F 789 - Mecânica Quântica II

$$
\begin{gathered}
\text { 1o Semestre de } 2023 \\
\text { 07/06/2023 } \\
\text { Aula } 24
\end{gathered}
$$

Aulas passadas

Perturbação senoidal: $\quad \hat{W}_{s}(t)=\hat{W} \sin \omega t, \hat{W}_{c}(t)=\hat{W} \cos \omega t$,

$$
\begin{aligned}
& \text { Se } \omega \approx\left|\omega_{f i}\right| \gg \frac{2 \pi}{t} \text { (ressonância): } \text {, } F\left(t, \omega \text { - } \omega_{f i}\right. \text {) } \\
& \mathcal{P}_{i f}(t, \omega)=\frac{\left|W_{f i}\right|^{2}}{4 \hbar^{2}} \overbrace{\left.\frac{\sin \left[\left(\omega_{f i}-\omega\right) t / 2\right]}{\left(\omega_{f i}-\omega\right) / 2}\right\}^{2}} \text { se } \omega_{f i}>0, \\
& \mathcal{P}_{i f}(t, \omega)=\frac{\left|W_{f i}\right|^{2}}{4 \hbar^{2}}\left\{\frac{\sin \left[\left(\omega_{f i}+\omega\right) t / 2\right]}{\left(\omega_{f i}+\omega\right) / 2}\right\}^{2} \text { se } \omega_{f i}<0 .
\end{aligned}
$$

Aulas passadas

Perturbação constante: $\hat{W}_{0}(t)=\hat{W}$
$\mathcal{P}_{i f}(t)=\frac{\left|W_{f i}\right|^{2}}{\hbar^{2}}\left[\frac{\sin \left(\omega_{f i} t / 2\right)}{\omega_{f i} / 2}\right]^{2}$

Aula passada

Acoplamento com estados do contínuo:
a) perturbação contante

$$
\begin{aligned}
\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, t\right) & \left.=\delta \beta_{f}\left(\frac{2 \pi}{\hbar} t\right)\left|\left\langle\beta_{f}, E_{f}=E_{i}\right| W\right| \varphi_{i}\right\rangle\left.\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}\right) \\
w\left(\varphi_{i}, \alpha_{f}, t\right) & \left.=\frac{d}{d t}\left[\frac{\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, t\right)}{\delta \beta_{f}}\right]=\frac{2 \pi}{\hbar}\left|\left\langle\beta_{f}, E_{f}=E_{i}\right| W\right| \varphi_{i}\right\rangle\left.\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}\right)
\end{aligned}
$$

b) perturbação senoidal

$$
\left.\begin{array}{rl}
\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, \omega, t\right) & \left.=\delta \beta_{f}\left(\frac{\pi}{2 \hbar} t\right) \right\rvert\,\left\langle\beta_{f}, E_{f}\right.
\end{array}=E_{i}=\hbar \omega|W| \varphi_{i}\right\rangle\left.\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}+\hbar \omega\right), ~ \begin{aligned}
2 \hbar & \left.\left\langle\beta_{f}, E_{f}=E_{i}=\hbar \omega\right| W\left|\varphi_{i}\right\rangle\right|^{2} \rho\left(\beta_{f}, E_{f}=E_{i}+\hbar \omega\right) \\
w\left(\varphi_{i}, \alpha_{f}, \omega, t\right) & =\frac{d}{d t}\left[\frac{\delta \mathcal{P}\left(\varphi_{i}, \alpha_{f}, t\right)}{\delta \beta_{f}}\right]
\end{aligned}
$$

Aula passada

Interação de um átomo com ondas eletromagnéticas
O Hamiltoniano: $H=\frac{[\mathbf{P}-q \mathbf{A}(\mathbf{R}, t)]^{2}}{2 m}+V(R)-\frac{q}{m} \mathbf{S} \cdot \mathbf{B}(\mathbf{R}, t)$

A onda eletromagnética:

$$
\begin{aligned}
\mathbf{E}(\mathbf{R}, t) & =E_{0} \cos (k Y-\omega t) \hat{\mathbf{z}} \\
\mathbf{B}(\mathbf{R}, t) & =\frac{E_{0}}{c} \cos (k Y-\omega t) \hat{\mathbf{x}} \\
\mathbf{A}(\mathbf{R}, t) & =\frac{E_{0}}{\omega} \sin (k Y-\omega t) \hat{\mathbf{z}} \\
\omega & =c k \\
\overline{\mathbf{S}} & =\frac{\epsilon_{0} c}{2} E_{0}^{2} \hat{\mathbf{y}}
\end{aligned}
$$

O Hamiltoniano de interação

$$
\begin{aligned}
& {[\vec{P}-g \vec{A}]^{2}=\vec{P}^{2}+q^{2} \vec{A}^{2}-g(\vec{P} \cdot \vec{A}+\vec{A} \cdot \vec{P})=\vec{P}^{2}+q^{2} \vec{A}^{2}-2 q \vec{P} \cdot \vec{A}} \\
& \vec{P} \cdot \vec{A}=P_{z} A_{z}(Y)=A_{z} P_{z}=\vec{A} \cdot \vec{P}(\vec{P} E \vec{A} \text { (OMUTAM) } \\
& H=\underbrace{\frac{\vec{P}^{2}}{2 m}+v(R)}_{H_{0}}-\underbrace{q^{q} \vec{P} \cdot \vec{A}(\vec{R}, t)}_{\alpha E_{0}}+\underbrace{\frac{q^{2}}{2 m} \vec{A}^{2}(\vec{R}, t)}_{\alpha E_{0}^{2}}-\underbrace{\frac{q}{M} \vec{S} \cdot \vec{B}(\vec{R}, t)}_{\alpha E_{0}}
\end{aligned}
$$

para campos eletromagnéticos fracos (praticamente TODOS DE LABORATÓRIO), PODEMOS DESPREZAR D TERMO OUADRÁtico $\left(\alpha E_{0}^{2}\right)$

$$
W(t)=\underbrace{-\frac{q}{m} \vec{P} \cdot \vec{A}}_{W_{I}(t)}-\underbrace{-\frac{q}{m} \vec{S} \cdot \vec{B}}_{W_{I}(t)}
$$

PARA TRANSIGÖES ÓPTICAS ($\lambda \sim 4000-7000 \AA)$

$$
\begin{aligned}
W_{\text {I }} & <W_{I}: \\
\frac{W_{\text {II }}}{W_{I}} & \sim \frac{S B}{p A}=\frac{\hbar E_{0} / c}{p E / \omega}=\frac{\hbar}{p} \overbrace{\left(\frac{\omega}{c}\right)}^{k \sim \frac{2 \pi}{\lambda}} \quad \Delta p \Delta x \sim \hbar \quad \frac{p}{\hbar} \sim \frac{1}{a_{0}} \\
& =\frac{a_{0}}{\lambda} \sim 10^{-4}-10^{-3} \ll 1
\end{aligned}
$$

FOCARE MOS AGORA NO $W_{I}(t)$.

$$
\begin{aligned}
W_{ \pm}(t)= & -\frac{f}{m} \vec{P} \cdot \vec{A}=-\frac{q}{m} P_{z} A_{z}=-\frac{q P_{z}}{m} \frac{E_{0}}{\omega} \sin (k Y-\omega t) \\
& =\frac{i q P_{z} E_{0}}{2 m \omega}\left[e^{i k y} e^{-i \omega t}-e^{-i k y} e^{i \omega t}\right] \quad{ }^{q} E_{0} P_{z}
\end{aligned}
$$

Quando calcularmos ehementos de matriz de wa $Y_{\sim} a_{0} \Rightarrow k Y_{\sim} \sim k_{0} \sim \frac{a_{0}}{\lambda} \ll 1 \Rightarrow e^{i k y} \not \approx 1$ 上iky- $\frac{k^{2} y^{2}}{2}+\cdots$ EM ORDEM ZERO:

VOU PRECISAR DE: $\left\langle\varphi_{f}\right| P_{z}\left|\varphi_{i}\right\rangle$

$$
\begin{aligned}
& \text { TRUQUE: }\left[z_{1}, H_{0}\right]=\left[z, \frac{p^{2}}{2 m}+V(R)\right]=\left[z, \frac{\vec{p}^{2}}{2 m}\right]=\frac{1}{2 m}\left[z, P^{2}\right] \\
&=\frac{1}{2 m}\left[z, p_{z}^{2}\right]=\frac{i \hbar}{m} P_{z} \\
&\left\langle\varphi_{f}\right| P_{f}\left|\varphi_{i}\right\rangle=\frac{m}{i \hbar}\left\langle\varphi_{f}\right|\left[z_{1} H_{0}\right]\left|\varphi_{i}\right\rangle \\
&= \frac{m}{i \hbar}\left\langle\varphi_{f}\right|\left(z H_{0}-H_{0} z\right)\left|\varphi_{i}\right\rangle \\
&=\frac{m}{i \hbar}\left[E_{i}\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle-E_{f}\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle\right] \\
& \begin{aligned}
\omega_{f i}=\frac{E_{f}-E_{i}}{\hbar} & =\frac{m}{i \hbar}\left(E_{i}-E_{f}\right)\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle=i m \omega_{f_{i}}\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle \\
\left\langle\varphi_{f}\right| W\left|\varphi_{i}\right\rangle & =\frac{q E_{0}}{m \omega}\left\langle\varphi_{f}\right| P_{z}\left|\varphi_{i}\right\rangle=i q E_{0}\left(\frac{\omega_{f i}}{\omega}\right)\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle \\
g z & =(g \vec{R})_{z}=D_{I} P O L O E L E^{\prime} T R, C O
\end{aligned}
\end{aligned}
$$

VAMOS CONSIDERAR AS AUTO-FUNCTOES DE POTENCIAIS CENTRAIS:

$$
\begin{aligned}
& \left\langle\vec{\sim} \mid \varphi_{i}\right\rangle=R_{m_{i} l_{i}}(\sim) Y_{l_{i} m_{i}}(\Omega) \\
& \left\langle\vec{r} \mid \varphi_{f}\right\rangle=R_{\mu_{f} l_{f}}(n) Y_{\ell_{f} \mu_{f}}(\Omega) \\
& z=r \cos \theta=\sqrt{\frac{4 \pi}{3}} \sim Y_{10}(\Omega) \\
& \Rightarrow\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle=\int_{0}^{\infty} R_{n_{f e_{f}}}^{*}(n) n R_{n i l_{i}}(n) n^{2} d n x \\
& \times \sqrt{\frac{4 \pi}{3}} \int d \Omega Y_{l_{f} M f}^{*}(\Omega) Y_{1_{0}}(\Omega) Y_{l_{i} m_{i}}(\Omega)
\end{aligned}
$$

INTEGRAIS DE 3 HARYÓNICOS ESFERICOS SO' sÃo nāo nulas se:

$$
l_{f}=l_{i} \pm 1 \quad E \quad m_{f}=m_{i}
$$

- operador z terminado pela polarizacão da onda. SE FIZERMOS O CA'LCUNO PARA POLARTZACAO X, Y - ELEMENTO DE MATRIZ SERA' DE X, Y

$$
\begin{gathered}
x_{1} y \propto Y_{1 \pm 1}(\Omega) \\
\Rightarrow \\
l_{f}=l_{i} \pm 1 \quad E \quad m_{f}=m_{i} \pm 1
\end{gathered}
$$

de maneira geral:

$$
\left.\begin{array}{l}
\Delta l=l_{f}-l_{i}= \pm 1 \\
\Delta \mu=\theta_{2} \pm 1
\end{array}\right\} \begin{aligned}
& \text { REGRAS DE } \\
& \text { SELESAO (DE }
\end{aligned}
$$

DIPOLO EKE'TRICO)

POR EXEMPLO:

$$
\begin{array}{rl}
1 S \rightleftarrows 2 P \quad & \text { PERMITIDA } \\
& \Delta l=1, \Delta m=0, \pm 1 \\
1 S \rightleftarrows 2 S \quad E^{\prime} \quad P R O I B I D A \\
& \\
1 S \rightleftarrows 3 d, 3 S & P R O I B I D A \\
& \Delta Q= \pm 2
\end{array}
$$

Cálculo da taxa de transição para luz não monocromática

$I(\omega) d \omega=$ Potência incidente POR UNIDADE DE AREA TRANSUERSA ID intrifvalo $[\omega, \omega+d \omega]$

$$
=\bar{s}=\frac{\epsilon_{0} C}{2} E_{0}^{2}
$$

$$
\begin{aligned}
& P_{i f}(t ; \omega)=\frac{\left|w_{f i}\right|^{2}}{4 \hbar^{2}} F\left(t, \omega \pm \omega_{t_{i}}\right) \\
& \left.=\frac{q^{2} E_{0}^{2}}{4 \hbar^{2}}\left(\frac{\omega_{f i}}{\omega}\right)^{2}\left|\left\langle\varphi_{f}\right| z\right| \varphi_{i}\right\rangle\left.\right|^{2} F\left(t, \omega \pm \omega_{f_{i}}\right) \\
& E_{0}^{2} \longrightarrow \frac{2}{\epsilon_{0} C} I(\omega) d \omega
\end{aligned}
$$

$$
\left.d P_{i f}(t, \omega)=\frac{q^{2}}{2 \epsilon_{0} C \hbar^{2}}\left|\left\langle\varphi_{f}\right| z\right| \varphi_{i}\right\rangle\left.\right|^{2}\left(\frac{\omega_{f i}}{\omega}\right)^{2} I(\omega) F\left(t \omega \pm \omega_{f_{i}}\right) d \omega_{i}
$$

SOMANDO SOBRE TODAS AS FREQUENCIAS, ASSUMIMDS AUSENCIA DE COERENCIA ENTRE ELAS,

$$
\begin{aligned}
& \left.\bar{P}_{\text {if }}(t)=\frac{q^{2}}{2 \epsilon_{0}\left(\hbar^{2}\right.} k \varphi_{f}|z| \varphi_{i}\right)\left.\right|^{2} \int\left(\frac{\omega_{f i}}{\omega}\right)^{2} I(\omega) F\left(t, \omega \pm \omega_{f_{i}}\right\rangle d \omega \\
& S E \Delta>\frac{4 \pi}{t} \leftrightharpoons F(t, \omega) \simeq 2 \pi t \delta(\omega) \\
& \left.\left.\bar{P}_{\text {if }}(t)=\frac{\pi g^{2} I\left(\pm \omega_{f i}\right)}{\epsilon_{0} c \hbar^{2}} \right\rvert\,\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle\right)^{2} t
\end{aligned}
$$

TAYA DE TRANSICAAO POR UNIDAOE DE TEMPD:

$$
W_{i t}=\frac{d \bar{P}_{i t}}{d t}=\left.\frac{\pi g^{2}}{\epsilon_{0} c \hbar^{2}}\left\langle\varphi_{f}\right| z\left|\varphi_{i}\right\rangle\right|^{2} I\left(\pm \omega_{f i}\right)=C_{i f} I\left(\pm \omega_{f_{i}}\right)
$$

$$
\begin{gathered}
\left.\left.C_{f i}=\frac{\pi q^{2}}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| z\right| \varphi_{i}\right\rangle\left.\right|^{2}=\frac{4 \pi^{2}}{\hbar} \alpha\left|\left\langle\varphi_{f}\right| z\right| \varphi_{i}\right\rangle\left.\right|^{2} \\
\alpha=\frac{1}{137}
\end{gathered}
$$

