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Aula passada
Partículas idênticas: só são identificadas por sua massa, carga, spin,…
Dois elétrons são absolutamente idênticos e indistinguíveis. 

Mecânica clássica: Lagrangiana e Hamiltoniana são invariantes pela troca das 
variáveis dinâmicas.
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Duas soluções possíveis, fisicamente indistinguíveis:

a) Ambas fornecem as mesmas previsões.
b) O rótulo dado a cada partícula permanece sempre não ambíguo.



Aula passada
Mecânica quântica: 
a) trajetórias não existem (princípio de incerteza).
b) rótulos são ambíguos quando as funções de onda se sobrepõem. 

CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

To investigate this point in greater detail, consider a concrete example; a collision
between two identical particles in their center of mass frame (Fig. 2). Before the collision,
we have two completely separate wave packets, directed towards each other (Fig. 2a). We
can agree, for example, to denote by (1) the particle on the left and by (2), the one on the
right. During the collision (Fig. 2b), the two wave packets overlap. After the collision,
the region of space in which the probability density of the two particles is non-zero1

looks like a spherical shell whose radius increases over time (Fig. 2c). Suppose that a
detector placed in the direction which makes an angle with the initial velocity of wave
packet (l) detects a particle. It is then certain (because momentum is conserved in the
collision) that the other particle is moving away in the opposite direction. However, it is
impossible to know if the particle detected at is the one initially numbered (1) or the
one numbered (2). Thus, there are two di�erent “paths” that could have led the system
from the initial state shown in Figure 2a to the final state found in the measurement.
These two paths are represented schematically in Figures 3a and 3b. Nothing enables us
to determine which one was actually followed.

Figure 2: Collision between two identical particles in the center of mass frame: schematic
representation of the probability density of the two particles. Before the collision (fig. a),
the two wave packets are clearly separated and can be labeled. During the collision (fig. b),
the two wave packets overlap. After the collision (fig. c), the probability density is non-
zero in a region shaped like a spherical shell whose radius increases over time. Because
the two particles are identical, it is impossible, when a particle is detected at , to know
with which wave packet, (1) or (2), it was associated before the collision.

A fundamental di�culty then arises in quantum mechanics when using the postu-
lates of Chapter III. In order to calculate the probability of a given measurement result
it is necessary to know the final state vectors associated with this result. Here, there are
two, which correspond respectively to Figures 3a and 3b. These two kets are distinct
(and, furthermore, orthogonal). Nevertheless, they are associated with a single physical

1The two-particle wave function depends on six variables (the components of the two particles coor-
dinates r and r ) and is not easily represented in 3 dimensions. Figure 2 is therefore very schematic: the
grey regions are those to which both r and r must belong for the wave function to take on significant
values.
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Antes da colisão Durante
Depois

Se quisermos pensar em trajetórias, há duas possibilidades:A. STATEMENT OF THE PROBLEM
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Figure 3: Schematic representation of two types of “paths” which the system could have
followed in going from the initial state to the state found in the measurement. Because
the two particles are identical, we cannot determine the path that was actually followed.

state since it is impossible to imagine a more complete measurement that would permit
distinguishing between them. Under these conditions, should one calculate the probabil-
ity using path 3a, path 3b or both? In the latter case, should one take the sum of the
probabilities associated with each path, or the sum of their probability amplitudes (and
in this case, with what sign)? These di�erent possibilities lead, as we shall verify later,
to di�erent predictions.

The answer to the preceding questions will be given in § D after we have stated the
symmetrization postulate. Before going on, we shall study another example that will aid
us in understanding the di�culties related to the indistinguishability of two particles.

A-3-b. Origin of the di�culties: Exchange degeneracy

In the preceding example, we considered two wave packets which, initially, did
not overlap; this enabled us to label each of them arbitrarily with a number, (1) or
(2). Ambiguities appeared, however, when we tried to determine the mathematical state
(or ket) associated with a given result of a position measurement. Actually, the same
di�culty arises in the choice of the mathematical ket used to describe the initial physical
state. This type of di�culty is related to the concept of “exchange degeneracy” which
we shall introduce in this section. To simplify the reasoning, we shall first consider a
di�erent example, so as to confine ourselves to a finite-dimensional space. Then, we shall
generalize the concept of exchange degeneracy, showing that it can be generalized to all
quantum mechanical systems containing identical particles.

. Exchange degeneracy for a system of two spin 1/2 particles
Let us consider a system composed of two identical spin 1/2 particles, confining

ourselves to the study of its spin degrees of freedom. As in § A-2, we shall distinguish
between the physical state of the system and its mathematical description (a ket in state
space).

It would seem natural to suppose that, if we made a complete measurement of each
of the two spins, we would then know the physical state of the total system perfectly.
Here, we shall assume that the component along of one of them is equal to +~/2 and
that of the other one, – ~/2 (this is the equivalent for the two spins of the specification
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Degenerescência de troca: qual estado associar ao resultado de medir uma 
partícula em D?
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B (R, t) =
E0

c
cos (kY � !t) x̂

A (R, t) =
E0

!
sin (kY � !t) ẑ
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Degenerescência de troca
Degenerescência de troca: considere duas partículas idênticas de spin ½, 
uma com spin pra cima e a outra com spin pra baixo.
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Operadores de permutação
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O postulado da simetrização
Postulado da simetrização (N=2): Um sistema de 2 partículas idênticas é 
descrito apenas por estados simétricos ou anti-simétricos, dependendo das 
partículas envolvidas. No primeiro caso, as partículas são chamadas de bósons 
(l=1) e no segundo caso de férmions (l = -1).
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Algumas consequências do postulado
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