F 789 - Mecânica Quântica II

1o Semestre de 2023
 20/03/2023
 Aula 5

Introdução à teoria quântica de
 espalhamento

Experimentos de espalhamento são super comuns em física: Rutherford, efeito fotoelétrico, grandes aceleradores...

Alguns elementos essenciais: partículas incidentes (1), partículas alvo (2) (podem estar em repouco ou não), detetores posicionados longe da região de colisão.

O que discutiremos

1. Espalhamento elástico: as estruturas internas das partículas não mudam na colisão, só há transferência de momento e energia entre elas. Ficam de fora colisões inelásticas.
2. Ignoraremos os spins das partículas. Podem ser incorporados depois.
3. Densidade baixa de partículas no feixe incidente: partículas incidentes não interagem entre si.
4. Densidade baixa de partículas no alvo: probabilidade de uma partícula incidente ser espalhada mais de uma vez é muito baixa. Ignoramos a possibilidade de espalhamento múltiplo.
5. As funções de onda de partículas espalhadas por partículas alvo distintas não interferem entre si (um contra-exemplo é o a difração de Bragg).
6. Por causa de 3,4 e 5 , o problema se resume ao espalhamento que analisaremos é de uma partícula incidente por uma partícula alvo.
7. O potencial de interação entre as duas partículas só depende da sua posição relativa: $V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$

Problema de dois corpos

- problema de dois corpos, COMO VIMOS, PODE SER PESACOPLADO NO PROBLEMA DO, CENTRO DE MASSA (QUE E trival), e no problema dA COORDENADA RELTTNA DE uma partícula de massa EFETIVA $\mu=\frac{\mu_{1} \mu_{2}}{\mu_{1}+\mu_{2}}$

$$
\begin{aligned}
& H_{n}=\frac{\vec{p}^{2}}{2 \mu}+V(\vec{\lambda}) \\
& \vec{P}=M O M E N T O \text { RELATTVO }=\mu \dot{\vec{\imath}}
\end{aligned}
$$

Seção de choque de espalhamento

$$
\begin{aligned}
& V(\vec{r}) \simeq 0 \quad \text { SE }(\vec{n} \mid \gg L \\
& \operatorname{ENEMPLO:V(\vec {n})=v_{0}e^{-n/L}}
\end{aligned}
$$

$$
d r=\frac{d S}{r^{2}}
$$

Region where the potential is effective

$$
F_{i}=\text { INTENSIDADE DO FECXE INCIDENTE }
$$

- NUNERO DE PARTI'CULAS INCIDENTES BOR UNIDADE DE TEMPO POR UAIDADE DE A'REO TRANSNERSAL AO FEIXE

$$
\left[F_{i}\right]=\frac{1}{L^{2} T}
$$

$d m=N$ ÚMERO DE PARTI'CULAS QUE CHEGA NO DETECTOR POR UNIDADE DE TEMPD

$$
[d n]=\frac{1}{T}
$$

A SEÇAO DE CHOQUE DIFERENCIAC DE ESPALAAMENTO:

$$
\sigma(\theta, \phi) \equiv \frac{d \mu}{F_{i} d \Omega} D[\sigma(\theta, \phi)]=\frac{1}{\nexists} L^{2} X=L^{2}
$$

SECATO DE CHOQUE TOTAC DE ES PALHAMENTO:

$$
\sigma=\int \sigma(\theta, \phi) d \Omega=\int \sigma(\theta, \phi) \sin \theta d \theta d \phi
$$

SE $\sigma(\theta, \phi)=\sigma(\theta)$

$$
\sigma=2 \pi \int \sigma(\theta) \dot{\mu} \theta d \theta
$$

$$
U N I D A D E \text { COMUM } \Rightarrow 1 \text { BARN }=10^{-24} \mathrm{an}^{2}=10^{-6} \mathrm{~A}^{2}
$$

Estados estacionários de espalhamento (1D)

O exemplo 1D, já estudado, nos guiará no raciocínio físico.

A FUNÇÃO DE $\psi_{k}(x)$, SOLUCAO ESTACIONÁRIA DE (1) E:
I: $\psi_{k}(x)=A_{1} e^{i k x}+A_{1}^{\prime} e^{-i k x}$
I : $\psi_{k}(x)=\cdots$.
III : $\psi_{k}(x)=A_{3} e^{i k x}$
$\psi_{k}(x) N A D E$ DE QUADRADO INTEGR AVEL

FOI visto aue $R=\left|\frac{A_{1}}{A_{1}}\right|^{2} E \quad T=\left|\frac{A_{3}}{A_{2}}\right|^{2}$ SAO AS
PROBABILIDADES DE REFLEXĀO E TRANSMISSAOO, RESP. ESTAPOS FÍSICOS RODEM SER CONSTRUÍDOS PELA SUPERPOSICAO DAS FUNCOTES $\psi_{k}(x) \rightarrow \psi(x, t)$ $\psi(x, 0)=\int \frac{d k}{\sqrt{2 \pi}} g(k) \psi_{k}(x) \rightarrow$ PACOTE LOCALITADO - A ESQUERDA DO POTENCIC (uer figura adiantel)
EVOLUCÃ TEMPORAL DO PACOTE:

$$
\psi(x, t)=\int \frac{d k}{\sqrt{2 \pi}} g(k) \psi_{k}(x) e^{-i E_{k} t / \hbar} \quad E_{k}=\frac{\hbar^{2} 0_{k}^{2}}{2 \mu}
$$

Os pacotes de onda
Complemento J, do Cohen-Tannoudji
PROBABILIDADE DE
TRANSMISSAO $=\frac{A_{t}}{A_{i}}$

REFLEXAO $=\frac{A_{n}}{A_{i}}$

$$
A_{t}+A_{\lambda}=A_{i}
$$

MOSTRA-SE NO COMRLEMENCO:

$$
\frac{A_{t}}{A_{i}}=\left|\frac{A_{3}}{A_{1}}\right|^{2} \quad E \frac{A_{n}}{A_{i}}=\left|\frac{A_{1}}{A_{1}}\right|^{2}
$$

Estados estacionários de espalhamento (3D)

$$
H *(\vec{r})=E \psi(\vec{r}) \quad H=H_{0}+V(\vec{r})=\frac{p^{2}}{2 \mu}+V(\vec{r})
$$

HIPOTESE: $V(\vec{A}) \underset{\sim \rightarrow \infty}{\longrightarrow}$ MAIS RAPIDO QUE $\frac{1}{\sim}$
SUPOR $V(\rightarrow)<0$ RE TAL FOEMA E>O \Rightarrow ESTADOS
DE ESPALHAMEWTO NAO NORMALLZA'VEIS

$$
\begin{aligned}
& E=\frac{\hbar^{2} k^{2}}{2 \mu}>0 \\
& \Rightarrow\left[-\frac{\hbar^{2} \nabla^{2}}{2 \mu}+V(\vec{\lambda})\right] \psi(\vec{r})=E \psi(\vec{\lambda})=\frac{\hbar^{2} k^{2}}{2 \mu} \psi(\vec{\lambda})
\end{aligned}
$$

MULTIPLICO TUDO POR $\frac{2 \mu}{\hbar^{2}}$:

$$
\left[-\nabla^{2}+\frac{2 \mu}{\hbar^{2}} v(\vec{\lambda})-k^{2}\right] \psi(\vec{\lambda})=0=\left[\nabla^{2}+k^{2}-U(\lambda)\right] \psi(\lambda)=0
$$

Condições de contorno
(i) UMA PARTE INCIDENTE
(iii) UMA PARTE TRANSMITIDA REGIÃO ($n \gg L$
(iiin) UMA PARTE ESPALHADA
(i) $+(i i)$

$$
\begin{aligned}
& \psi_{i}(\vec{r})=A e^{i \vec{k} \cdot \vec{r}} \\
& \psi_{t}(\vec{r})=B e^{i \vec{k} \cdot \vec{r}}
\end{aligned}
$$

$$
(\vec{k}=k \hat{z})
$$

(iiin) CHUTE $\psi_{s}(i) \sim \frac{e^{i k n}}{n}$ (ONDA ESFE'RICA) DE FATO, PARA $\imath \gg L, U(\vec{n}) \sim O$:

$$
\left[\nabla^{2}+k^{2}\right] \psi(\vec{r})=0 \leadsto\left[\frac{1}{n} \frac{d^{2}}{d n^{2}}(n)+k^{2}\right] \psi(\vec{n})=0
$$

$$
\frac{1}{n} \frac{d^{2}}{d n^{2}}\left(x \frac{e^{i k n}}{\psi}\right)=\frac{(i k)^{2}}{n} e^{i k n}=-k^{2} \psi_{s}(\cdots)
$$

MELHOR AINDA $\psi_{S}(\vec{n})=f(\theta, \phi) \frac{e^{i h n}}{\Lambda}$

$$
\left[\nabla^{2}+k^{2}\right] \psi_{s}(\vec{n})=\left[\sim \frac{1}{r^{2}}\right] \psi_{s}(\vec{\lambda}) \longrightarrow 0
$$

AO FINAL, PROCURAROS SOL UCOAES PE

$$
\left[\nabla^{2}+k^{2}-u(\vec{\lambda})\right] \psi_{\vec{n}}(\vec{\lambda})=0
$$

TAIS QUE, QUANDO $\Lambda \gg L$!

$$
\begin{aligned}
& \psi_{\vec{k}}(\vec{\imath}) \xrightarrow[r \gg]{ } A\left[e^{\overrightarrow{i k} \vec{n}}+f_{k}(\theta, \phi) \frac{e^{i n n}}{r}\right] \\
& f_{k}(\theta, \phi)=A M P L I T U D E \text { DE ESPALAAMENTO }
\end{aligned}
$$

Os pacotes de onda em 3D

