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Introdução à teoria quântica de 
espalhamento

CHAPTER VIII SCATTERING BY A POTENTIAL
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Figure 1: Diagram of a collision experiment involving the particles (1) of an incident
beam and the particles (2) of a target. The two detectors represented in the figure measure
the number of particles scattered through angles 1 and 2 with respect to the incident
beam.

of particles (2), and studying the resulting collisions: the various particles1 constituting
the final state of the system – that is, the state after the collision (cf. Fig. 1) – are
detected and their characteristics (direction of emission, energy, etc.) are measured.
Obviously, the aim of such a study is to determine the interactions that occur between
the various particles entering into the collision.

The phenomena observed are sometimes very complex. For example, if particles
(1) and (2) are in fact composed of more elementary components (protons and neutrons
in the case of nuclei), the latter can, during the collision, redistribute themselves amongst
two or several final composite particles which are di�erent from the initial particles; in this
case, one speaks of “rearrangement collisions”. Moreover, at high energies, the relativistic
possibility of the “materialization” of part of the energy appears: new particles are then
created and the final state can include a great number of them (the higher the energy of
the incident beam, the greater the number). Broadly speaking, one says that collisions
give rise to reactions, which are described most often as in chemistry:

(1) + (2) (3) + (4) + (5) + (A-1)

Amongst all the reactions possible2 under given conditions, scattering reactions are de-
fined as those in which the final state and the initial state are composed of the same
particles (1) and (2). In addition, a scattering reaction is said to be elastic when none
of the particles’ internal states change during the collision.

1In practice, it is not always possible to detect all the particles emitted, and one must often be
satisfied with partial information about the final system.

2Since the processes studied occur on a quantum level, it is not generally possible to predict with cer-
tainty what final state will result from a given collision; one merely attempts to predict the probabilities
of the various possible states.
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Experimentos de espalhamento são super comuns em física: Rutherford, 
efeito fotoelétrico, grandes aceleradores…

Alguns elementos essenciais: partículas incidentes (1), partículas alvo (2)
(podem estar em repouco ou não), detetores posicionados longe da região de 
colisão.



O que discutiremos
1. Espalhamento elástico: as estruturas internas das partículas não mudam 

na colisão, só há transferência de momento e energia entre elas. Ficam 
de fora colisões inelásticas.

2. Ignoraremos os spins das partículas. Podem ser incorporados depois.
3. Densidade baixa de partículas no feixe incidente: partículas incidentes 

não interagem entre si.
4. Densidade baixa de partículas no alvo: probabilidade de uma partícula 

incidente ser espalhada mais de uma vez é muito baixa. Ignoramos a 
possibilidade de espalhamento múltiplo.

5. As funções de onda de partículas espalhadas por partículas alvo distintas 
não interferem entre si (um contra-exemplo é o a difração de Bragg).

6. Por causa de 3, 4 e 5, o problema se resume ao espalhamento que 
analisaremos é de uma partícula incidente por uma partícula alvo.

7. O potencial de interação entre as duas partículas só depende da sua 
posição relativa: V(r1-r2)
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Estados estacionários de 
espalhamento (1D)

O exemplo 1D, já estudado, nos guiará no raciocínio físico.

COMPLEMENT HI •

Comment:

When 0 + , 2 + , so that (22) and (23) yield:

1 1

2 0 (25)

In the 0 region, the wave, whose range decreases without bound, tends towards
zero. Since ( 1 + 1) 0, the wave function ( ) goes to zero at = 0, so
that it remains continuous at this point. On the other hand, its derivative, which
changes abruptly from the value 2 1 to zero, is no longer continuous. This is
due to the fact that since the potential jump is infinite at = 0, the integral of
(7) no longer tends towards zero when tends towards 0.

2-b. Potential barriers
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Figure 2: Square potential barrier.

. Case where 0; resonances3

Using notations (9) and (10), we find, in the three regions I ( 0), II (0 )
and III ( ) shown in Fig. 2:

I( ) = 1 e 1 + 1 e 1 (26-a)

II( ) = 2 e 2 + 2 e 2 (26-b)

III( ) = 3 e 1 + 3 e 1 (26-c)

Let us choose, as above, 3 = 0 (incident particle coming from = ). The
matching conditions at = then give 2 and 2 in terms of 3, and those at = 0
give 1 and 1 in terms of 2 and 2 (and, consequently, in terms of 3). Thus we find:

1 = cos 2
2
1 + 2

2
2 1 2

sin 2 e 1 3

1 =
2
2

2
1

2 1 2
sin 2 e 1 3 (27)

3V0 can be either positive (the case of a potential barrier like the one shown in Figure 2) or negative
(a potential well).
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Os pacotes de onda
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Figure 1: Behavior of a wave packet at a potential step, in the case 0. The potential
is shown in figure a. In figure b, the wave packet is moving towards the step. Figure c
shows the wave packet during the transitory period in which it splits in two. Interference
between the incident and reflected waves are responsible for the oscillations of the wave
packet in the 0 region. After a certain time (fig. d), we find two wave packets. The
first one (the reflected wave packet) is returning towards the left; its amplitude is smaller
than that of the incident wave packet, and its width is the same. The second one (the
transmitted wave packet) propagates towards the right; its amplitude is slightly greater
than that of the incident wave packet, but it is narrower.

since, according to formula (13) of Complement HI, 1( 0) is less than 1. The reflection
coe�cient is, by definition, the ratio between the probabilities of finding the particle in
the reflected wave packet and in the incident packet. Therefore, we have = 1( 0) 2,
which indeed corresponds to equation (15) of Complement HI [recall that we have chosen

1( 0) = 1].
The situation is di�erent for the transmitted wave packet. We can still use the fact

that is very small in order to simplify its expression: we replace 2( ) by 2( 0),
and 2 2

0 by the approximation:

2 2
0

2
0

2
0 + ( 0) d 2 2

0
d

= 0

0 + ( 0) 0

0
(20)

80

Complemento JI do Cohen-Tannoudji to
AREAAn

PROBABILIDADE DE

TRANSMISSIVE ALI

REFLEXES AI AREA At
A'FI

Att An Ai

MOSTRA SE NO COMPLEMENT O

AI YE EAI 11.1



Estados estacionários de 
espalhamento (3D)
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Os pacotes de onda em 3DB. STATIONARY SCATTERING STATES. CALCULATION OF THE CROSS SECTION
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Figure 4: Before the collision (fig. a), the incident wave packet is moving towards the
zone of influence of the potential. After the collision (fig. b), we observe a plane wave
packet and a spherical wave packet scattered by the potential (dashed lines in the figure).
The plane and scattered waves interfere in the forward direction in a destructive way
(conservation of total probability); the detector is placed in a lateral direction and can
only see the scattered waves.

of particles: particles scattered in all directions of space other than the forward direction leave
the beam, whose intensity is therefore attenuated after it has passed the target). It is thus the
destructive interference between the plane and forward-scattered wave packets that insures the
global conservation of the total number of particles.

B-3. Integral scattering equation

We propose to show now, in a more precise way than in § B-1-b, how one can
demonstrate the existence of stationary wave functions whose asymptotic behavior is of
the form (B-9). In order to do so, we shall introduce the integral scattering equation,
whose solutions are precisely these stationary scattering state wave functions.

Let us go back to the eigenvalue equation of [formula (B-7)] and put it in the
form:

(� + 2) (r) = (r) (r) (B-25)

Suppose (we shall see later that this is in fact the case) that there exists a function
(r) such that:

(� + 2) (r) = (r) (B-26)
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Figure 1: Behavior of a wave packet at a potential step, in the case 0. The potential
is shown in figure a. In figure b, the wave packet is moving towards the step. Figure c
shows the wave packet during the transitory period in which it splits in two. Interference
between the incident and reflected waves are responsible for the oscillations of the wave
packet in the 0 region. After a certain time (fig. d), we find two wave packets. The
first one (the reflected wave packet) is returning towards the left; its amplitude is smaller
than that of the incident wave packet, and its width is the same. The second one (the
transmitted wave packet) propagates towards the right; its amplitude is slightly greater
than that of the incident wave packet, but it is narrower.

since, according to formula (13) of Complement HI, 1( 0) is less than 1. The reflection
coe�cient is, by definition, the ratio between the probabilities of finding the particle in
the reflected wave packet and in the incident packet. Therefore, we have = 1( 0) 2,
which indeed corresponds to equation (15) of Complement HI [recall that we have chosen

1( 0) = 1].
The situation is di�erent for the transmitted wave packet. We can still use the fact

that is very small in order to simplify its expression: we replace 2( ) by 2( 0),
and 2 2

0 by the approximation:
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