F 789 - Mecânica Quântica II

> 1o Semestre de 2023
> $14 / 06 / 2023$
> Aula 26

Aula passada

Partículas idênticas: só são identificadas por sua massa, carga, spin,... Dois elétrons são absolutamente idênticos e indistinguíveis.

Mecânica clássica: Lagrangiana e Hamiltoniana são invariantes pela troca das variáveis dinâmicas.

$$
\begin{aligned}
L\left[\mathbf{r}_{1}, \mathbf{v}_{1} ; \mathbf{r}_{2}, \mathbf{v}_{2}\right] & =L\left[\mathbf{r}_{2}, \mathbf{v}_{2} ; \mathbf{r}_{1}, \mathbf{v}_{1}\right] \\
H\left[\mathbf{r}_{1}, \mathbf{p}_{1} ; \mathbf{r}_{2}, \mathbf{p}_{2}\right] & =H\left[\mathbf{r}_{2}, \mathbf{p}_{2} ; \mathbf{r}_{1}, \mathbf{p}_{1}\right]
\end{aligned}
$$

Duas soluções possíveis, fisicamente indistinguíveis: $\Rightarrow \begin{cases}\mathbf{r}_{1}(t)=\mathbf{r}(t), & \mathbf{r}_{2}(t)=\mathbf{r}^{\prime}(t) \\ \mathbf{r}_{1}(t)=\mathbf{r}^{\prime}(t) & \mathbf{r}_{2}(t)=\mathbf{r}(t)\end{cases}$

a) Ambas fornecem as mesmas previsões.
b) O rótulo dado a cada partícula permanece sempre não ambíguo.

Aula passada

Mecânica quântica:
a) trajetórias não existem (princípio de incerteza).
b) rótulos são ambíguos quando as funções de onda se sobrepõem.

Antes da colisão

Durante

Se quisermos pensar em trajetórias, há duas possibilidades:

a

b

Aula passada

Degenerescência de troca: qual estado associar ao resultado de medir uma partícula em D ?

a

b

$$
\left|\psi_{f}\right\rangle \stackrel{?}{\xlongequal{f}}\left\{\begin{array}{c}
|1: \mathbf{p} ; 2:-\mathbf{p}\rangle, \\
|1:-\mathbf{p} ; 2: \mathbf{p}\rangle, \\
\alpha|1: \mathbf{p} ; 2:-\mathbf{p}\rangle+\beta|1:-\mathbf{p} ; 2: \mathbf{p}\rangle
\end{array}\right.
$$

Degenerescência de troca
Degenerescência de troca: considere duas partículas idênticas de spin $1 / 2$, uma com spin pra cima e a outra com spin pra baixo.

$$
|\psi\rangle \stackrel{?}{=}\left\{\begin{array}{c}
|1:+; 2:-\rangle, \\
|1:-; 2:+\rangle, \\
\alpha|1:+; 2:-\rangle+\beta|1:-; 2:+\rangle
\end{array} \quad|\alpha|^{2}+|\beta|^{2}=1\right.
$$

qual é a probabilidade de medir $S_{1 x} E S_{2 x}$ E OBTER $+\frac{\hbar}{2}$ PARA AMBAS?

$$
\begin{aligned}
\left\langle\varphi_{f} \mid \psi\right\rangle & =\frac{1}{2}[\langle++1+\langle+-1+\langle-+|+\langle--1][\alpha|+-\rangle+\beta|-+\rangle] \\
& =\frac{1}{2}(\alpha+\beta) \\
\Rightarrow P & =\frac{1}{4}|\alpha+\beta|^{2} \text { QUE DEPENDE DE } \alpha E \beta \text { ! }
\end{aligned}
$$

Operadores de permutação
$N=2$ PARTÍculas NÃO NECESSARIAMENTE IDENTICAS DE SPIN S
$\varepsilon(1), \varepsilon(2)$
UMA BASE COMPLETA EM CADA UO:

$$
\begin{array}{ll}
\left|\vec{\imath}_{1}, \mu_{1}\right\rangle & \mu_{1}=-s,-s+1, \ldots, s-1, s \\
\left|\vec{\imath}_{2}, \mu_{2}\right\rangle & \mu_{2}=-s,-s+1, \ldots, s-1, s
\end{array}
$$

UMA OUTRA BASE $\left\{\left|u_{i}\right\rangle, i=2,2,3, \ldots\right\}$

$$
\begin{aligned}
& \mathcal{L}(1):\left\langle\vec{r}_{2}, m_{1} \mid u_{i}\right\rangle=u_{i}\left(\vec{r}_{2}, m_{1}\right) \xrightarrow{s=1 / 2}\left[\begin{array}{l}
u_{i}\left(\vec{r}_{2}, t\right) \\
u_{i}\left(\vec{r}_{2},-\right)
\end{array}\right] \\
& \varepsilon(2):\left\langle\vec{r}_{2}, m_{2} \mid u_{i}\right\rangle=u_{i}\left(\vec{r}_{2}, m_{2}\right\rangle \xrightarrow{s=1 / 2}\left[\begin{array}{l}
u_{i}\left(\vec{r}_{2}, t\right) \\
u_{i}\left(\vec{r}_{2},-\right)
\end{array}\right]
\end{aligned}
$$

BASE dO ESPACO TOTAL DAS 2 PARTÍculas:

$$
\begin{aligned}
&\left|1: u_{i} ; 2: u_{j}\right\rangle=\left|2: u_{j} ; 1: u_{i}\right\rangle \\
& \Rightarrow\left\langle\vec{n}_{1}, m_{j} ; \vec{r}_{2}, m_{2} \mid 1: u_{i} ; 2: u_{j}\right\rangle=u_{i}\left(\vec{r}_{1}, u_{1}\right) u_{j}\left(r_{2}, m_{2}\right)
\end{aligned}
$$

Note que:

$$
\left|1: u_{i} ; 2: u_{j}\right\rangle \neq\left|1: u_{j} ; 2: u_{i}\right\rangle \quad(i \neq j)
$$

UM OPERADJR LINEAR PII (OPEAADOR DE PERMUTA $\mathcal{A} \bar{A} 0$):

$$
\begin{gathered}
P_{21}\left|1: u_{i} ; 2: u_{j}\right\rangle=\left|1: u_{j} ; 2: u_{i}\right\rangle \\
|\psi\rangle=\sum_{i j} C_{i j}\left|2: u_{i} ; 2: u_{j}\right\rangle \quad \text { (QUALQUER ESTARO) } \\
P_{21}|\psi\rangle=\sum_{i j} C_{i j} p_{21}\left|1: u_{i} ; 2: u_{j}\right\rangle=\sum_{i j} c_{i j}\left|1: u_{j i} ; 2: u_{i}\right\rangle
\end{gathered}
$$

Coro $i E j$ SÃO ÍNDICES MUDOS, POSSO $i \vec{j}$

$$
P_{21}|\psi\rangle=\sum_{i, j} C_{j i}\left|1: u_{i} ; 2: u_{j}\right\rangle
$$

SE EU ESCOLHER A BASE COMO SENDD $|\vec{\lambda}, m\rangle$

$$
\begin{aligned}
& |\psi\rangle=\sum_{m_{1}, m_{2}} \int d^{3} r_{1} d^{3} r_{2}\left\langle 1: \vec{r}_{1}, m_{1} ; 2: \vec{r}_{2}, m_{2} \mid \psi\right\rangle_{x} \\
& \left|1: \vec{\pi}, m_{1} ; 2: \vec{\lambda}_{2}, m_{2}\right\rangle \\
& P_{21} \psi\left(\vec{\lambda}_{1}, \mu_{2} ; \vec{\lambda}_{2}, \mu_{2}\right)=\psi\left(\vec{\lambda}_{2}, \mu_{2} ; \vec{\lambda}_{1}, \mu_{1}\right) \\
& \psi\left(\vec{n}_{1}, \vec{n}_{2}\right)=\varphi_{0}\left(\vec{n}_{1}\right) \varphi_{10}\left(\vec{n}_{2}\right) \\
& P_{2}, \psi\left(\vec{r}_{1}, \pi_{2}\right)=\varphi_{0}\left(\vec{\pi}_{2}\right) \varphi_{20}\left(\vec{r}_{1}\right)
\end{aligned}
$$

Propriedades de P_{21}
(a) $P_{21}^{2}=1 \quad \rightarrow P_{21}^{-1}=P_{2 b}$
(b) $P_{21}=P_{21}^{+}$(HERMITIANO)
(c) DE (a) E (b): $P_{21}^{-1}=P_{21}^{+} \Rightarrow P_{21} E^{+}$UNITARLO

Auto-vetores de P_{21}
consequénclas:
(d) OS AUTO-VALORES DE P_{21} SÃO +1 E-1. SE IA E E' AUTO-VETOA COM AUTONALDR λ : $^{\prime}$

$$
\begin{aligned}
& P_{21}|\lambda\rangle=\lambda|\lambda\rangle \Rightarrow P_{21}^{2}|\lambda\rangle=\lambda P_{21}|\lambda\rangle \\
&|\lambda\rangle=\lambda^{2}|\lambda\rangle \Rightarrow \lambda^{2}=1 \\
& \lambda=+100-1
\end{aligned}
$$

SE UM ESTADO $\left|\psi_{s}\right\rangle E^{\prime}$ AUTO-VETOR co थ AUTO-VALOR 1, ELE' E' DITO UN ESTADO SIME'TRICO

$$
P_{21}\left|\psi_{s}\right\rangle=\left|\psi_{s}\right\rangle \quad P_{21}\left|\psi_{A}\right\rangle=-\left|\psi_{A}\right\rangle
$$

SE $\left|\psi_{A}\right\rangle$ TEN AUTO-VALOR-1 ELE E DITO ANTL-SIMETRTB

Simetrizador e anti-simetrizador
DEFIWD: $\underbrace{S=\frac{1}{2}\left(1+P_{21}\right)}_{\text {SIMETRIZADOR }}$ E $\underbrace{A=\frac{1}{2}\left(1-P_{21}\right)}_{\text {ANT1-SIOETRIZADDR }}$
$\left.\begin{array}{l}\text { (a) } S^{t}=S, A^{t}=A \\ \text { (b) } S^{2}=S, A^{2}=A\end{array}\right\} \quad S, A$ SAO PROJETORES
(c)

PROJETORES ORTOGONAIS ENTRE $S I: S A=A S=O$ POR EXEMPLO.

$$
\left.\begin{array}{l}
|\phi\rangle=s|\psi\rangle \\
\left|\phi^{\prime}\right\rangle=A\left|\psi^{\prime}\right\rangle
\end{array}\right\rangle\left\langle\phi^{\prime} \mid \phi\right\rangle=0
$$

(d) $A+S=1$ AES SATO COMRRMENTARES,

DADO $|\psi\rangle$ QUALQUER $S|\psi\rangle$ E SIMÉTRICO E $\quad|\psi\rangle$ É ANTI-SIMÉTRICO

$$
\begin{aligned}
P_{21}(S|\psi\rangle\rangle & =P_{21}\left[\frac{1}{2}\left(1+P_{21}\right)\right]|\psi\rangle \\
& =\frac{1}{2}\left(P_{21}+1\right)|\psi\rangle=(S|\psi\rangle)
\end{aligned}
$$

OU.SE JA, S $|\psi\rangle E^{\prime}$ AUTO-VETOR DE P_{21} com avtorvalor th
ANALOGAMENTE: $P_{21} \overline{(A|\psi\rangle)}=-(A|\psi\rangle)$

Transformação de operadores por permutação
ATUACÃO EN OPERADORES: $P_{21} \hat{O} P_{21}^{+}=$

$$
=P_{21} \hat{O} P_{21}
$$

essa atuaçan é fisIcarente óbula:
EX.: \vec{R}_{1}

$$
\begin{aligned}
& P_{21}\left(\vec{R}_{1}\right) P_{21}=\vec{R}_{2} \\
& P_{21}\left(\vec{R}_{2}\right) P_{21}=\vec{R}_{1} \\
& P_{21}\left(\vec{L}_{1}\right) P_{21}=\vec{L}_{2} \\
& P_{21}\left(\vec{L}_{2}\right) P_{21}=\vec{L}_{1}
\end{aligned}
$$

EXISTEM OPERADORES IMPORTANTES QUE SAO SIMETRICOS PELA ATUAGAO DE P_{21} :

$$
P_{21} \hat{O} P_{21}=\hat{0}
$$

EXEMPLOS: $\vec{R}_{2}+\vec{R}_{2} ; \quad P_{21}\left(\overrightarrow{R_{1}}+\vec{R}_{2}\right) P_{21}=\vec{R}_{1}+\vec{R}_{2}$

$$
\begin{aligned}
& \vec{L}=\vec{L}_{1}+\vec{L}_{2} \text { E SIME'TRICO } \\
& \vec{S}=\vec{S}_{1}+\vec{S}_{2} \text { " } \\
& H=\frac{\vec{P}_{1}^{2}}{2 m}+\frac{\vec{P}_{2}^{2}}{2 m}+V\left(\vec{R}_{1}\right)+V\left(\vec{R}_{2}\right)+\frac{e^{2}}{\left|\vec{R}_{1}-\vec{R}_{2}\right|} \sqrt{\Sigma} \\
& \text { SIME TRICO }
\end{aligned}
$$

$D E: P_{21} \hat{O} P_{21}=\hat{0}$
aplicando pzl pela direita

$$
\begin{aligned}
& P_{21} \hat{O} \underbrace{P_{1}^{2}}_{P_{21}^{2}}=\hat{O} P_{21} \\
& \Rightarrow P_{21} \hat{\theta}=\hat{\theta} P_{21} \Rightarrow\left[P_{21}, \hat{0}\right]=0
\end{aligned}
$$

UM OPERADOR SIMÉTRICO COMUTA COM P PLI.

O postulado da simetrização
Postulado da simetrização ($N=2$): Um sistema de 2 partículas idênticas é descrito apenas por estados simétricos ou anti-simétricos, dependendo das partículas envolvidas. No primeiro caso, as partículas são chamadas de bósons $(\lambda=1)$ e no segundo caso de férmions ($\lambda=-1$).
TEOREMA DE SPIN-E STATI'STICA: (PAULI)
PARTÍCULAS DE SPIN SEOII-NTEIRO (ELETRRONS, PRÓTONS, NÊUTRONS, NEUTRINOS, QUARKS) SAAO FERMIONS.
PARTICULAS DE SPIN INTEIRO (FOTTONS,HIGGS MEISONS, GLUONS, W, Z^{0}, GRA'UITONS) SAO BÓSONS

Algumas consequências do postulado
a) A degenerescência de troca desaparece:

NO EXEMPLO DE DOIS SPINS $1 / 2$ DISCUTIDO:

$$
\begin{aligned}
|\psi\rangle= & \alpha|1:+; 2: \rightarrow\rangle+\beta|1:-; 2:+\rangle \\
\left|\psi_{A}\right\rangle= & A(\psi\rangle=\frac{1}{2}\left(1-p_{21}\right)|\psi\rangle \\
= & \frac{1}{2}[\alpha|1:+; 2: \rightarrow+\beta| 1:-; 2:+\rangle \\
& -\alpha|1:-; 2:+\rangle-\beta|1:+; 2:-\rangle] \\
= & \left.\frac{1}{2}[(\alpha-\beta)|1:+; 2:->-(\alpha-\beta)| 1:-; 2:+\rangle\right] \\
\left|\psi_{A}\right\rangle= & \frac{(\alpha-\beta)}{2}[\mid 1:+; 2:->-(1:-; 2:+\rangle]
\end{aligned}
$$

ELE NĀO ESTA' NORMALIZADO. NORMALIZANDO:

$$
\begin{aligned}
& \left.\left|\psi_{A}\right\rangle=\frac{1}{\sqrt{2}}[11:+; 2:-11:-; 2:+\rangle\right] \\
& \text { ESSE E' O ISTADO FI'sico. } \\
& B=-\alpha=-\frac{1}{\sqrt{2}} \Rightarrow \alpha+\beta=0
\end{aligned}
$$

NO NOSSO EXEMPLO: $\quad P=0$
NO CASO DO ESPALHAMENTO, SUPONDO BÓSONS DE SPIN ZERO:

$$
\left|\psi_{f}\right\rangle=\frac{1}{\sqrt{2}}[|1: \vec{p} ; 2: \overrightarrow{-p}\rangle+|1:-\vec{p} ; 2: \vec{p}\rangle]
$$

b) A construção dos estados:
a) CONSTRUA O ESTADO ROTULANDO

ARBITRARIAMENTE AS PARTICULAS.
POR EXEMPLO: 11: $1 ; 2: \rightarrow$
b) APLIQUE S (BÓSON3) OU A (FÉRMIONS)

NO ESTADO:

$$
A \mid 1:+; 2^{n} \rightarrow>
$$

c) normalcze.

O Resultado é o Estado físico

SE No inicio: |1:u1; $\left.2: u_{1}\right\rangle$

$$
\begin{aligned}
A\left|1: u_{1} ; 2: u_{1}\right\rangle & =\frac{1}{2}\left(1-p_{21}\right\rangle\left|1: u_{1} ; 2: u_{2}\right\rangle \\
& \left.=\frac{1}{2}\left[11: u_{1} ; 2: u_{1}\right\rangle-\left|1: u_{1} ; 2: u_{1}\right\rangle\right]=0
\end{aligned}
$$

$\Rightarrow E^{\prime}$ IMPOSSIVEL CONSTRUIR UM ESTADO NOR MALIZA'VEL COM 2 FEŔRIONS DCUPANDO - rESMO ESTADO:
"principio de exclusta de fatuli"

