F 789 - Mecânica Quântica II

$$
\begin{gathered}
1 \text { 1o Semestre de } 2023 \\
22 / 05 / 2023 \\
\text { Aula } 20
\end{gathered}
$$

Aulas passadas

Hamiltoniano do átomo de hidrogênio analisado no cap. 6:

$$
H_{0}=\frac{\mathbf{P}^{2}}{2 m}+V(R) \quad V(R)=-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{R}=-\frac{e^{2}}{R}
$$

Velocidades típicas: $\frac{v}{c} \sim \alpha \equiv \frac{e^{2}}{\hbar c}=\frac{1}{137} \approx 10^{-2}$

Correções relativísticas da ordem de $\alpha^{2} H_{0} \sim 10^{-4} H_{0}$: Hamiltoniano de estrutura fina.

$$
\begin{array}{rll}
W_{f} & =W_{m v}+W_{S O}+W_{D} & \\
W_{m v} & =-\frac{\mathbf{P}^{4}}{8 m^{3} c^{2}} & \text { (correção à energia cinética) } \\
W_{S O} & =\frac{1}{2 m^{2} c^{2}} \frac{1}{R} \frac{d V(R)}{d R} \mathbf{L} \cdot \mathbf{S}=\frac{e^{2}}{2 m^{2} c^{2}} \frac{1}{R^{3}} \mathbf{L} \cdot \mathbf{S} & \text { (interação spin-órbita) } \\
W_{D} & =\frac{\hbar^{2}}{8 m^{2} c^{2}} \nabla^{2} V(R)=\frac{\pi e^{2} \hbar^{2}}{2 m^{2} c^{2}} \delta^{(3)}(\mathbf{R}) & \text { (interação de contato de Darwin) }
\end{array}
$$

Aula passada

A estrutura fina do nível $n=2$: $1=0,1, \mathrm{~s}=1 / 2 \Rightarrow \mathrm{j}=1 / 2$ ou $3 / 2$

Aula passada

A estrutura fina do nível $n=2$

Essa degenerescência persiste em todas as ordens: energias só dependem de n e j (eq. de Dirac)

Aulas passadas

Efeitos do spin do próton I:

$$
\begin{aligned}
\mathbf{M}_{I} & =g_{p} \frac{\mu_{n}}{\hbar} \mathbf{I} \\
g_{p} & \approx 5.585 \\
\mu_{n} & =\frac{q \hbar}{2 M_{p}} \quad \mu_{\mathbf{B}}=\frac{q \hbar}{2 M} \\
M_{p} & \approx 1800 m
\end{aligned}
$$

Hamiltoniano hiperfino:
$W_{h f}^{(1)}=\frac{\mu_{0}}{4} \frac{q}{R^{3}} \mathbf{L} \cdot \mathbf{M}_{I} \quad$ (campo magnético criado pelo movimento orbital do elétron atuando no momento magnético do próton)
$W_{h f}^{(2)}=-\frac{\mu_{0}}{4 \pi} \frac{1}{R^{3}}\left[3(\mathbf{M} \cdot \hat{\mathbf{n}})\left(\mathbf{M}_{I} \cdot \hat{\mathbf{n}}\right)-\mathbf{M} \cdot \mathbf{M}_{I}\right]$ (interação dipolo magnéticodipolo magnético)
$W_{h f}^{(3)}=-\frac{2 \mu_{0}}{3} \mathbf{M} \cdot \mathbf{M}_{I} \delta^{(3)}(\mathbf{R}) \quad \begin{aligned} & \text { (interação dipolo magnético do elétron com o } \\ & \text { campo magnético dentro do próton) }\end{aligned}$

$$
W_{h f} \sim \frac{m}{M_{p}} W_{f} \approx 10^{-3} W_{f}
$$

A estrutura hiperfina do nível $1 s$
ESTADOS: $\quad\left|\mu=1, Q=0, m=0, m_{S}= \pm \frac{1}{2}, m_{I}= \pm 1 / 2\right\rangle$
DEGENERESCENCIA: $g_{I S}=4$
SIMBLIFICANDO A NOTACAO: $\left|m_{S}, \mu_{I}\right\rangle \rightarrow 4 \times 4$
PRECISO ACHAR <M' $\left.{ }_{s}, m_{ \pm}^{\prime}\left|W_{n E}\right| M_{s}, M_{I}\right\rangle$

A estrutura fina do $1 s$

$$
\begin{aligned}
W_{m v} & =-\frac{\mathbf{P}^{4}}{8 m^{3} c^{2}} \\
W_{S O} & =\frac{1}{2 m^{2} c^{2}} \frac{1}{R} \frac{d V(R)}{d R} \mathbf{L} \cdot \mathbf{S}=\frac{e^{2}}{2 m^{2} c^{2}} \frac{1}{R^{3}} \mathbf{L} \cdot \mathbf{S} \\
W_{D} & =\frac{\hbar^{2}}{8 m^{2} c^{2}} \nabla^{2} V(R)=\frac{\pi e^{2} \hbar^{2}}{2 m^{2} c^{2}} \delta^{(3)}(\mathbf{R})
\end{aligned}
$$

$W_{\text {ma }}$ SÓ ATUA NA PARTE ORBITAL DO ELETRON

$$
\Rightarrow \alpha 1_{4 \times 4}
$$

W_{D} TAMBÉM SO ATUA NA PARTE ORBITAL

$$
\begin{aligned}
& \alpha 1_{4 \times 4} \\
& W_{S 0}: L_{x} S_{x}+L_{y} S_{y}+L_{z} S_{z} \quad E \\
& \left\langle W_{f}\right\rangle=-\frac{m c^{2} \alpha^{4}}{8} d \|_{2 \times 4} \\
& \text { So um DESLO. } \\
& \langle\mu=1, Q=0, \mu=0| L_{i}|\mu=1, Q=0, \mu=0\rangle=0 \\
& \text { camento global } \\
& \text { DE ENERGIA }
\end{aligned}
$$

Atuação do Hamiltoniano hiperfino no $1 s$

$$
\begin{aligned}
& W_{h f}^{(1)}=\frac{\mu_{0}}{4 \pi} \frac{q}{m R^{3}} \mathbf{L} \cdot \mathbf{M}_{I} \propto \frac{1}{R^{3}} \overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{I}} \\
& W_{h f}^{(2)}=-\frac{\mu_{0}}{4 \pi} \frac{1}{R^{3}}\left[3(\mathbf{M} \cdot \hat{\mathbf{n}})\left(\mathbf{M}_{I} \cdot \hat{\mathbf{n}}\right)-\mathbf{M} \cdot \mathbf{M}_{I}\right] \\
& \text {. }\langle\mu=1, l=0, \mu=0| \frac{1}{R^{3}} \vec{L} \cdot \vec{I}|\mu=1, l=0, \mu=0\rangle=0 \\
& \text { - } \hat{n}=\text { unitárkio qus vai do próton ao ele'tron } \\
& \text { < } \frac{\vec{\imath}}{n}=\hat{\imath}=\cos \theta \sin \phi \hat{x}+\cos \theta \cos \phi \hat{y}+\sin \theta \hat{z}
\end{aligned}
$$

a integral angular Se anula
$\frac{y_{0}^{*}(\Omega)}{\frac{1}{\sqrt{4 \pi}}} \frac{y_{0}(\Omega)}{\frac{1}{\sqrt{4 \pi}}}$

$$
W_{h f}^{(3)}=-\frac{2 \mu_{0}}{3} \mathbf{M} \cdot \mathbf{M}_{I} \delta^{(3)}(\mathbf{R})=\left(-\frac{2 \mu_{0}}{3}\right)\left(-\frac{q}{m}\right)\left(\frac{q p q^{\prime}}{2 \mu_{p}}\right) \vec{S} \cdot \vec{I} \delta^{(3)}(\vec{R})
$$

a parte drbital é:

$$
\begin{aligned}
& \langle\mu=1, l=0, \mu=0| \delta^{(3)}(\vec{R})|\mu=1, e=0, m=0\rangle \\
& =\int d^{3} \sim\left|R_{1_{0}}(n)\right|^{2} \frac{\left|Y_{0},(\Omega)\right|^{2} \delta^{(3)}(\vec{R})=\frac{\left|R_{10}(0)\right|^{2}}{4 \pi}}{\frac{1}{4 \pi}}=\frac{1}{4 \pi} \frac{4}{a_{0}^{3}} \\
& =\frac{1}{\pi} \frac{\mu^{3} e^{6}}{\hbar^{6}} \quad \mu=\frac{\mu \mu_{p}}{\mu+M_{p}}=\frac{\mu \mu}{1+\frac{\mu s}{\mu_{p}}}
\end{aligned}
$$

JUNTANPO TUDO:

$$
\begin{aligned}
& \left\langle W_{h f}^{(3)}\right\rangle=A\left\langle\mu_{\delta}^{\prime}, \mu_{I}^{\prime}\right| \vec{S} \cdot \vec{I}\left|\mu_{s}, \mu_{I}\right\rangle \\
& A=\frac{4}{3} g_{p}\left(\frac{m^{\prime}}{\mu_{p}}\right) \mu c^{2} \alpha^{4}\left(\frac{1}{1+\mu_{/} \mu_{p}}\right)^{3} \frac{1}{\hbar^{2}}
\end{aligned}
$$

AGORA, PRECISAMOS DE:

$$
\begin{aligned}
& \left\langle\mu_{S}^{\prime}, m_{I}^{\prime} \mid \vec{S} \cdot \vec{I} \backslash m_{S}, m_{I}\right\rangle \\
\vec{F}= & \vec{S}+\vec{I} \Rightarrow \vec{F}^{2}=(\vec{S}+\vec{I})^{2}=\vec{S}^{2}+\vec{I}^{2}+2 \vec{S} \cdot \vec{I} \\
\Rightarrow & \vec{S} \cdot \vec{I}=\frac{1}{2}\left[\vec{F}^{2}-\vec{S}^{2}-\vec{I}^{2}\right]
\end{aligned}
$$

Melaor trabalitar na basi somada:

$$
\left.\left|S=1 / 2, I=1 / 2, \mu_{3}= \pm \frac{1}{2}, \mu_{I}= \pm \frac{1}{2}>\rightarrow\right| S=Y_{2}, I=Y_{2} ; F, \mu_{F}\right\rangle
$$

ONDE F PODE ASSUMIR:

$$
\begin{aligned}
& F=0 ; \mu_{F}=0 \\
& F=1 ; \mu_{F}=-1,0,+1
\end{aligned}
$$

NA BASE SOMADA:

$$
\begin{aligned}
& \left\langle F^{\prime}, \mu_{F}^{\prime}\right| \vec{S}-\vec{I}\left|F_{1} \mu_{F}\right\rangle=\frac{\hbar^{2}}{2}[F(F+1)-\delta(S+1)-I(I+1)] x \\
& x<\underbrace{\delta^{\prime}, \mu_{F}^{\prime}\left|F_{1} \mu_{F}\right\rangle}_{\delta_{F_{1}} \delta_{\mu_{F}} \mu_{F}} \\
& \delta_{F_{1} F^{\prime}} \delta_{M_{F} M_{F}^{\prime}}=11_{4 \times 4} \\
& \text { NA base } \\
& \text { SE } F=0^{\circ}
\end{aligned}
$$ Somada

$$
\frac{\hbar^{2}}{2}\left[0-\frac{3}{4}-\frac{3}{4}\right]=-\frac{3}{4} \hbar^{2} \Rightarrow\left\langle W_{h f} F_{F=0}=-\frac{3}{4} A \hbar^{2}\right.
$$

SE $F=1^{\prime}$.

$$
\frac{\hbar^{2}}{2}\left[2-\frac{3}{4}-\frac{3}{4}\right]=\frac{\hbar^{2}}{4} \Longrightarrow\left\langle w_{n f}\right\rangle_{F=1}=\frac{1}{4} A \hbar^{2}
$$

$W_{h f}$ no nível $1 s$

A estrutura hiperfina no nível $n=1$

A estrutura hiperfina no nível $n=2$

Artigo da semana passada
 PHYSICAL REVIEW LETTERS 130, 203001 (2023)

Ramsey Spectroscopy of the $\mathbf{2 S}_{\mathbf{1 / 2}}$ Hyperfine Interval in Atomic Hydrogen

R. G. Bullis©, C. Rasor, W. L. Tavis, S. A. Johnson, M. R. Weiss©, and D. C. Yost©
Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA

(⿴) (Received 9 February 2023; accepted 4 April 2023; published 18 May 2023)
The $2 S_{1 / 2}$ hyperfine interval in atomic hydrogen was measured using Ramsey spectroscopy with a thermal beam cooled to cryogenic temperatures. The measured value is 177556838.87 (85) Hz. which represents the most precise determination of this interval to date. The $1 S_{1 / 2}$ hyperfine intervalf $f\left(1 S_{1 / 2}\right)$ and the $2 \mathrm{~S}_{1 / 2}$ hyperfine interval $f\left(2 \mathrm{~S}_{1 / 2}\right)$ can be combined to give the quantity $D_{21}=8 f\left(2 \mathrm{~S}_{1 / 2}\right)-f\left(1 \mathrm{~S}_{1 / 2}\right)$. which mostly eliminates uncertainty due to nuclear structure effects and is well deseribed by bound-state quantum electrodynamics. Using the value of $f\left(2 S_{1 / 2}\right)$ from this work gives a value of $D_{21}^{\text {expt }}=48959.2(6.8) \mathrm{Hz}$, which is in agreement with the theoretical value of $D_{21}^{\text {Theory }}=48954.1(2.3) \mathrm{Hz}$.

[^0]A linha de 21 cm do hidrogênio

$$
\frac{\mathcal{A} \hbar}{2 \pi}=1420405751,767 \pm 0,001 \mathrm{~Hz}
$$

- Comprimento de onda: $\lambda=21 \mathrm{~cm}$
- Detecção em masers de hidrogênio: A PRECISÃO dA MEDIDA PESSA FREQUVNCIA E' CONSEGUMA NESSES MASERS.
- Detecção em astronomia: HIDROTEENIO E O ELEMRNTO MAIS ABUNDANTE, A RADIAÇATO DE A NO VISI'VEL E' ABSORNIDA POR POFIRA CÓSMICA. A LINHA DE 21 cm Í POUCO ABSORVIDA.
- Meia-vida longa do estado $F=1: \sim 11$ MIL_HOES DE ANOS.

As placas da Pioneer

Pioneer 10 e 11 foram lançadas em 1972 e 1973, respectivamente. Elas carregam placas que, espera-se, possam ser lidas por uma forma inteligente de vida extraterrestre. Um dos elementos é a transição hiperfina do átomo de H. O comprimento de onda de 21 cm é usado como unidade de comprimento e o período como unidade tempo. A mulher mede 8 unidades.

Comprimento e números nas linhas = distâncias e períodos de 14 pulsares em relação ao Sol.

Trajetória da Pioneer 1

[^0]: D_{21} :essa combinação elimina a maior parte da incerteza sobre a estrutura do núcleo e assim permite um teste preciso da Eletrodinâmica Quântica. A teoria acima dá $D_{21}=0$.

