F 789 - Mecânica Quântica II

$$
\begin{gathered}
\text { 1o Semestre de } 2023 \\
24 / 04 / 2023 \\
\text { Aula } 14
\end{gathered}
$$

Aula passada

Adição de momentos angulares j_{1} e j_{2}

O problema consiste em, no sub-espaço de dimensão $\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$ com j_{1} e j_{2} fixos:
a) Achar os valores possíveis de j (onde $\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}$) e quantas vezes cada um aparece (para cada j, m varia em $-j,-j+1, \ldots, j-1, j$).
b) Achar a transformação de uma base para outra.

$$
\left|j_{1}, j_{2}, m_{1}, m_{2}\right\rangle \rightarrow\left|j_{1}, j_{2}, j, m\right\rangle
$$

Resposta para o item (a)

1. Os valores possíveis de j são:

$$
j=\left|j_{1}-j_{2}\right|,\left|j_{1}-j_{2}\right|+1, \ldots, j_{1}+j_{2}-1, j_{1}+j_{2}
$$

2. Cada valor de j só aparece uma vez:

$$
\left\{J_{1}^{2}, J_{2}^{2}, J^{2}, J_{z}\right\} \rightarrow \text { C.C.O.C. }
$$

Aula passada

Resposta para o item (b): os coeficientes da transformação de base podem ser obtidos sistematicamente e são chamados de coeficientes de Clebsch-Gordan:

$$
\left|j_{1}, j_{2}, j, m\right\rangle=\sum_{m_{1}=-j_{1}}^{m_{1}=j_{1}} \sum_{m_{2}=-j_{2}}^{m_{2}=j_{2}}\left\langle j_{1}, j_{2}, m_{1}, m_{2} \mid j, m\right\rangle\left|j_{1}, j_{2}, m_{1}, m_{2}\right\rangle
$$

Problem 2 da lista 4 (cont.)

3. Consider a system composed of two spin $1 / 2$ particles whose orbital variables are ignored. The Hamiltonian of the system is:

$$
H=\omega_{1} S_{1 z}+\omega_{2} S_{2 z}
$$

where $S_{1 z}$ and $S_{2 z}$ are the projections of the spins \mathbf{S}_{1} and \mathbf{S}_{2} of the two particles onto $O z$, and ω_{1} and ω_{2} are real constants.
a. The initial state of the system, at time $t=0$, is:

$$
|\psi(0)\rangle=\frac{1}{\sqrt{2}}[|+-\rangle+|-+\rangle]
$$

(with the notation of $\S B$ of Chapter X). At time $t, \mathbf{S}^{2}=\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right)^{2}$ is measured. What results can be found, and with what probabilities?
b. If the initial state of the system is arbitrary, what Bohr frequencies can appear in the evolution of $\left\langle\mathbf{S}^{2}\right\rangle$? Same question for $S_{x}=S_{1 x}+S_{2 x}$.

Auto-vetores/valores de H :

$$
\leadsto E \varepsilon_{1}, \varepsilon_{2}
$$

Frequências de Bohr que aparecem na evolução temporal de $\langle O>(t)$:

$$
\omega_{m, n}=\frac{E_{m}-E_{n}}{\hbar} \text { aparece se }\left\langle\varphi_{m}\right| O\left|\varphi_{n}\right\rangle \neq 0
$$

Soma de dois spins $1 / 2$: $s=0$ ou 1

$$
\begin{aligned}
& |s=1, m=1\rangle=|++\rangle \\
& \begin{array}{l}
|s=1, m=0\rangle=\frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle) \\
|s=1, m=-1\rangle=|--\rangle \\
|s=0, m=0\rangle=\frac{1}{\sqrt{2}}(|+-\rangle-|-+\rangle)
\end{array} \quad\left\{\begin{array}{l}
|+-\rangle=\frac{1}{\sqrt{2}}(|s=1, m=0\rangle+|s=0, m=0\rangle) \\
|-+\rangle=\frac{1}{\sqrt{2}}(|s=1, m=0\rangle-|s=0, m=0\rangle)
\end{array}\right. \\
& \vec{S}^{2}|t+\rangle=\vec{S}^{2}|S=1, \mu=1\rangle=2 \hbar^{2}|S=1, \mu=1\rangle=2 \hbar^{2} \mid t+> \\
& \Rightarrow\left\langle\varepsilon_{1}, \varepsilon_{2}\right| \vec{S}^{2}|+t\rangle=O \text { EXCETO SE } \varepsilon_{1}=\varepsilon_{2}=t \\
& \rightarrow F R \text {. PE BOHR } \rightarrow 0 \text {, NATO INTERESSA } \\
& \left.\vec{S}^{2} \mid-\cdots\right)=2 \hbar^{2} \mid \sim-> \\
& \square\left\langle\varepsilon_{1}, \varepsilon_{2}\right| \vec{S}^{2}|-\rangle=0 \text { EXCETO SE } \varepsilon_{1}=\varepsilon_{2}=- \\
& \rightarrow \text { NAO FORNECE F, DEB. NAFO NUCA }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{s}^{2}(+-\rangle=\vec{s}^{2}\left[\frac{1}{\sqrt{2}}(|s=1, m=0\rangle+|s=0, m=0\rangle)\right] \\
& =\frac{1}{\sqrt{2}}\left(2 t^{2}\right)|s=1, m=0\rangle \\
& \left.=\frac{1}{2}\left(2 \hbar^{2}\right)[\mid+-)+|-+\rangle\right] \\
& \left.\angle+-\left|\vec{S}^{2}\right|+-\right)=\hbar^{2} \Rightarrow \text { F.DE.B. E NULA } \\
& \langle\rightarrow+| \vec{s}^{2} \left\lvert\,+\cdots=\hbar^{2} \Rightarrow \omega=\frac{1}{\hbar^{k}}\left[\frac{\hbar}{2}\left(-\omega_{1}+\omega_{2}\right)-\frac{\hbar^{2}}{2}\left(\omega_{1}-\omega_{2}\right)\right]\right. \\
& \omega=\omega_{2}-\omega_{1} \\
& \langle++| \vec{s}^{2}|t-\rangle=0 \\
& \langle-| \vec{s}^{2}|t-\rangle=0 \\
& \left.\vec{s}^{2}|-t\rangle=\vec{s}^{2}\left[\frac{1}{\sqrt{2}}(|s=1, \mu=0\rangle-\mid s=0, \mu=0)\right)\right] \\
& \left.=\hbar^{2}[1+->+1-+\rangle\right] \Rightarrow \omega=\omega_{1}-\omega_{2}
\end{aligned}
$$

$$
\left\langle S_{x}\right\rangle(t)=? \quad S_{x}=\frac{1}{2}\left(s_{+}+s_{-}\right) \quad S_{y}=\frac{1}{2 i}\left(s_{+}-s_{-}\right)
$$

LEMBRETE: $\quad i j, m n>\vec{J}^{2}|j, m\rangle=j(j+1) \hbar^{2}\left|j_{1} m\right\rangle$ $J_{f}\left|j_{1}, m\right\rangle=m \hbar\left|j_{1} m\right\rangle$

$$
\begin{aligned}
& \left.J_{+}|j, m>=\hbar \sqrt{j(j+1)-m(m+1)}| j, m+1\right\rangle \\
& J-\left|j_{1} m\right\rangle=\hbar \sqrt{j(j+1)-m(m-1)} j_{j, m-1\rangle} \\
& J_{ \pm}=J_{x} \pm i J_{y} \Rightarrow J_{x}=\frac{1}{2}\left(J_{+}+J_{-}\right) ; J_{y}=\frac{1}{2 i}\left(J_{+}-J_{-}\right) \\
& S_{x}|++\rangle=S_{x}|s=1, m=1\rangle=\frac{1}{2}\left(s_{+}+s_{-}\right)|s=1, m=1\rangle \\
& =\frac{1}{2} S_{-}|s=1, m=1\rangle=\frac{\hbar}{2} \sqrt{2}|s=1, m=0\rangle \\
& =\frac{\hbar}{2}[1+-7+|-+\rangle]
\end{aligned}
$$

$$
\begin{aligned}
&\left.\left.s_{x}\left|+t>=\frac{\hbar}{2}[1+-\rangle+\right|-t\right\rangle\right] \\
& \Rightarrow \omega_{(t+1),(t \rightarrow)}=\frac{E_{t+}-E_{t-}}{\hbar}=\frac{1}{2}\left[\psi_{1}+w_{2}-\left(p_{1}-\omega_{2}\right)\right] \\
&=\omega_{2} \\
& \omega_{(t+t),(-t)}=\frac{E_{t+}-E-t}{\hbar}=\frac{1}{2}\left[\omega_{1}+\omega_{2}-\left(-\omega_{1}+\omega_{2}\right)\right] \\
&=\omega_{1}
\end{aligned}
$$

E ETC.

$$
s_{x}\left|->, \quad s_{x}\right|+\cdots, \quad s_{x} \mid-t>
$$

Teoria de perturbação independente do tempo

O problema
DADO: $H=H_{3}+W$ QUEREMOS RESOLVER A E.S.IT.

$$
H|\psi\rangle=E|\psi\rangle(2\rangle
$$

MAS:
(i) NĀO EXISTE SOLVCĀO EXATA PARA (1)
(ii) EXISTE SOLUCATO EXATA PARA:

$$
H_{0}\left|\varphi_{N}^{i}\right\rangle=E_{n}^{(0)}\left|\varphi_{N}^{i}\right\rangle \quad \begin{aligned}
& E_{v}^{(0)}: \text { AUTO-ENERGIAS DE } H_{0} \\
& \left|\varphi_{v}^{i}\right\rangle: \text { AUTO-ESTADOS DS } H_{0}
\end{aligned}
$$

(i「i) W DE AlGUMA FORMA E' "PEQUBNO" EM RELACAO A Ho
POR EXEMPLO, TODOS OS AUTB-VALORES DE W SÃn MUITO MENORES QUE OS DE H_{0}
para explicitar (iaid), escreve-se

$$
\begin{gathered}
W=\lambda \hat{W} \\
H(\lambda)=H_{0}+\lambda \hat{W} \quad E \quad \lambda \ll 1
\end{gathered}
$$

ASSUMMOS: $H_{0}\left|\varphi_{p}^{i}\right\rangle=E_{p}^{0}\left|\varphi_{p}^{i}\right\rangle \quad p=1,2, \ldots$

$$
\begin{aligned}
& \quad i=1,2, \ldots, g_{p} \\
& \left\langle\varphi_{p 1}^{i} \mid \varphi_{p}^{i}\right\rangle=\delta_{p, p^{p}} \delta_{i, i} \\
& \sum_{p} \sum_{i}\left|\varphi_{p}^{i}\right\rangle\left\langle\varphi_{p}^{i}\right|=\mathbb{1}
\end{aligned}
$$

SE:

$$
H(\lambda)\left|\psi_{p}^{i}(\lambda)\right\rangle=F_{p}(\lambda)\left|\psi_{p}^{i}(\lambda)\right\rangle
$$

$S E \lambda \rightarrow 0: \quad E_{p}(\lambda \rightarrow 0) \rightarrow E_{p}^{0}$

$E_{1}^{0}: 0$ ESTADO inICIAL $(\lambda=0) E^{r}$ náo degenerado e CONTINUA NATODEGENERADO OUANDO λ CRESCF
E3: o ESTADO É INICIALMENTE $(\lambda=0)$ DUPLAMENTE DEGENERADO, MAS O AUMENTO DE λ "quebrá" oU "LEVAnta" ¿DEGENIRESCENCIA inicial
E_{4} : A ApLICAC̨AO pa perturbact̃o ñ̃o altara a DEGENERESCÊNCLA INICIAL
$E_{2}^{2}: E_{1}$, DE MANEIRA GERAL, NATO DEGENERADO, MAS "CRUZA" E λ, COM UM DOS ESTADOS QUE COOEGAMEM E_{3}

O método

$$
H(\lambda)|\psi(\lambda)\rangle=E(\lambda)|\psi(\lambda)\rangle \quad H(\lambda)=H_{b}+\lambda \hat{w}
$$

A ESTRATEGIA CONSISTE EM ASSUMIR QUE os auto-estados e auto-jalores podem ser ESCRITOS COMO UMA SERIE DE TAYLDR EM λ :

$$
\begin{aligned}
& E(\lambda)=\varepsilon_{0}+\lambda \varepsilon_{1}+\lambda^{2} \varepsilon_{2}+\cdots \\
& |\psi(\lambda)\rangle=|0\rangle+\lambda|1\rangle+\lambda^{2}|2\rangle+\cdots \\
& \left(H_{0}+\lambda \hat{w}\right)\left[\sum_{q=0}^{\infty} \lambda^{q}|q\rangle\right]=\left[\sum_{n=0}^{\infty} \lambda^{n} \varepsilon_{n}\right]\left[\sum_{q=0}^{\infty} \delta^{q}|q\rangle\right] \\
& \sum_{q=0}^{\infty} \lambda^{q} H_{0}|q\rangle+\sum_{q=0} \lambda^{(q+1)} \hat{w}|q\rangle=\sum_{n, q=0}^{\infty} \lambda^{(q+n)} \varepsilon_{n}|q\rangle
\end{aligned}
$$

I GUALANDo as poténcias de λ terno a terts

$$
\begin{aligned}
& \lambda^{0}: H_{0}|0\rangle=\varepsilon_{0}|0\rangle(1) \\
& \lambda^{1}: H_{0}|1\rangle+\hat{w}|0\rangle=\varepsilon_{0}|1\rangle+\varepsilon_{1}|0\rangle \\
& \Rightarrow\left(H_{0}-\varepsilon_{0}\right)|1\rangle+\left(\hat{w}-\varepsilon_{1}\right)|0\rangle=0 \quad(2\rangle \\
& \lambda^{2}: H_{0}|2\rangle+\hat{w}|1\rangle=\varepsilon_{0}|2\rangle+\varepsilon_{1}|1\rangle+\varepsilon_{2}|0\rangle \\
& \Rightarrow\left(H_{0}-\varepsilon_{0}\right)|2\rangle+\left(\hat{w}-\varepsilon_{1}\right)|1\rangle-\varepsilon_{2}|0\rangle=0
\end{aligned}
$$

E ASSIM POR DIANTE.

