# F 689 - Mecânica Quântica I 

## 2o Semestre de 2022 31/10/2022 Aula 19

## Aula passada

Descrição quântica do momento angular de spin $1 \not 12$ : espaço $\mathcal{E}$ de dimensão 2 .
Base de $\mathcal{E} \Rightarrow\{|+\rangle,|-\rangle\} \quad\langle+\mid+\rangle=\langle-\mid-\rangle=1,\langle+\mid-\rangle=0$
Fechamento: $|+\rangle\langle+|+|-\rangle\langle-|=\mathbb{1}$

Observável associado a $L_{z} \rightarrow S_{z}$

$$
\begin{aligned}
& S_{z}|+\rangle=\frac{\hbar}{2}|+\rangle \\
& S_{z}|-\rangle=-\frac{\hbar}{2}|-\rangle
\end{aligned}
$$

Outras componentes (representação matricial na base acima):

$$
S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Matrizes de Pauli:

$$
\mathbf{S}=\frac{\hbar}{2} \boldsymbol{\sigma} \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

## Aula passada

Componente genérica do spin numa direção arbitrária u:

$$
\mathbf{S} \cdot \hat{\mathbf{u}} \equiv S_{u}=S_{x} \sin \theta \cos \phi+S_{y} \sin \theta \sin \phi+S_{z} \cos \theta
$$

Representação matricial de $S_{u}$ :

$$
S_{u}=\frac{\hbar}{2}\left(\begin{array}{cc}
\cos \theta & e^{-i \phi} \sin \theta \\
e^{i \phi} \sin \theta & -\cos \theta
\end{array}\right)
$$

Qualquer projeção de $\mathbf{S}$ tem os mesmos auto-valores:

$$
\text { Auto - valores de } S_{x}, S_{y}, S_{z}, S_{u} \rightarrow \pm \frac{\hbar}{2}
$$

## Aula passada

Na Base de $\mathcal{E} \Rightarrow\{|+\rangle,|-\rangle\}$, os auto-vetores das componentes de $\mathbf{S}$ são:
Para $S_{x}$ e $S_{y}: \quad| \pm\rangle_{x}=\frac{1}{\sqrt{2}}[|+\rangle \pm|-\rangle]$

Para $S_{u}$ (convenção de fase diferente da do livro):

Para $S_{u}$ (convenção do livro):

## Aula passada

O estado mais geral possível pode ser preparado por um Stern-Gerlach:

$$
|\psi\rangle=\alpha|+\rangle+\beta|-\rangle=|+\rangle_{u}=e^{-i \phi / 2} \cos \frac{\theta}{2}|+\rangle+e^{i \phi / 2} \sin \frac{\theta}{2}|-\rangle
$$

desde que se escolha utal que: $\tan \frac{\theta}{2}=\frac{|\beta|}{|\alpha|}$

$$
\phi=\arg (\beta)-\arg (\alpha)
$$

Valores esperados nesse estado genérico são:

$$
\begin{aligned}
& \left\langle S_{x}\right\rangle={ }_{u}\langle+| S_{x}|+\rangle_{u}=\frac{\hbar}{2} \sin \theta \cos \phi \\
& \left\langle S_{y}\right\rangle={ }_{u}\langle+| S_{y}|+\rangle_{u}=\frac{\hbar}{2} \sin \theta \sin \phi \\
& \left\langle S_{z}\right\rangle={ }_{u}\langle+| S_{z}|+\rangle_{u}=\frac{\hbar}{2} \cos \theta
\end{aligned}
$$

que correspondem a um vetor clássico: $\langle\mathbf{S}\rangle=\frac{\hbar}{2} \hat{\mathbf{u}}$

## Aula passada

Evolução temporal sob um campo magnético externo:

$$
H=-\mathbf{M} \cdot \mathbf{B}=-\gamma \mathbf{L} \cdot \mathbf{B}=-\gamma B_{0} S_{z} \equiv \omega_{0} S_{z}
$$

$$
\begin{aligned}
& H|+\rangle=\frac{\hbar \omega_{0}}{2}|+\rangle \\
& H|-\rangle=-\frac{\hbar \omega_{0}}{2}|-\rangle
\end{aligned}
$$

Evolução temporal de um estado genérico:

$$
\begin{aligned}
|\psi(0)\rangle & =e^{-i \phi / 2} \cos \frac{\theta}{2}|+\rangle+e^{i \phi / 2} \sin \frac{\theta}{2}|-\rangle \\
\Rightarrow|\psi(t)\rangle & =e^{-i\left(\phi+\omega_{0} t\right) / 2} \cos \frac{\theta}{2}|+\rangle+e^{i\left(\phi+\omega_{0} t\right) / 2} \sin \frac{\theta}{2}|-\rangle
\end{aligned}
$$

Evolução temporal dos valores esperados: precessão de Larmor

$$
\begin{aligned}
& \left\langle S_{x}\right\rangle(t)=\langle\psi(t)| S_{x}|\psi(t)\rangle=\frac{\hbar}{2} \sin \theta \cos \left(\phi+\omega_{0} t\right) \\
& \left\langle S_{y}\right\rangle(t)=\langle\psi(t)| S_{y}|\psi(t)\rangle=\frac{\hbar}{2} \sin \theta \sin \left(\phi+\omega_{0} t\right) \\
& \left\langle S_{z}\right\rangle(t)=\langle\psi(t)| S_{z}|\psi(t)\rangle=\frac{\hbar}{2} \cos \theta
\end{aligned}
$$



## Aula passada

Sistema de dois níveis:

$$
\begin{aligned}
& H_{0}\left|\varphi_{1}\right\rangle=E_{1}\left|\varphi_{1}\right\rangle \\
& H_{0}\left|\varphi_{2}\right\rangle=E_{2}\left|\varphi_{2}\right\rangle
\end{aligned}
$$

$H=H_{0}+W$

$$
\begin{aligned}
\tilde{E}_{1} & =\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right)+\left(\begin{array}{ll}
W_{11} & W_{12} \\
W_{21} & W_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
E_{1}+W_{11} & W_{12} \\
W_{21} & E_{2}+W_{22}
\end{array}\right), \widetilde{E}_{2}
\end{aligned}
$$


$H=\left(\begin{array}{cc}\widetilde{E}_{1} & W_{12} \\ W_{21} & \widetilde{E}_{2}\end{array}\right)=\left(\begin{array}{cc}\frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2} & 0 \\ 0 & \frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2}\end{array}\right)+\left(\begin{array}{cc}\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2} & W_{12} \\ W_{21} & -\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2}\end{array}\right)$

$$
=\left(\begin{array}{cc}
E_{m} & 0 \\
0 & E_{m}
\end{array}\right)+\left(\begin{array}{cc}
\Delta & W_{12} \\
W_{21} & -\Delta
\end{array}\right)=E_{m} \mathbb{1}+\left(\begin{array}{cc}
\Delta & W_{12} \\
W_{21} & -\Delta
\end{array}\right)
$$

onde: $\quad E_{m}=\frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2}$

$$
W_{21}^{*}=W_{12}
$$

$$
\Delta=\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2}
$$

## Auto-valores e auto-vetores

$$
H=\left(\begin{array}{cc}
\widetilde{E}_{1} & W_{12} \\
W_{21} & \widetilde{E}_{2}
\end{array}\right)=E_{m} \mathbb{1}+\left(\begin{array}{cc}
\Delta & W_{12} \\
W_{21} & -\Delta
\end{array}\right)
$$

Auto-valores: $\quad E_{ \pm}=E_{m} \pm \sqrt{\Delta^{2}+\left|W_{12}\right|^{2}}$

$$
\begin{aligned}
E_{m} & =\frac{\widetilde{E}_{1}+\widetilde{E}_{2}}{2} \\
\Delta & =\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2}
\end{aligned}
$$

Auto-vetores: $\left|\psi_{+}\right\rangle=\cos \frac{\theta}{2}\left|\varphi_{1}\right\rangle+e^{i \phi} \sin \frac{\theta}{2}\left|\varphi_{2}\right\rangle \quad\left\langle\psi_{+} \mid \varphi_{1}\right\rangle=\cos \frac{\theta}{2}$

$$
\begin{aligned}
\left|\psi_{-}\right\rangle & =-\sin \frac{\theta}{2}\left|\varphi_{1}\right\rangle+e^{i \phi} \cos \frac{\theta}{2}\left|\varphi_{2}\right\rangle \quad\left\langle\psi_{-} \mid \varphi_{1}\right\rangle=-\operatorname{\mu in} \frac{\theta}{2} \\
\tan \theta & =\frac{\left|W_{12}\right|}{\Delta}, \theta \in[0, \pi) \\
e^{i \phi} & =\frac{W_{21}}{\left|W_{21}\right|} \Rightarrow \phi=\arg \left(W_{21}\right)=-\arg \left(W_{12}\right) \in[0,2 \pi)
\end{aligned}
$$

## Analogia com spin $1 / 2$ num campo magnético numa direção genérica

$H=-\mathbf{M} \cdot \mathbf{B}=-\gamma \mathbf{S} \cdot \mathbf{B}=-\gamma\left(B_{x} S_{x}+B_{y} S_{y}+B_{z} S_{z}\right)$
$H=-\frac{\gamma \hbar}{2}\left(\begin{array}{cc}B_{z} & B_{x}-i B_{y} \\ B_{x}+i B_{y} & -B_{z}\end{array}\right)$

$$
\Delta=-\frac{\gamma \hbar}{2} B_{z}
$$

Compare com: $\left(\begin{array}{cc}\Delta & W_{12} \\ W_{21} & -\Delta\end{array}\right)$

$$
W_{12}=-\frac{\gamma \hbar}{2}\left(B_{x}-i B_{y}\right)
$$

$$
E_{ \pm}=E_{m} \pm \sqrt{\Delta^{2}+\left|w_{21}\right|^{2}}
$$

SE Em E' O PONTO DE REFERENCIA DE ENERGIA

$$
\begin{aligned}
& \left(E_{\mu}=0\right) \\
\Rightarrow & E_{ \pm}= \pm \sqrt{\Delta^{2}+\left|w_{21}\right|^{2}} \\
& S E \quad w_{21}=0 \Rightarrow E_{2}= \pm \Delta= \pm\left(\frac{\tilde{E}_{1}-\widetilde{E}_{2}}{2}\right)
\end{aligned}
$$

Se eu recupero o Em:

$$
\begin{aligned}
E_{ \pm} \rightarrow E_{\mu} \pm & \left(\frac{\widetilde{E}_{1}-\tilde{E}_{2}}{2}\right)=\frac{\tilde{E}_{1}+\widetilde{E}_{2}}{2} \pm\left(\frac{\widetilde{E}_{1}-\widetilde{E}_{2}}{2}\right) \\
& \longrightarrow\left\{\begin{array}{l}
\vec{E}_{1} \longrightarrow\left|\varphi_{1}\right\rangle \\
\tilde{E}_{2} \longrightarrow\left|\varphi_{2}\right\rangle
\end{array}\right.
\end{aligned}
$$

Repulsão de níveis
CASO GERAL:
$E \pm=E_{m} \pm \sqrt{\Delta^{2}+\left|w_{21}\right|^{2}} \Rightarrow \pm \sqrt{\Delta^{2}+\left|w_{21}\right|^{2}}$
2 HIPERBOLES COMO FUNCGÃO DE $\triangle$
LIGAR O W21 LEVA
-a "repulsás do nívels"


Acoplamento forte

$$
\left|w_{12}\right| \gg \Delta
$$

$$
E_{ \pm}=E_{m} \pm \sqrt{\Delta^{2}+\left|W_{12}\right|^{2}}
$$

Energies

$$
E_{ \pm} \cong E_{\mu} \pm\left|w_{12}\right|
$$

$$
\theta \simeq \frac{\pi}{2}
$$



SUPERPOSIÇAO LINEAR DE $1 P_{1}>E \quad \mid P_{2}>$ cOM CUEFICIENTES DE MESMO MÓDULO.

Acoplamento fraco

$$
\begin{aligned}
& \left|W_{21}\right| \ll \Delta \quad E_{ \pm}=E_{m} \pm \sqrt{\Delta^{2}+\left|W_{12}\right|^{2}} \\
& E_{ \pm}=E_{m} \pm|\Delta| \pm \frac{\left|W_{12}\right|^{2}}{|\Delta|} \\
& \left|\psi_{+}\right\rangle=\left|\varphi_{1}\right\rangle+\frac{W_{21}}{2 \Delta}\left|\varphi_{2}\right\rangle
\end{aligned}
$$

Exemplos físicos importantes
A molécula ionizada de $\mathrm{H}_{2}{ }^{+}$:


$$
\begin{aligned}
& H=\left(\begin{array}{ll}
\tilde{E}_{1} & W_{12} \\
W_{21} & \tilde{E}_{2}
\end{array}\right) \\
& \left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}\left[-\left|P_{1}\right\rangle+e^{i \phi}\left|e_{2}\right\rangle\right]
\end{aligned}
$$

$$
\text { POR SIMETRIA: } \tilde{\mathbf{E}}_{1}=\tilde{\mathbb{E}}_{2} \Rightarrow \Delta=0
$$

$$
E_{ \pm}=E_{n} \pm\left|w_{21}\right|=\tilde{E}_{1} \pm\left|w_{21}\right|
$$

Função de onda da molécula de $\mathrm{H}_{2}+$ com menor energia: ligação química


A molécula de benzeno


$$
\begin{aligned}
& H=\left(\begin{array}{cc}
\tilde{E} & w_{12} \\
w_{12} & \tilde{E}
\end{array}\right) \quad \quad \tilde{E}_{1}=\tilde{E}_{2}=\widetilde{E} \quad(\text { POR } \operatorname{siMETRA}) \\
& \left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}\left[-\left|\varphi_{1}\right\rangle+e^{i \phi}\left|\varphi_{2}\right\rangle\right]
\end{aligned}
$$

A molécula de amônia $\mathrm{NH}_{3}$


$$
\begin{aligned}
& H=\left(\begin{array}{cc}
\tilde{E} & w_{12} \\
w_{12} & \tilde{E}
\end{array}\right) \quad \tilde{E}_{1}=\tilde{E}_{2}=\widetilde{E} \quad(P O A \quad \operatorname{SMETRA}) \\
& \left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}\left[-\left|\varphi_{1}\right\rangle+e^{i \phi}\left|\varphi_{2}\right\rangle\right]
\end{aligned}
$$

Dinâmica
0 QUE ACONTECE SE O SISTEMA E PREPAR4DO NUM AUTO-ESTADS DE $H_{0}:\left|\varphi_{1}\right\rangle=|\psi(0)\rangle$ SE O ESTADS INICIAL E' GENE'RICO:

$$
\begin{aligned}
& \left|\psi^{\prime}(0)\right\rangle=C_{t}(0\rangle\left|\psi_{+}\right\rangle+C_{-}(0)\left|\psi_{-}\right\rangle \\
& C_{ \pm}(0)=\left\langle\psi_{ \pm} \mid \psi(0)\right\rangle=\left\langle\psi_{ \pm} \mid \varphi_{1}\right\rangle \\
& |\psi(t)\rangle=C_{+}(0) e^{-i E_{+} t / \hbar}\left|\psi_{+}\right\rangle+C_{-}(0) e^{-i E_{-} t / \hbar}\left|\psi_{-}\right\rangle \\
& \left\langle\psi_{+} \mid \varphi_{1}\right\rangle=\cos \frac{\theta}{2}=C_{+}(0) \\
& \left\langle\psi_{-} \mid \varphi_{1}\right\rangle=-\operatorname{in} \frac{\theta}{2}=C_{-}(0) \\
& |\psi(t)\rangle=\cos \frac{\theta}{2} e^{-i E_{+} t / \hbar}\left|\psi_{+}\right\rangle-\sin \frac{\theta}{2} e^{-i E_{-} t / \hbar}\left|\psi_{-}\right\rangle
\end{aligned}
$$

PROBABILIDADE DE ENCONTRAR O SISTEMA EM $\left|\varphi_{2}\right\rangle$

$$
\begin{aligned}
& P\left(\left|\varphi_{2}\right\rangle\right)=\left|\left\langle\varphi_{2} \mid \psi(t)\right\rangle\right|^{2} \\
&=\left|\cos \frac{\theta}{2} e^{-i E_{1} t / \hbar}\left\langle\varphi_{2} \mid \varphi_{+}\right\rangle-\sin \frac{\theta}{2} e^{-i E_{-} t / \hbar}\left\langle\varphi_{2} \mid \psi_{-}\right\rangle\right|^{2} \\
&=\left|s c e^{-i E_{1} t / \hbar} e^{i \phi}-s c e^{-i E_{-} t / \hbar} e^{i \phi}\right|^{2} \quad\left\langle\varphi_{2} \mid \psi_{+}\right\rangle=e^{i \phi} \sin \frac{\theta}{2} \\
&= \sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}\left|e^{-i E_{1} t / \hbar}-e^{-i E_{t} t / \hbar}\right|^{2} \quad\left\langle\varphi_{2} \mid \psi_{-}\right\rangle=e^{i \phi} \cos \frac{\theta}{2} \\
&= \frac{1}{4} \sin ^{2} \theta x\left[1+1-2 \operatorname{Re}\left[e^{i E_{+} t / t-i E_{-} t / t} e^{2}\right]\right. \\
& \cos \left(\frac{E_{+}-E_{-} t}{\hbar} t\right) \sin \frac{\theta}{2} \\
& \sin ^{2} \theta\left[1-\cos \left(\frac{E_{+}-E_{-} t}{\hbar} t\right)\right]=\sin ^{2} \theta \sin ^{2}\left[\frac{\left(E_{+}-E_{-}\right) t}{2 \hbar}\right]
\end{aligned}
$$

"Fórmula de rabi"

Oscilações de Rabi


$$
P_{12}(t)=\sin ^{2} \theta \sin ^{2}\left[\frac{\left(E_{+}-E_{-}\right) t}{2 \hbar}\right]
$$

0 CASO MAIS COMUM (UER EXEMPLOS ANTERIDRES)

$$
\begin{aligned}
& \Delta=0 \Rightarrow \theta=\frac{\pi}{2} \Rightarrow E_{+}-E_{-}=2\left|W_{21}\right| \\
& P_{12}(t)=\sin ^{2}\left[\frac{\left|W_{21}\right| t}{\hbar}\right] \quad T=\frac{2 \pi \hbar}{\left|W_{12}\right|}=\frac{h}{\left|W_{12}\right|}
\end{aligned}
$$

