F 789 - Mecânica Quântica II

$$
\begin{gathered}
1 \text { 1- Semestre de } 2023 \\
12 / 06 / 2023 \\
\text { Aula } 25
\end{gathered}
$$

Aula passada

Interação de um átomo com ondas eletromagnéticas
O Hamiltoniano: $H=\frac{[\mathbf{P}-q \mathbf{A}(\mathbf{R}, t)]^{2}}{2 m}+V(R)-\frac{q}{m} \mathbf{S} \cdot \mathbf{B}(\mathbf{R}, t)$
A onda eletromagnética: $\begin{gathered}\mathbf{E}(\mathbf{R}, t)=E_{0} \cos (k Y-\omega t) \hat{\mathbf{z}} \\ \mathbf{B}(\mathbf{R}, t)=\frac{E_{0}}{c} \cos (k Y-\omega t) \hat{\mathbf{x}} \\ \mathbf{A}(\mathbf{R}, t)=\frac{E_{0}}{\omega} \sin (k Y-\omega t) \hat{\mathbf{z}} \\ \omega=c k \\ \overline{\mathbf{S}}=\frac{\epsilon_{0} c}{2} E_{0}^{2} \hat{\mathbf{y}}\end{gathered}$
Em ordem linear nos campos: $H=H_{0}+W_{I}(t)+W_{I I}(t)$

$$
\begin{aligned}
H_{0} & =\frac{\mathbf{P}^{2}}{2 m}+V(R) \\
W_{I}(t) & =-\frac{q}{m} \mathbf{P} \cdot \mathbf{A}(\mathbf{R}, t) \\
W_{I I}(t) & =-\frac{q}{m} \mathbf{S} \cdot \mathbf{B}(\mathbf{R}, t)
\end{aligned}
$$

Aula passada

Termo dominante: Perturbação de dipolo elétrico

$$
W_{I}(t) \approx \frac{q E_{0}}{m \omega} P_{z} \sin \omega t \equiv W_{D E}(t)
$$

Taxa de transição entre estados $\left|\phi_{i}\right\rangle$ e $\left|\phi_{\rho}\right\rangle$ para radiação não monocromática de intensidade $I(\omega)$:

$$
\left.\left.w_{i f}^{D E}=\frac{d P_{i f}^{D E}(t)}{d t}=\frac{\pi q^{2}}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| Z\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right)=\frac{\pi}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| p_{z}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right), p_{z}=q Z
$$

Para outras polarizações lineares:

$$
\begin{aligned}
& \left.w_{i f}^{D E}=\frac{\pi}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| p_{x}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right) \\
& \left.w_{i f}^{D E}=\frac{\pi}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| p_{y}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right)
\end{aligned}
$$

Os termos de dipolo magnético e quadrupolo elétrico

$$
\begin{aligned}
W_{I}(t) & =-\frac{q E_{0}}{m \omega} P_{z} \sin (k Y-\omega t)=\frac{i q E_{0}}{2 m \omega} P_{z}\left[e^{i k Y} e^{-i \omega t}-\frac{a_{0}}{e^{-i k Y}} e^{i \omega t}\right] \\
& =\frac{i q E_{0}}{2 m \omega} P_{z}\left\{\left[1+i k Y+\mathcal{O}\left(k^{2} Y^{2}\right)\right] e^{-i \omega t}-\left[1-i k Y+\mathcal{O}\left(k^{2} Y^{2}\right)\right] e^{i \omega t}\right\} \\
& =\frac{i q E_{0}}{2 m \omega} P_{z}\left\{e^{-i \omega t}-e^{i \omega t}\right\}-\frac{q E_{0}}{2 m \omega} k P_{z} Y\left(e^{-i \omega t}+e^{i \omega t}\right)+\mathcal{O}\left(k^{2} Y^{2}\right) \\
& =\underbrace{\frac{q E_{0}}{m \omega} P_{z} \sin \omega t}_{W_{D E}(t)}-\underbrace{\sim}_{\sim \frac{q E_{0}}{m \omega} k P_{z} Y \cos \omega t}+\mathcal{O}\left(k^{2} Y^{2}\right) \\
W_{I I}(t) & =-\frac{q}{m} \mathbf{S} \cdot \mathbf{B}(\mathbf{R}, t) \sim \frac{a_{0}}{\lambda}
\end{aligned}
$$

ATE ORDEN $\frac{a_{0}}{\lambda}$:

$$
\begin{aligned}
W^{(1)}(t) & =-\frac{q E_{0}}{m \omega} P_{z} y \cos \omega t-\frac{q}{m} \frac{E_{0}}{c} S_{x} \cos (\tilde{(k Y}-\omega t) \\
& =-\frac{q}{m} \frac{E_{0}}{c} P_{z} y \cos \omega t-\frac{c_{1}}{m} \frac{E_{0}}{c} S_{x} \cos (\omega t)
\end{aligned}
$$

$$
P_{z} Y=\frac{1}{2}(\underbrace{P_{z} Y-z P_{y}}_{L_{x}})+\frac{1}{2}\left(P_{z} Y+z P_{y}\right)
$$

$$
\begin{aligned}
\vec{L} & =\vec{R} \times \vec{P} \\
L_{x} & =Y P_{z}-z P_{y} \\
& =P_{z} Y-z P_{y}
\end{aligned}
$$

$$
\begin{aligned}
& w^{(f) 0 n}(t)=-\frac{a}{m} \frac{E_{0}}{E_{0}}\left[\frac{L_{x}}{2}+S_{x}\right] \cos \omega t \\
&=-\frac{q_{0}}{2 M} B_{0}\left[L_{x}+2 S_{x}\right] \cos \omega t \\
&=-\vec{M} \cdot \vec{B}_{0} \cos \omega t \quad \vec{M} \\
& \text { L }_{\rightarrow \text { DIPOLO MAGNETICO }}
\end{aligned}
$$

$$
\vec{H}=\frac{q}{2 m}(\vec{l}+2 \vec{S})
$$

$$
\vec{M}=\frac{\mu_{B}}{\hbar}(\vec{L}+2 \vec{S})
$$

outras dolarizacotos e drectóes de INCIDENCIA GERAM TERMOS DO TIOO:

$$
L_{y}+2 S_{y}, L_{z}+2 S_{z}
$$

QUANTO A $\frac{1}{2}\left(P_{z} Y+Z P_{y}\right)$, FAZENDO, COMO ANTES:
$\left[Z_{1} H_{0}\right]$ e $\left[Y, H_{0}\right]$ LEVA A (VAR NOTAS):

$$
\left\langle\varphi_{f}\right| \frac{1}{2}\left(P_{z} y+z P_{y}\right)\left|\varphi_{i}\right\rangle=\frac{m}{2 i \hbar}\left(E_{i}-E_{f}\right)\left\langle\varphi_{f}\right| Y z\left|\varphi_{i}\right\rangle
$$

Assim: $q^{Y Z} \equiv Q_{y z}$
COMPONENTE DO OPERADOR QUADRUPOLS ELE'TRIM SEMELHANTEMENTE, OUTRAS POLARIZACOES E DIREとOEF DE INCIDENCIA GERAN OUTRAS cOMPONENTES $Q_{i j}$ dO TENSOR DE QUADRUPOLO ELÉTRICO

REGRAS DE SELEÇÃ:
DIPOLO ELE'TRICO: $\Delta Q= \pm 1, \quad \Delta m_{2}=0, \pm 1$
DIPOLO MAGNE'TICO: $\triangle Q=0 \quad \Delta \mu_{2}=0, \pm 1$
$\Delta m_{s}=0, \pm 1$
QUADRUPOLO ELÉTRICO:

$$
\Delta l=0, \pm 2 \quad \Delta m_{2}=0, \pm 1, \pm 2 \quad \Delta m_{s}=0
$$

Resumo

Dipolo elétrico:

$$
\left.w_{i f}^{D E}=\frac{\pi}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| p_{i=x, y, z}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right)
$$

Dipolo magnético: $\left.\quad w_{i f}^{D M}=\frac{\pi}{\epsilon_{0} c^{3} \hbar^{2}}\left|\left\langle\varphi_{f}\right| M_{i=x, y, z}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right)$

Quadrupolo elétrico:

$$
\left.w_{i f}^{Q E}=\frac{\pi\left|\omega_{f i}\right|^{2}}{4 \epsilon_{0} c^{3} \hbar^{2}}\left|\left\langle\varphi_{f}\right| Q_{i, j}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right) ; \quad i=x, y, z ; j=x, y, z
$$

Taxa de emissão espontânea

$$
\left.w_{i f}^{D E}=\frac{\pi}{\epsilon_{0} c \hbar^{2}}\left|\left\langle\varphi_{f}\right| p_{i=x, y, z}\right| \varphi_{i}\right\rangle\left.\right|^{2} I\left(\left|\omega_{f i}\right|\right)
$$

UMA SUGESTÁO DE COMO OBTER A TAKA DE EMISSAO ESPONTANEA, OUE, NA VERDADE, REQUER A QUANTIZAÇATO DOS CAMPOG ELETROMAG$N E^{C}+I C O S, E^{\prime}$ A SEGJINTE
(i) FACA $\left.1<\varphi_{f}\left|p_{x}\right| P_{i}\right\rangle\left.\left.\right|^{2} \rightarrow \frac{1}{3}\left(k \varphi_{t}\left|p_{x}\right| \varphi_{i}\right)\right|^{2}+$

$$
\left.\left.\left.+\left|\left\langle\varphi_{f}\right| p_{y}\right| \varphi_{i}\right\rangle\left.\right|^{2}+\left|\left\langle\varphi_{f}\right| p_{z}\right| \varphi_{i}\right\rangle\left.\right|^{2}\right\rangle
$$

(ii) DS ELETROMAGNETISMO: $\frac{I(\omega)}{C}=\rho(\omega)$

S(w): DENSIDADE DE ENERGIA ELETROMAGUE'TICA

E USO $\rho(\omega)$ COMO A DENSIDADE DE ENERGMA ELETROMAGNÉTICA DO VA'CUO:

$$
f_{E M}^{(0)}(\omega)=\frac{\hbar \omega^{3}}{\pi^{2} c^{3}}
$$

ITTAXA DE EHISSATO ESPONTANAEA DE UM ESTADO EXCITADO PARA O FUNDAMENTAL

Resumo

Taxas de emissão espontânea de um estado n por dipolo elétrico (DE) e dipolo magnético (DM):

$$
\begin{aligned}
& \rightarrow \omega_{n \rightarrow 1}=\frac{E_{n}-E_{1}}{\hbar} \\
& \left.\left.\left.w_{\operatorname{esp}(n \rightarrow 1)}^{D E}=\left.\frac{\omega_{n \rightarrow 1}^{3}}{3 \pi \epsilon_{0} \hbar c^{3}}\left[\left|\left\langle\varphi_{n}\right| p_{x}\right| \varphi_{1}\right\rangle\right|^{2}+\left|\left\langle\varphi_{n}\right| p_{y}\right| \varphi_{1}\right\rangle\left.\right|^{2}+\left|\left\langle\varphi_{n}\right| p_{z}\right| \varphi_{1}\right\rangle\left.\right|^{2}\right] \\
& \left.\left.\left.w_{\operatorname{esp}(n \rightarrow 1)}^{D M}=\left.\frac{\omega_{n \rightarrow 1}^{3}}{3 \pi \epsilon_{0} \hbar c^{5}}\left[\left|\left\langle\varphi_{n}\right| M_{x}\right| \varphi_{1}\right\rangle\right|^{2}+\left|\left\langle\varphi_{n}\right| M_{y}\right| \varphi_{1}\right\rangle\left.\right|^{2}+\left|\left\langle\varphi_{n}\right| M_{z}\right| \varphi_{1}\right\rangle\left.\right|^{2}\right] \\
& {[w]=\frac{1}{T}} \\
& \frac{1}{w}=\tau=M E I A-V I D A \text { DO ESTADO EXCITADO }
\end{aligned}
$$

Partículas idênticas

Partículas idênticas: o que são?
AS PARTI'CULAS ELEMENTARES SAO CARACTERIZADAS POR: MASSA, CARGA, SRIN DADAS ESSAS CARAGTERISTICOA, NADA DISTINGUE AS PARTI'CULAS: TODOS OS ELE TRONS SAOO IDENTICOS

Partículas idênticas em mecânica clássica
em física clássica, o fato das particulas SEREM IDÊNTICA NATO TEM NENHUMA CONSEQÜEnCIA MENSURÁVEL.

$$
\begin{aligned}
L\left[x_{1}, \dot{x}_{2}, x_{2}, \dot{x}_{2}\right] & =\frac{1}{2} \mu \dot{x}_{1}^{2}+\frac{1}{2} m \dot{x}_{2}^{2}+\frac{1}{2} k x_{1}^{2}+\frac{1}{2} k x_{2}^{2} \\
& +\frac{e^{2}}{\left|x_{1}-x_{2}\right|}=L\left[x_{2}, \dot{x}_{2}, x_{1}, \dot{x}_{1}\right]
\end{aligned}
$$

Ees. de rovimentoc

$$
\begin{aligned}
& m \ddot{x}_{2}=-k x_{1}-\frac{\partial}{\partial x_{1}}\left[\frac{e^{2}}{\left|x_{1}-x_{2}\right|}\right] \\
& m \ddot{x}_{2}=-k x_{2}-\frac{\partial}{\partial x_{2}}\left[\frac{e^{2}}{\left|x_{1}-x_{2}\right|}\right]
\end{aligned}
$$

SUPONTA DUAS
SOLUCOES

$$
x_{1}(t)=x(t)
$$

$$
x_{\underline{2}}(t)=x^{\prime}(t)
$$

MAS:

$$
\begin{aligned}
& x_{2}(t)=x^{\prime}(t) \\
& x_{2}(t)=x(t)
\end{aligned} \quad \text { TAMBEON E' SOLUCAO! }
$$

ALE'M DISSO, COMO AS TRAJETO'RIAS CLA'SSICAS SAO BEM DE FINIDAS (EM PRINCrPIO), UMA ROTULAGEM INCCIAC DAS PARTÍCOLAS PERMANECE BEM BEFIWIDA PARA SEMPRE.

Apenas os rótulos distinguem as duas

 soluções das eqs. de movimento

Qualquer quantidade física (ENERGA, MOM. LINEAR, ODOM. ANGULAR I DO DOVVMEaTO DA ESRJERDA SERA'IGUAL NO DA DIREITA.

Partículas idênticas em mecânica quântica
nENHOMA DAS 2 cARACTERISTICAS ClAŚSSIcas descritas sobrevive na mec.quant.
(i) AUSENCIA DE TRA JETÓRLAS BEN DEFINCDAS
(ii) DEGENURESCÊNCIA DE TROCA.

Espalhamento no ref. do centro de massa

Antes do espalhamento: pacotes localizados bem separados movendo-se um na diração do outro; partículas podem ser rotuladas

(1)

(2)

Durante a colisão: as funções de onda ocupam uma mesma região espacial; rótulos não podem mais ser usados sem ambiguidade

Após a colisão, os pacotes se expandem como ondas esféricas superpostas: deteç̧ão em θ

Qual foi a trajetória de cada partícula?

a
duas possibilidades
suponita que, aro's a colisão, o estado $E^{\prime}|\psi\rangle$
PROPABILIDADE DE MEDIR UMA PARTÍCULA Eみ D:

$$
\begin{aligned}
& d p(\vec{p})=\left|\left\langle\psi_{f}(\vec{p}) \mid \psi\right\rangle\right|^{2} d^{3} p \\
& \left|\psi_{f}(\vec{p}\rangle\right\rangle=|1, \vec{p} ; 2,-\vec{p}\rangle \\
& \left\langle\vec{n}_{1}, \vec{n}_{2} \mid \psi_{f}(\vec{p}\rangle\right\rangle=\frac{e^{i \vec{p}} \cdot \vec{n}_{1}}{(2 \pi \hbar)^{3 / 2}} \frac{e^{-i \vec{p} \cdot \vec{n}_{2}}}{(2 \pi \hbar)^{3 / 2}} \\
& \left.\left|\psi_{f}^{\prime}(\vec{p})\right\rangle=|1|-\vec{p} ; 2, \vec{p}\right\rangle \\
& \left\langle\vec{n}_{1}, \vec{n}_{2} \mid \psi_{f}^{\prime}(\vec{p}\rangle\right\rangle=\frac{e^{i \vec{p} \cdot} \cdot \vec{n}_{2}}{(2 \pi \hbar)^{3 / 2}} \frac{e^{-i \vec{p} \cdot \vec{n}_{1}}}{(2 \pi \hbar)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.|s=0, \mu=0\rangle=\frac{1}{\sqrt{2}}(\underset{E}{|p|} \downarrow\rangle-|\alpha P\rangle\right) \\
& \begin{array}{l}
|q \uparrow\rangle N \bar{A} \otimes \text { ह́ } \\
C O|Q| p\rangle
\end{array}
\end{aligned}
$$

PIOR AINDA EU POSSO USAR:

$$
\left|\psi_{f}^{\prime \prime}(\vec{p})\right\rangle=\alpha\left|\psi_{f}(\vec{p})\right\rangle+\beta\left|\psi_{f}^{\prime}(\vec{p})\right\rangle
$$

para cada escolha, o resultado é DIFERENTE!! ELE DEPENDE DE $\alpha E \beta$

