is the mass of a proton. But the magnetic dipole moment mea-
sured experimentally from the size of the splitting is of the order of Lb = ehl2m, where 
m is the mass of an electron, which is about 2000 times larger. Therefore, the nucleus 
cannot be responsible for the observed magnetic dipole moment. Its source must be 
the electron. 

This leads us to some reasonable assumptions, which are also supported by other 
evidence to be discussed shortly. We assume that an electron has an intrinsic (built-in) 
magnetic dipole moment µs , due to the fact that it has an intrinsic angular momentum 
S called its spin. From a classical point of view, we can think, at least crudely, of the 
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Descrição quântica do momento angular de spin ½: espaço E de dimensão 2.
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Fechamento:

Observável associado a Lz→ Sz
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Outras componentes (representação matricial na base acima):

15

F = r (M ·B) =

✓
�
@Bz

@z

◆
Lz

Lz 2 [� |L| , |L|]

Lz = �~
2

ou
~
2

Base de E ) {|+i , |�i}

|+i h+|+ |�i h�| = 1

h+|+i = h�|�i = 1, h+|�i = 0

Sz |+i = ~
2
|+i

Sz |�i = �~
2
|+i

Sz =
~
2

 
1 0

0 �1

!
, Sx =

~
2

 
0 1

1 0

!
, Sy =

~
2

 
0 �i

i 0

!

�z =

 
1 0

0 �1

!
, �x =

 
0 1

1 0

!
, �y =

 
0 �i

i 0

!
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S · û ⌘ Su = Sx sin ✓ cos�+ Sy sin ✓ sin�+ Sz cos ✓

Su =
~
2

 
cos ✓ e

�i�
sin ✓

e
i�
sin ✓ � cos ✓

!

Auto� valores de Sx, Sy,Sz, Su ! ±
~
2

|±i
x
=

1
p
2
[|+i± |�i]

|±i
y
=

1
p
2
[|+i± i |�i]

|+i
u
= cos

✓

2
|+i+ e

i�
sin

✓

2
|�i

|�i
u
= � sin

✓

2
|+i+ e

i�
cos

✓

2
|�i

|+i
u
= e

�i�/2
cos

✓

2
|+i+ e

i�/2
sin

✓

2
|�i

|�i
u
= �e

�i�/2
sin

✓

2
|+i+ e

i�/2
cos

✓

2
|�i

|+i , |�i

|+i
x
, |�i

x

|+i
u
, |�i

u

H = �M ·B = ��L ·B = ��B0Sz ⌘ !0Sz

| i = ↵ |+i+ � |�i = |+i
u
= e

�i�/2
cos

✓

2
|+i+ e

i�/2
sin

✓

2
|�i

no



Aula passada
Componente genérica do spin numa direção arbitrária u:

Representação matricial de Su:
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Na                                              , os auto-vetores das componentes de S são:
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Para Sx e Sy:

Para Su (convenção de fase diferente da do livro):
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Figure 5: When we pierce a hole in the plate at the position of the spot 1, the atoms
that pass through this hole are all in the spin state + . The Stern-Gerlach apparatus is
then acting like a polarizer.

B-1-a. Preparation of the states + and

Let us assume that we pierce a hole in the plate of the apparatus represented
in Figure 1-a, at the position of the spot centered at 1 (Fig. 3). The atoms which
are deflected downward continue to condense about 2, while some of those which are
deflected upward pass through the plate (Fig. 5). Each of the atoms of the beam
which propagates to the right of the plate is a physical system on which we have just
performed a measurement of the observable , the result being +~ 2. According to the
fifth postulate of Chapter III, this atom is in the eigenstate corresponding to this result,
that is, in the state + (since alone constitutes a C.S.C.O., the measurement result
su�ces to determine the state of the system after this measurement). The device in
Figure 5 thus produces a beam of atoms which are all in the spin state + . This device
acts like an “atomic polarizer”, since it acts the same way on atoms as an ordinary
polarizer does on photons.

Of course, if we pierced the plate around 2 and not around 1, we would obtain
a beam all of whose atoms would be in the spin state .

B-1-b. Preparation of the states , ,

The observable also constitutes a C.S.C.O. since none of its eigenvalues is
degenerate. To prepare one of its eigenstates, we must simply select, after a measurement
of , the atoms for which this measurement has yielded the corresponding eigenvalue.
In practice, if we rotate the apparatus of Figure 5 through an angle of + 2 about ,
we obtain a beam of atoms whose spin state is + (Fig. 6).

This method can be generalized: by placing the Stern-Gerlach apparatus so that
the axis of the magnetic field is parallel to an arbitrary unit vector u, and piercing the
plate either at 1 or at 2, we can prepare silver atoms in the spin state + or 4.

B-1-c. Preparation of the most general state

We indicated above that the most general (normalized) ket of the spin state space
is of the form:

= + + (B-1)
4The direction of the atomic beam is no longer necessarily , but this is not important in what

concerns us here.
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Figure 6: When the apparatus of Figure 5 is rotated through 90 about , we obtain a
polarizer which prepares atoms in the spin state + .

with:
2 + 2 = 1 (B-2)

Is it possible to prepare atoms whose spin state is described by the corresponding ket
?

We are going to show that there exists, for all , a unit vector u such that
is collinear with the ket + u. We therefore choose two complex numbers and which
satisfy relation (B-2) but which are arbitrary in every other respect. Taking (B-2) into
account, we find that there necessarily exists an angle such that:

cos 2 =

sin 2 =
(B-3)

If, in addition, we impose:

0 (B-4)

the equation tan 2 = determines uniquely. We already know that only the di�erence
of the phases of and enters into the physical predictions. Let us therefore set:

= Arg Arg (B-5)
= Arg + Arg (B-6)

We thus have:

Arg = 1
2 + 1

2
Arg = 1

2
1
2

(B-7)

With this notation, the ket can be written:

= e 2 cos 2 e 2 + + sin 2 e 2 (B-8)
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Testando os postulados

CHAPTER IV SIMPLE CASES: SPIN 1/2 AND TWO-LEVEL SYSTEMS

If we compare this expression with formula (A-22a), we see that di�ers from the ket
+ (which corresponds to the unit vector u characterized by and ) only by the phase
factor e 2, which has no physical significance.

Consequently, to prepare silver atoms in the state , it su�ces to place the Stern-
Gerlach apparatus (with its plate pierced at 1) so that its axis is directed along the
vector u whose polar angles are determined from and by (B-3) and (B-5).

B-2. Spin measurements

We saw in § A that a Stern-Gerlach apparatus enables us to measure the component
of the angular momentum SSS of silver atoms along a given axis. We have just pointed
out, in § B-1, that an apparatus of the same type can be used to prepare an atomic beam
in a given spin state. Consequently, if we place two Stern-Gerlach magnets one after the
other, we can verify experimentally the predictions of the postulates. The first apparatus
acts like a “polarizer”: the beam coming out of it is composed of a large number of silver
atoms all in the same spin state. This beam then enters the second apparatus, which
is used to measure a specified component of the angular momentum SSS : this is, as it
were, the “analyzer” (note the analogy with the optical experiment described in § A-3 of
Chapter I). We shall assume in this section that the spin state of the atoms of the beam
does not evolve between the time they leave the “polarizer” and the time they enter the
“analyzer”, that is, between the preparation and the measurement. It would be easy to
forgo this hypothesis, by using the Schrödinger equation to determine the spin evolution
between the moment of preparation and the moment of measurement.

B-2-a. First experiment

Let us choose the axes of the two apparatuses parallel to (Fig. 7). The first one
prepares the atoms in the state + and the second one measures S . What is observed
on the plate of the second apparatus?

E1

F1

B1
B2

A1
P1

A2

P2

Figure 7: The first apparatus (a “source” composed of the furnace 1 and the slit 1,
plus a “polarizer” formed by the magnet 1 and the pierced plate 1) prepares the atoms
in the state + . The second one (an “analyzer” composed of the magnet 2 and the
plate 2) measures the component S . The result obtained is certain (+} 2).

Since the state of the system under study is an eigenstate of the observable which
we want to measure, the postulates indicate that the measurement result is certain: we
find, without fail, the corresponding eigenvalue (+~ 2). Consequently, all the atoms of
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B. ILLUSTRATION OF THE POSTULATES IN THE CASE OF A SPIN 1/2

the beam must condense into a single spot on the plate of the second apparatus, at the
position corresponding to +~ 2.

This is indeed what is observed experimentally: all the atoms strike the second
plate in the vicinity of 1, none hitting near 2.

B-2-b. Second experiment

Now let us place the axis of the first apparatus along the unit vector u, with polar
angles , = (u is therefore contained in the plane). The axis of the second
apparatus remains parallel to (Fig. 8). According to (A-22a), the spin state of the
atoms when they leave the “polarizer” is (we ignore an irrelevant factor multiplying
whole ket):

= cos 2 + + sin 2 (B-9)

The “analyzer” measures S on these atoms. What are the results?

O

E1

F1

A1

θθ

A2P1

P2

B1
B2

x

y

z

Figure 8: The first apparatus prepares the spins in the state + (u is the unit vector
of the plane that makes an angle with ). The second one measures the S
component. The possible results are +~ 2 (probability cos2 2) and ~ 2 (probability
sin2 2).

This time, we find that certain atoms condense at 1, and others at 2, although
they have all been prepared in the same way: there is an indeterminacy in the behavior
of each of the atoms taken individually. The postulate of spectral decomposition merely
enables us to predict the probability of each atom’s appearance at 1 or 2. Since
(B-9) gives the expansion of the spin state of an atom in terms of the eigenstates of
the observable being measured, we can calculate directly that these probabilities are,
respectively, cos2 2 and sin2 2. Thus, when enough atoms have condensed on the
plate, we observe that the intensity of the spots at 1 and 2 corresponds to numbers
of atoms which are proportional, respectively, to cos2 2 and sin2 2.

Comment:

For any value of the angle (except exactly 0 or ), it is therefore always possible
to find the two results +~ 2 and ~ 2 in a measurement of . This prediction
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û = cos ✓ẑ+ sin ✓x̂
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Dinâmica em um campo magnéticoCHAPTER IV SIMPLE CASES: SPIN 1/2 AND TWO-LEVEL SYSTEMS

E

ħω0

E+

E–

| + ⟩

| – ⟩

Figure 10: Energy levels of a spin 1/2, of
gyromagnetic ratio , placed in a magnetic
field 0 parallel to ; 0 is defined by 0 =

0.

Comment:

( ) If the field B0 is parallel to the unit vector u whose polar angles are and
, relation (B-17) must be replaced by:

= 0 (B-20)

where = S u is the component of S along u.
( ) For the silver atom, is negative; 0 is therefore positive, according to (B-16).

This explains the arrangement of the levels in Figure 10.

B-3-b. Larmor precession

Let us assume that, at time = 0, the spin is in the state:

(0) = cos 2 e 2 + + sin 2 e 2 (B-21)

(we showed in § B-1-c that any state could be put in this form). To calculate the state
( ) at an arbitrary instant t 0, we apply the rule (D-54) given in Chapter III. In

expression (B-21), (0) is already expanded in terms of the eigenstates of the Hamil-
tonian, and we therefore obtain:

( ) = cos 2 e 2 e + ~ + + sin 2 e 2 e ~ (B-22)

or, using the values of + and :

( ) = cos 2 e ( + 0 ) 2 + + sin 2 e ( + 0 ) 2 (B-23)

The presence of the magnetic field B0 therefore introduces a phase shift, proportional to
the time, between the coe�cients of the kets + and .
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Rearranjando o Hamiltoniano
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