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Aulas passadas
Hamiltoniano do átomo de hidrogênio analisado no cap. 6:
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Velocidades típicas:

34

| (�)i = |0i+ � |1i+ �
2
|2i+ . . .

E (�) = "0 + �"1 + �
2
"2 + . . .

H0 |0i = "0 |0i

(H0 � "0) |1i +

⇣
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Correções relativísticas da ordem de a2 H0~10-4H0: Hamiltoniano de estrutura fina.
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(correção à energia cinética)

(interação spin-órbita)

(interação de contato de Darwin)



Aula passada
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A estrutura fina do nível n=2: l=0,1, s=1/2 ⇒ j=1/2 ou 3/2



Aula passada
C. THE FINE STRUCTURE OF THE = 2 LEVEL
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Figure 2: Fine structure of the = 2 level of the hydrogen atom. Under the e�ect of
the fine structure Hamiltonian , the = 2 level splits into three fine structure levels,
written 2 1 2, 2 1 2 and 2 3 2. We have indicated the algebraic values of the shifts,
calculated to first order in . The shifts are the same for the 2 1 2 and 2 1 2 levels (a
result which remains valid, moreover, to all orders in ). When we take into account
the quantum mechanical nature of the electromagnetic field, we find that the degeneracy
between the 2 1 2 and 2 1 2 levels is removed (the Lamb shift; see Figure 4).

We see that the energy depends only on and , and not on .
If we make a limited expansion of formula (C-27) in powers of , we obtain:

= 2 1
2

2 2 1
2

2

2 4 + 1 2)
3
4

4 + (C-28)

The first term is the rest-mass-energy of the electron. The second term follows
from the theory of Chapter VII. The third term gives the correction to first order
in calculated in this chapter.
( ) Even in the absence of an external field and incident photons, a fluctuating
electromagnetic field must be considered to exist in space (cf. Complement KV,
§ 3-d- ). This phenomenon is related to the quantum mechanical nature of the
electromagnetic field, which we have not taken into consideration here. The cou-
pling of the atom with these fluctuations of the electromagnetic field removes the
degeneracy between the 2 1 2 and 2 1 2 levels. The 2 1 2 level is raised with re-
spect to the 2 1 2 level by a quantity called the “Lamb shift”, which is of the order
of 1 060 MHz (Fig. 4, page 1250).

The theoretical and experimental study of this phenomenon, which was
discovered in 1949, has been the object of a great deal of research, leading to the
development of modern quantum electrodynamics.

1245

A estrutura fina do nível n=2

Essa degenerescência persiste em todas as ordens: 
energias só dependem de n e j (eq. de Dirac)



Aulas passadas
Efeitos do spin do próton I:
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Hamiltoniano hiperfino:
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(campo magnético criado pelo movimento orbital do 
elétron atuando no momento magnético do próton)
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(interação dipolo magnético-
dipolo magnético)
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A estrutura hiperfina do nível 1s
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A estrutura fina do 1s
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A estrutura hiperfina no nível n=1

D. THE HYPERFINE STRUCTURE OF THE = 1 LEVEL

The four-fold degeneracy of the 1 level is therefore partially removed by .
We obtain a three-fold degenerate = 1 level and a non-degenerate = 0 level. The
(2 + 1)-fold degeneracy of the = 1 level is essential and is related to the invariance
of under a rotation of the total system.

D-3. The hyperfine structure of the 1 level

D-3-a. Positions of the levels

Under the e�ect of , the energy of the 1 level is lowered by a quantity 2 4 8
with respect to the value 2 2 2 calculated in Chapter VII. then splits the 1 1 2
level into two hyperfine levels, separated by an energy ~2 (Fig. 3). ~2 is often called
the “hyperfine structure of the ground state”.

1s

1s1/2

mec
2α4

8

1

1

4

3

4

+

–

"ħ2

"ħ2

"ħ2

F = 1

F = 0

Figure 3: The hyperfine structure of the = 1 level of the hydrogen atom. Under the
e�ect of , the = 1 level undergoes a global shift equal to 2 4 8; can take
on a single value, = 1 2. When the hyperfine coupling is taken into account, the
1 1 2 level splits into two hyperfine levels, = 1 and = 0. The hyperfine transition

= 1 = 0 (the 21 cm line studied in radioastronomy) has a frequency which is
known experimentally to twelve significant figures (thanks to the hydrogen maser).
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E. THE ZEEMAN EFFECT OF THE 1 GROUND STATE HYPERFINE STRUCTURE

figures. Expressed in Hz, it is equal to7:
~

2 = 1 420 405 751 767 0 001 Hz (D-17)

Such a high degree of experimental accuracy was made possible by the development
of the “hydrogen maser” in 1963. The principle of such a device is, very schematically,
the following: hydrogen atoms, previously sorted (by a magnetic selection of the Stern-
Gerlach type) so as to choose those in the upper hyperfine level = 1, are stored in a glass
cell (the arrangement is similar to the one shown in Figure 6 of Complement FIV). This
constitutes an amplifying medium for the hyperfine frequency [ ( = 1) ( = 0)] .
If the cell is placed in a cavity tuned to the hyperfine frequency, and if the losses of the
cavity are small enough for the gain to be greater than the losses, the system becomes
unstable and can oscillate: we obtain an “atomic oscillator” (a maser). The frequency of
the oscillator is very stable and of great spectral purity. Its measurement gives directly
the value of the hyperfine splitting, expressed in Hz.

Note, finally, that hydrogen atoms in interstellar space are detected in radioastron-
omy by the radiation they emit spontaneously when they fall from the = 1 hyperfine
level to the = 0 hyperfine level of the ground state (this transition corresponds to a
wave length of 21 cm). Most of the information we possess about interstellar hydrogen
clouds is supplied by the study of this 21 cm line.

E. The Zeeman e�ect of the 1 ground state hyperfine structure

E-1. Statement of the problem

E-1-a. The Zeeman Hamiltonian

We now assume the atom to be placed in a static uniform magnetic field B0 parallel
to . This field interacts with the various magnetic moments present in the atom: the
orbital and spin magnetic moments of the electron, M = 2 L and M = S, and

the magnetic moment of the nucleus, M = 2 I [cf. expression (B-18)].

The Zeeman Hamiltonian which describes the interaction energy of the atom
with the field B0 can then be written:

= B0 (M + M + M )
= 0 ( + 2 ) + (E-1)

where 0 (the Larmor angular frequency in the field B0) and are defined by:

0 = 2 0 (E-2)

= 2 0 (E-3)

Since , we clearly have:

0 (E-4)
7The calculations presented in this chapter are obviously completely incapable of predicting all these

significant figures. Moreover, even the most advanced theories cannot, at the present time, explain more
than the first five or six figures of (D-17).
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A estrutura hiperfina no nível n=2
CHAPTER XII THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

2p3/2

ΔE

2s1/2

2p1/2

F = 2

F = 1

F = 1

F = 0

F = 1

F = 0

Figure 4: The hyperfine structure of the = 2 level of the hydrogen atom. The separation
S between the two levels 2 1 2 and 2 1 2 is the Lamb shift, which is about ten times
smaller than the fine structure splitting � separating the two levels 2 1 2 and 2 3 2
(S 1 057 8 MHz: � 10 969 1 MHz). When the hyperfine coupling is taken
into account, each level splits into two hyperfine sublevels (the corresponding value of
the quantum number is indicated on the right-hand side of the figure). The hyperfine
splittings are equal to 23.7 MHz for the 2 3 2 level, 177.56 MHz for the 2 1 2 level and
59.19 MHz for the 2 1 2 level (for the sake of clarity, the figure is not drawn to scale).

Comment:

It could be found, similarly, that splits each of the fine structure levels 2 1 2,
2 1 2 and 2 3 2 into a series of hyperfine levels, corresponding to all the values of

separated by one unit and included between + and . For the 2 1 2
and 2 1 2 levels, we have = 1 2. Therefore, takes on the two values = 1
and = 0. For the 2 3 2 level, = 3 2, and, consequently, we have = 2 and

= 1 (cf. Fig. 4).

D-3-b. Importance of the hyperfine structure of the 1 level

The hyperfine structure of the ground state of the hydrogen atom is currently the
physical quantity which is known experimentally to the highest number of significant
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The 2S1=2 hyperfine interval in atomic hydrogen was measured using Ramsey spectroscopy with a
thermal beam cooled to cryogenic temperatures. The measured value is 177 556 838.87(85) Hz, which
represents the most precise determination of this interval to date. The 1S1=2 hyperfine interval fð1S1=2Þ and
the 2S1=2 hyperfine interval fð2S1=2Þ can be combined to give the quantity D21 ¼ 8fð2S1=2Þ − fð1S1=2Þ,
which mostly eliminates uncertainty due to nuclear structure effects and is well described by bound-state
quantum electrodynamics. Using the value of fð2S1=2Þ from this work gives a value of

Dexpt
21 ¼ 48 959.2ð6.8Þ Hz, which is in agreement with the theoretical value ofDTheory

21 ¼ 48 954.1ð2.3Þ Hz.

DOI: 10.1103/PhysRevLett.130.203001

The simple structure of the hydrogen atom allows for
precise calculations that can be compared with experiment.
Not only has hydrogen been used to determine fundamental
constants, such as the proton charge radius and the Rydberg
constant [1], but it has also been used as a theoretical testing
ground for quantum mechanics and quantum electrody-
namics (QED) for over a century. Using hydrogen masers,
the ground-state hyperfine interval in atomic hydrogen has
been measured extremely precisely, with a relative uncer-
tainty of roughly 10−12 [2–5]. Calculations of this transition
with QED corrections are available [6–8]. Unfortunately, a
comparison of the experimentally determined value with
theory is limited by an insufficient understanding of proton
structure effects [9]. However, a linear combination of the
1S1=2 and 2S1=2 hyperfine intervals given by

D21 ¼ 8fð2S1=2Þ − fð1S1=2Þ ð1Þ

largely eliminates the theoretical uncertainty in nuclear
structure and is a stringent test of fourth-order bound-state
QED [6–8,10–14]. In 2002, the theoretical value ofD21 was
calculated including fourth-order QED corrections [6,7].
The value was updated slightly in 2006 after reevaluating
the self-energy correction and adding a numerically small
logarithmic recoil correction [8]. A high-precision numerical
calculation of the self-energy was then performed in 2008,
resulting in DTheory

21 ¼ 48 954.1ð2.3Þ Hz [15], which is the
most up-to-date published value.
In addition to bound-state QED tests, several authors

have noted that measurements of D21 can be used to
provide constraints on light bosons with weak coupling to
standard model particles [16–18]. Such hypothetical par-
ticles could manifest themselves by producing an addi-
tional spin-dependent interaction between the proton and
electron, which would cause a deviation between the
experimental and theoretical values of D21.

Because of the very high precision of the ground-state
hyperfine measurements, the experimentally determined
values of D21 in atomic hydrogen are limited by the
uncertainty in measurements of the 2S1=2 hyperfine
interval. While direct measurements of this magnetic-
dipole radio-frequency (rf) transition have been performed
in the past [19,20], substantial improvements in precision
optical spectroscopy have also allowed for measurements
through the 1S1=2 − 2S1=2 two-photon optical transition
[21,22]. The most recent optical measurement was
fð2S1=2Þ ¼ 177 556 834.3ð6.7Þ Hz, resulting in Dexpt

21 ¼
48 923ð54Þ Hz, which is in good agreement with theory.
Here, we present a rf measurement of the 2S1=2 hyperfine

interval using Ramsey’s method of separated oscillatory
fields. The last measurement using Ramsey’s method was
performed by Heberle et al. in 1956 [19]. In addition to the
general advances in experimental equipment and tech-
niques since that time, we notably have the ability to
selectively populate the 2SF¼0

1=2 state using the 1S1=2–2S1=2
two-photon transition before spectroscopy (as in [23,24]).
This simplifies the rf measurement and allows for the
adjustment of the mean velocity of our atomic beam
through the control of our cryogenic nozzle. These
advances have allowed for a reduction in the uncertainty
of Dexpt

21 by a factor of ≈8 as compared to the previous best
optical measurement [22] and by a factor of ≈60 as
compared to the previous measurement using rf Ramsey
spectroscopy [19].
The experimental apparatus to generate cryogenic 2SF¼0

1=2
or 2SF¼1

1=2 hydrogen atoms has been previously described in
[24]. Additionally, the velocity distribution of the atomic
beam was characterized in [25]. After preparation of
atoms in the 2SF¼0

1=2 state, the atoms enter the rf spectros-
copy chamber. The rf spectroscopy region consists of two
copper loops separated by a distance of 28 cm. Each loop is
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The 2S1=2 hyperfine interval in atomic hydrogen was measured using Ramsey spectroscopy with a
thermal beam cooled to cryogenic temperatures. The measured value is 177 556 838.87(85) Hz, which
represents the most precise determination of this interval to date. The 1S1=2 hyperfine interval fð1S1=2Þ and
the 2S1=2 hyperfine interval fð2S1=2Þ can be combined to give the quantity D21 ¼ 8fð2S1=2Þ − fð1S1=2Þ,
which mostly eliminates uncertainty due to nuclear structure effects and is well described by bound-state
quantum electrodynamics. Using the value of fð2S1=2Þ from this work gives a value of

Dexpt
21 ¼ 48 959.2ð6.8Þ Hz, which is in agreement with the theoretical value ofDTheory

21 ¼ 48 954.1ð2.3Þ Hz.

DOI: 10.1103/PhysRevLett.130.203001

The simple structure of the hydrogen atom allows for
precise calculations that can be compared with experiment.
Not only has hydrogen been used to determine fundamental
constants, such as the proton charge radius and the Rydberg
constant [1], but it has also been used as a theoretical testing
ground for quantum mechanics and quantum electrody-
namics (QED) for over a century. Using hydrogen masers,
the ground-state hyperfine interval in atomic hydrogen has
been measured extremely precisely, with a relative uncer-
tainty of roughly 10−12 [2–5]. Calculations of this transition
with QED corrections are available [6–8]. Unfortunately, a
comparison of the experimentally determined value with
theory is limited by an insufficient understanding of proton
structure effects [9]. However, a linear combination of the
1S1=2 and 2S1=2 hyperfine intervals given by

D21 ¼ 8fð2S1=2Þ − fð1S1=2Þ ð1Þ

largely eliminates the theoretical uncertainty in nuclear
structure and is a stringent test of fourth-order bound-state
QED [6–8,10–14]. In 2002, the theoretical value ofD21 was
calculated including fourth-order QED corrections [6,7].
The value was updated slightly in 2006 after reevaluating
the self-energy correction and adding a numerically small
logarithmic recoil correction [8]. A high-precision numerical
calculation of the self-energy was then performed in 2008,
resulting in DTheory

21 ¼ 48 954.1ð2.3Þ Hz [15], which is the
most up-to-date published value.
In addition to bound-state QED tests, several authors

have noted that measurements of D21 can be used to
provide constraints on light bosons with weak coupling to
standard model particles [16–18]. Such hypothetical par-
ticles could manifest themselves by producing an addi-
tional spin-dependent interaction between the proton and
electron, which would cause a deviation between the
experimental and theoretical values of D21.

Because of the very high precision of the ground-state
hyperfine measurements, the experimentally determined
values of D21 in atomic hydrogen are limited by the
uncertainty in measurements of the 2S1=2 hyperfine
interval. While direct measurements of this magnetic-
dipole radio-frequency (rf) transition have been performed
in the past [19,20], substantial improvements in precision
optical spectroscopy have also allowed for measurements
through the 1S1=2 − 2S1=2 two-photon optical transition
[21,22]. The most recent optical measurement was
fð2S1=2Þ ¼ 177 556 834.3ð6.7Þ Hz, resulting in Dexpt

21 ¼
48 923ð54Þ Hz, which is in good agreement with theory.
Here, we present a rf measurement of the 2S1=2 hyperfine

interval using Ramsey’s method of separated oscillatory
fields. The last measurement using Ramsey’s method was
performed by Heberle et al. in 1956 [19]. In addition to the
general advances in experimental equipment and tech-
niques since that time, we notably have the ability to
selectively populate the 2SF¼0

1=2 state using the 1S1=2–2S1=2
two-photon transition before spectroscopy (as in [23,24]).
This simplifies the rf measurement and allows for the
adjustment of the mean velocity of our atomic beam
through the control of our cryogenic nozzle. These
advances have allowed for a reduction in the uncertainty
of Dexpt

21 by a factor of ≈8 as compared to the previous best
optical measurement [22] and by a factor of ≈60 as
compared to the previous measurement using rf Ramsey
spectroscopy [19].
The experimental apparatus to generate cryogenic 2SF¼0

1=2
or 2SF¼1

1=2 hydrogen atoms has been previously described in
[24]. Additionally, the velocity distribution of the atomic
beam was characterized in [25]. After preparation of
atoms in the 2SF¼0

1=2 state, the atoms enter the rf spectros-
copy chamber. The rf spectroscopy region consists of two
copper loops separated by a distance of 28 cm. Each loop is
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D21: essa combinação elimina a maior parte da incerteza sobre a estrutura do 
núcleo e assim permite um teste preciso da Eletrodinâmica Quântica. A teoria 
acima dá D21=0.



A linha de 21 cm do hidrogênio
E. THE ZEEMAN EFFECT OF THE 1 GROUND STATE HYPERFINE STRUCTURE

figures. Expressed in Hz, it is equal to7:
~

2 = 1 420 405 751 767 0 001 Hz (D-17)

Such a high degree of experimental accuracy was made possible by the development
of the “hydrogen maser” in 1963. The principle of such a device is, very schematically,
the following: hydrogen atoms, previously sorted (by a magnetic selection of the Stern-
Gerlach type) so as to choose those in the upper hyperfine level = 1, are stored in a glass
cell (the arrangement is similar to the one shown in Figure 6 of Complement FIV). This
constitutes an amplifying medium for the hyperfine frequency [ ( = 1) ( = 0)] .
If the cell is placed in a cavity tuned to the hyperfine frequency, and if the losses of the
cavity are small enough for the gain to be greater than the losses, the system becomes
unstable and can oscillate: we obtain an “atomic oscillator” (a maser). The frequency of
the oscillator is very stable and of great spectral purity. Its measurement gives directly
the value of the hyperfine splitting, expressed in Hz.

Note, finally, that hydrogen atoms in interstellar space are detected in radioastron-
omy by the radiation they emit spontaneously when they fall from the = 1 hyperfine
level to the = 0 hyperfine level of the ground state (this transition corresponds to a
wave length of 21 cm). Most of the information we possess about interstellar hydrogen
clouds is supplied by the study of this 21 cm line.

E. The Zeeman e�ect of the 1 ground state hyperfine structure

E-1. Statement of the problem

E-1-a. The Zeeman Hamiltonian

We now assume the atom to be placed in a static uniform magnetic field B0 parallel
to . This field interacts with the various magnetic moments present in the atom: the
orbital and spin magnetic moments of the electron, M = 2 L and M = S, and

the magnetic moment of the nucleus, M = 2 I [cf. expression (B-18)].

The Zeeman Hamiltonian which describes the interaction energy of the atom
with the field B0 can then be written:

= B0 (M + M + M )
= 0 ( + 2 ) + (E-1)

where 0 (the Larmor angular frequency in the field B0) and are defined by:

0 = 2 0 (E-2)

= 2 0 (E-3)

Since , we clearly have:

0 (E-4)
7The calculations presented in this chapter are obviously completely incapable of predicting all these

significant figures. Moreover, even the most advanced theories cannot, at the present time, explain more
than the first five or six figures of (D-17).
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• Comprimento de onda:

• Detecção em masers de hidrogênio:

• Detecção em astronomia:

• Meia-vida longa do estado F=1:

7 21 An

A PRECISIO DA MEDIDA

PESSA FREQUENCIA E CONSEGUDA NESSES MASERS

HIDROGÉNIO É O ELEMENTO MAIS

ABUNDANTE A RADIAGO DE H NO VIS VEC E ABSORVIDA

POR POERACISMICA A LINHA DE 21CM É POCO ABSORVIDA
NIL MILAJES DE ANOS



As placas da Pioneer
Pioneer 10 e 11 foram lançadas em 1972 e 1973, respectivamente. Elas carregam 
placas que, espera-se, possam ser lidas por uma forma inteligente de vida extra-
terrestre. Um dos elementos é a transição hiperfina do átomo de H. O 
comprimento de onda de 21 cm é usado como unidade de comprimento e o 
período como unidade tempo. A mulher mede 8 unidades.

I : representa 1 (sistema binário)
- : representa 0 (sistema binário)



Comprimento e números 
nas linhas = distâncias e 
períodos de 14 pulsares 
em relação ao Sol.

Distância do Sol ao 
centro da galáxia

Altura da mulher:
1000=8=1,68 m

Trajetória da Pioneer 1


