FI 193 – Teoria Quântica de Sistemas de Muitos Corpos

2º Semestre de 2023 29/08/2023 Aula 8

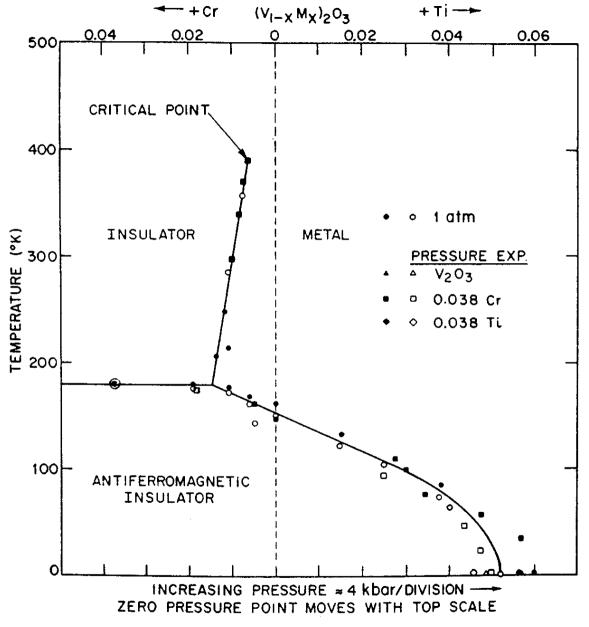
O modelo de Heisenberg

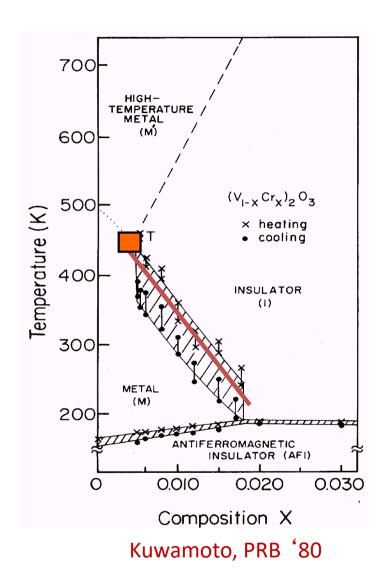
MODELO DE HUBBARD EN SEMI-PREENCHI-MENTO M=1, NO LIMITE U>>t

$$H = J \sum_{\langle ij \rangle} \left(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4} \right)$$
$$J = \frac{4t^2}{II} > 0$$

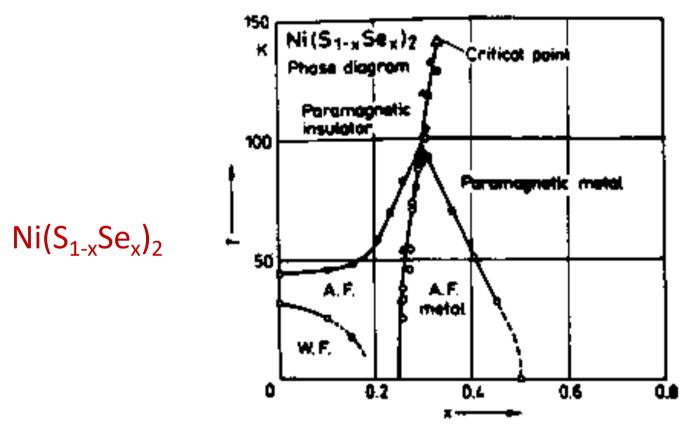
JOS: FAVORECE O AFM

McWhan, D. B., A. Menth, J. P. Remeika, W. F. Brinkman, and T. M. Rice, 1973, Phys. Rev. B 7, 1920.





- Pressão aumenta t, diminui U/t, favorece o comportamento metálico.
- Pressão química: elemento de raio iônico maior/menor aumenta o parâmetro de rede e age como pressão negativa/positiva.

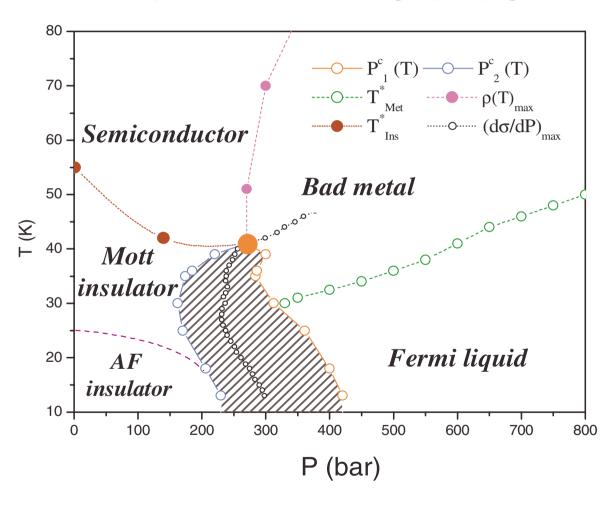


Correspondence rule: 1.0 kbgr = 1.0%

Czjzek et al., JMMM 3, 58 (1976)

Condutores orgânicos fortemente bi-dimensionais

$$\kappa$$
-(BEDT-TTF)₂Cu[N(CN)₂]Cl



Teoria de ondas de spin

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

. CASO JOO = FM

 $H = J \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$. BAIXAS TEMPERATURAS, DENTES DA FASE ORDENADA.

. CONSIDERAR S QUALQUER

PODEMOS DIAGONALIZAR H, St, St, ST, SIMUL-TANEAMENTE: PODEMOS TRABALHAK EM SETORES DE ST, BEM DEFINIDOS. SE D SIS-TEMA TEM N SÍTIOS:

STZ = NS (TODOS DS SPINS TEM M=S) 573 = (N-1)S+ (S-1)=NS-1 (TODOS OS SPINS MENOS UN TEM MES E O DIFERENTE TEM M=S-1) STZ=NS-2 : N=S

O ESTADO 1999 ... > É AUTO-ESTADO DE H E É O ESTADO FUNDAMENTAL

$$\vec{S}_{i} \cdot \vec{S}_{i} = \frac{1}{2} (s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i}^{\dagger}) + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger}$$

$$S_{i} \times \vec{S}_{i} \times t + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger}$$

$$S_{i} \times \vec{S}_{i} \times t + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger}$$

$$S_{i} \times \vec{S}_{i} \times t + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger}$$

$$S_{i} \times \vec{S}_{i} \times t + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} s_{i}^{\dagger} + s_{i}^{\dagger} s_{i$$

ONDE Z É O NÚMERO DE 125 VIZINHOS.

QUALQUER PESVID DE MODE S PARA S-P AUMEN-

TA ESSA ENERGIA:

VAMOS CONSIDERAR "UM SPIN FLIP";

 $\frac{1}{2} \left[S^{+} S^{-} + h \cdot c \cdot \right] | 191 \rangle \qquad (SPIW S = \frac{1}{2})$

= 1 1 1>

O TERMO SAST TENDE A DELOCALIZAR

ESSE UNICO SPIN FLIP E DS AUTO-ES
TADOS DE LA SERÃO "ONDAS PLANAS" COM

MOMENTO R..

INDE ZE (TTT..., i=1,797)

INDE ZE (TTT..., i=1,797)

PSOLUÇÃO EXATA

PRONDA DE SPIN" NO SETOR PE 1 S.F.

OS SETORES DE UN NUMERO FINITO DE SPINFLIPS NÃO PERMITEM SOLUÇÃO EXATA. SE FOCARMOS NO REGINE EN QUE A DENSIDADE DE SPIN FLIPS É BAIXA PODENOS TRATAR O SISTEMA COMO I)M GAS FRACAMENTE INTERAGENTE PE (ONDAS DE SPINS"

Transformação de Holstein-Primakoff

MAPEAR ESTAPOS E OPERADORES EM UM SIS-TEMA BOSONICO EQUIVALENTE. PARA UN DAD SÍTIO:

SE S= ata \$ 25

OPERADORES: Sz IM>= M(M> 5,167=(5-6)18> = (s-ata) 18> Szans-ata 5 M>= ((S7M)(S±M+1) /M±1> 5^t 18> = {[S = (S-8)][S+1 ± (S-8)]}^{1/2} 18 = 18> 5+18> = [[8][25+1-8]]¹²[8-1> 5 18>= V25 /1-8-12 18 18-1>

MAIS RIGOROSAMENTE, PROVER QUE AS ASSO-CIAÇÕES ACIMA SATISFAZEN A ALGEBRA DE SPIN. DE SPINS: a, at - pai, ai PARA UNA REDE Siz - s-atian LEVANDO EN H: Si - J28 VI-aiai ai TRANSFORMAÇÃO DE HOLSTEIN-PRIMAKOFF: Si - Vzs ai VI-atrai $\sum_{ij} S_{ij} S_{ij} = \sum_{ij} \left(S_{-\hat{n}_i} \right) \left(S_{-\hat{n}_i} \right) = N_2 S_{-S} \left[\sum_{ij} \left(\hat{n}_i + \hat{n}_j \right) \right]$ $+2\hat{n}_{1}\hat{n}_{2}\hat{n}_{3}=\frac{NS^{2}}{2}-S_{3}\hat{n}_{1}\hat{n}_{2}\hat{n}_{3}\hat{n}_{3}\hat{n}_{6}\hat{n}_{6}\hat{n}_{6}\hat{n}_{6}\hat{n}_{7}\hat{n}_{1}\hat{n}_{6}\hat{n}_{7}\hat{n}_{7}\hat{n}_{1}\hat{n}_{6}\hat{n}_{7$

NOTEN A OFDEM DECRESCENTE EN S O QUE SUGERE UMA EXPANSÃO SEMI-CLÁSSICA EM (). $\frac{12}{2cis}$ (SiS; +n.c.) = $\frac{1}{2}$ $\frac{2}{2cis}$ [(2s)[1- $\frac{\hat{n}i}{2s}$]² $\frac{1}{2s}$]²

th.c.]

APROXIMAÇÕES NO REGIME: (NI) LL 25 Elou

$$E^{\circ}$$

$$+ 2 \times 1$$

$$+ 2 \times 3 \times 1$$

$$= E^{\circ} + 3 3 \times 1$$

SOLUÇÃO POR TRANSF. DE FOURIEK:

A DISPERSÃO DOS "MAGNONS" FOI É QUADRATICA PARA L PEQUENO.

Sistema em equilíbrio à temperatura T

$$\langle \hat{n}_{z} \rangle = \langle \hat{a}_{z} a_{\bar{z}} \rangle = \frac{1}{e^{\beta \epsilon_{\bar{z}}} - 1} = b(\epsilon_{\bar{z}}) (PLANCK)$$

BOSONS COM POTENCIAL QUÍMICO M=0. SEU NÍMERO MEDIO É DETERMINADO APENAS PELA

TEMPERATURA.

$$U(T) = E_0 + \sum_{k} E_k \langle \hat{n}_k \rangle = E_0 + V \int \frac{d^k k}{2\pi^2} \frac{E_k^2}{e^{\beta E_k^2} - 1}$$

SE TX4J:

$$\Delta U(T) = V \int \frac{dk}{(2\pi)^2} \frac{75 k^2}{555 k^2 - 1}$$

$$EM 30: \Delta U(T) \propto \int \frac{d^3x}{e^{x^2 - 1}} \left(\beta 75\right)^{5/2} \propto T^{5/2}$$

$$C(T) = \frac{2\Delta U}{2T} \propto T^{3/2}$$

MAGNETIZAÇÃO: $M_{3} = g\mu_{3} \gtrsim \langle n_{i} \rangle$ $= g\mu_{3} \gtrsim \left[S - \langle a_{i}^{\dagger} a_{i} \rangle \right]$ $= g\mu_{3} NS - g\mu_{3} \lesssim \langle \hat{n}_{i} \rangle$

DM(T) = -MZ(T) + MZ(0) = guz & <mn>

TZZJ (3D):

DONCT) α $\left(\frac{3}{8} \times \frac{1}{x^2 - 1} \left(\frac{3}{5}\right)^{\frac{3}{2}} \alpha\right) = \frac{3}{2}$

PARA D GENERICO: TXXJ

AM(T) & STSR2 TXXJ

RED-1) dk

RED-1) dk $N \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left($ DÉZ: A INTEGRAL DIVERGE EN 2-20 ESSA DIVERGENCIA SUGERE QUE A CORRE-CAO A MAGNETIZAÇÃO DIVERGE BON DEZ CORD VIMOS NO CASO POS BOGOLIUBONS.

TEDREMA RIGORDED DE "HELHIN-WAGNER"

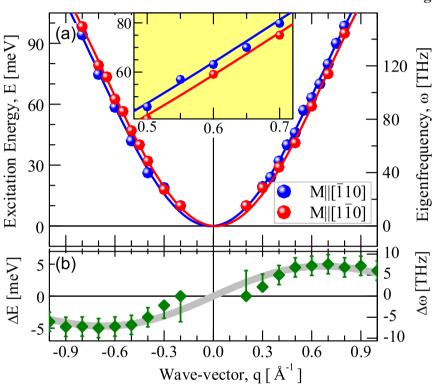
Dispersão de magnons num FM

PRL 108, 197205 (2012)

PHYSICAL REVIEW LETTERS

week ending 11 MAY 2012

Magnon Lifetimes on the Fe(110) Surface: The Role of Spin-Orbit Coupling



Kh. Zakeri,* Y. Zhang, T.-H. Chuang, and J. Kirschner Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany (Received 16 January 2012; published 9 May 2012)

FIG. 1 (color online). (a) Magnon dispersion relation measured on a 2 ML Fe on W(110) at room temperature and for two different magnetization directions. The inset shows a magnified part of the graph for a smaller energy and wave-vector window. (b) The energy splitting defined as $\Delta E(q) = E_{M\parallel[\bar{1}10]}(q) - E_{M\parallel[1\bar{1}0]}(q)$ obtained from (a). The symbols represent the experimental results, while the solid lines represent the fits based on the extended Heisenberg spin Hamiltonian.

Dispersão de magnons num FM

Magnon spectrum and related finite-temperature magnetic properties: A first-principle approach S. V. Halilov, A. Y. Perlovgif, P. M. Oppeneer and H. Eschrig Europhys. Lett, **39**, 91-96 (1997)

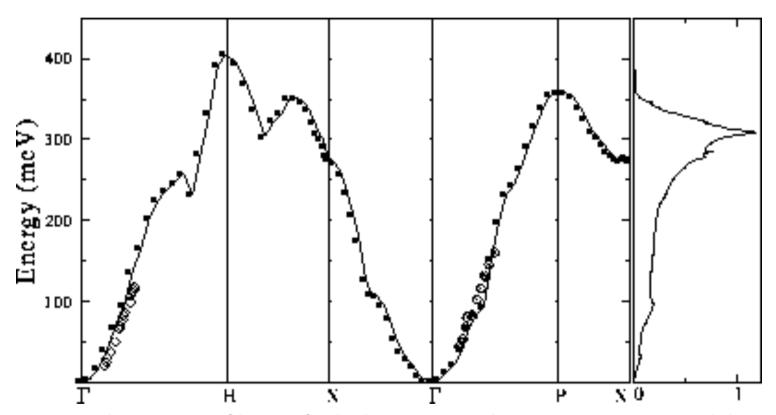
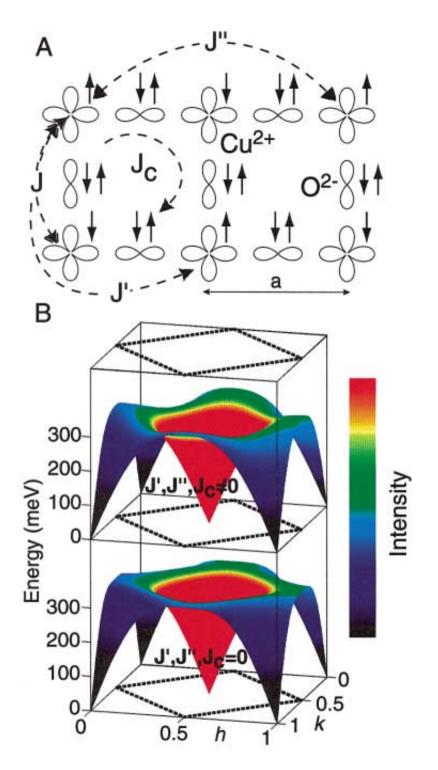


Figure 1: Magnon dispersions of bcc Fe for high-symmetry directions. Experimental data, for pure Fe at 10 K: [20], and for Fe (12 Si) at room temperature: [22]. Calculated dispersions are depicted by solid circles and line. The right-hand panel shows the calculated magnon total density of states (in states/(meVcell)). Note the Kohn-like anomalies ("cusps") in the theoretical spectrum.

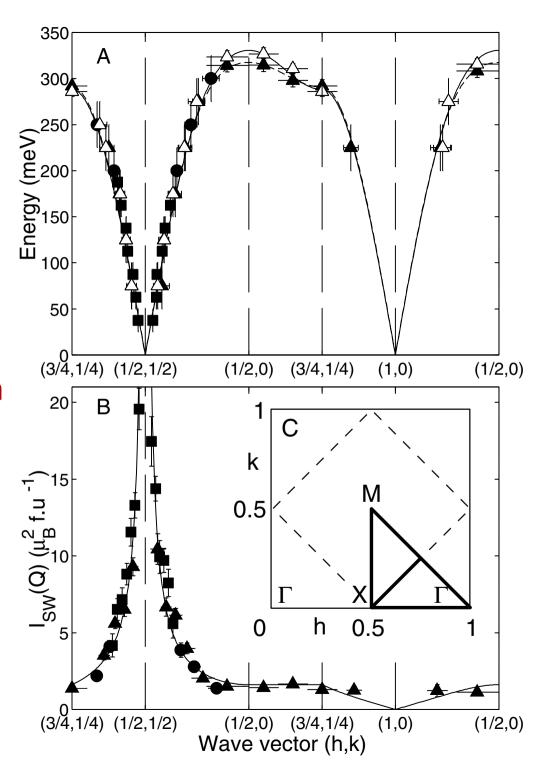
Magnons em um AFM

Spin waves and electronic interactions in La₂CuO₄, R. Coldea *et al.*, Phys. Rev. Lett. **86**, 5377 (2001)

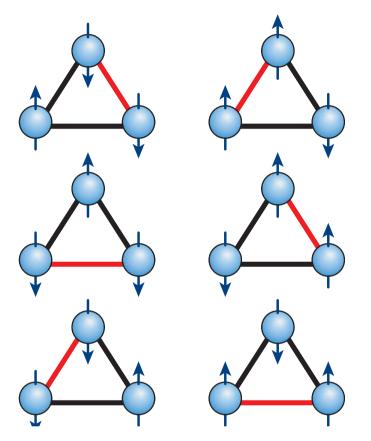


Magnons em um AFM

Spin waves and electronic interactions in La₂CuO₄, R. Coldea *et al.*, Phys. Rev. Lett. **86**, 5377 (2001)

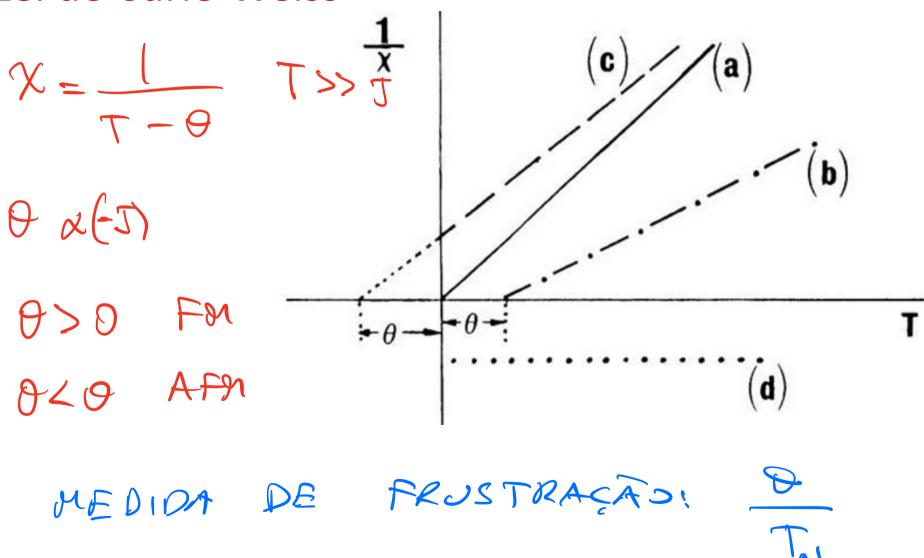


Frustração

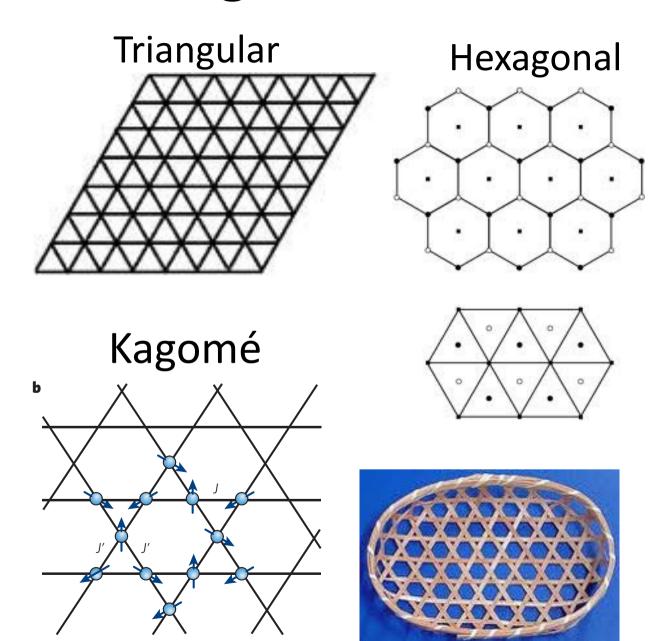


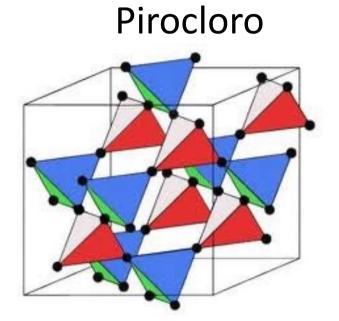
Frustração

Lei de Curie-Weiss



Algumas redes frustradas





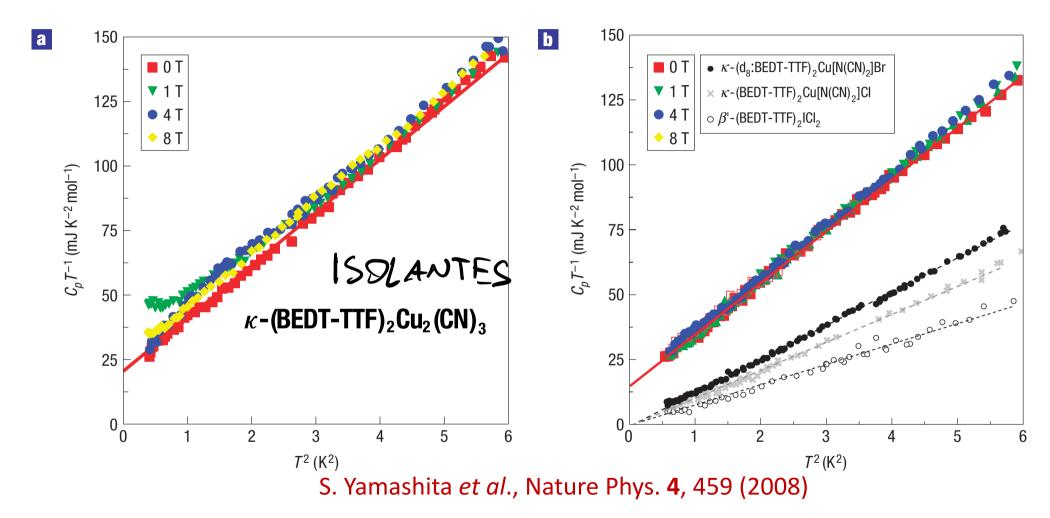
Frustração

Table 1 Some experimental materials studied in the search for QSLs					
Material	Lattice	S	Θ _{cw} (K)	R*	Status or explanation
κ -(BEDT-TTF) ₂ Cu ₂ (CN) ₃	Triangular†	1/2	− 375‡	1.8	Possible QSL
$EtMe_3Sb[Pd(dmit)_2]_2$	Triangular†	1/2	-(375-325)‡	?	Possible QSL
$Cu_3V_2O_7(OH)_2$ •2 H_2O (volborthite)	Kagomé†	1/2	-115	6	Magnetic
$ZnCu_3(OH)_6Cl_2$ (herbertsmithite)	Kagomé	1/2	-241	?	Possible QSL
BaCu ₃ V ₂ O ₈ (OH) ₂ (vesignieite)	Kagomé†	1/2	-77	4	Possible QSL
Na ₄ lr ₃ O ₈	Hyperkagomé	1/2	-650	70	Possible QSL
Cs ₂ CuCl ₄	Triangular†	1/2	-4	0	Dimensional reduction
FeSc ₂ S ₄	Diamond	2	-45	230	Quantum criticality

BEDT-TTF, bis(ethylenedithio)-tetrathiafulvalene; dmit, 1,3-dithiole-2-thione-4,5-ditholate; Et, ethyl; Me, methyl. *R is the Wilson ratio, which is defined in equation (1) in the main text. For EtMe₃Sb[Pd(dmit)₂]₂ and ZnCu₃(OH)₆Cl₂, experimental data for the intrinsic low-temperature specific heat are not available, hence R is not determined. †Some degree of spatial anisotropy is present, implying that $J' \neq J$ in Fig. 1a. ‡A theoretical Curie-Weiss temperature (Θ_{CW}) calculated from the high-temperature expansion for an $S = \frac{1}{2}$ triangular lattice; $\Theta_{CW} = 3J/2k_B$, using the J fitted to experiment.

L. Balents, Nature 464, 199 (2010)

Calor específico linear em T



Calor específico linear em T é típico de férmions. Em algumas teorias, as excitações elementares são férmions neutros ("spinons")

Condutividade térmica linear em T?

Essas mesmas excitações fermiônicas neutras ("spinons") deveriam dar origem a $\kappa(T) \sim T$.

Mas o resultado experimental é exponencial (gap?)

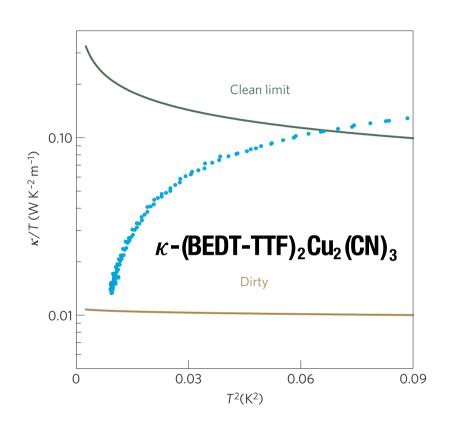


Figure 3 | Comparison between the data and the theory based on the gapless QSL with a spinon Fermi surface. κ/T data (sample A) in zero field (blue) plotted together with expected dependence of equation (1). The green line is for the clean limit $(1/\tau=0)$ and brown for a dirty case with the mean free path as short as 10a, where $a(\simeq 0.8 \text{ nm})$ is the lattice parameter of the triangular lattice.

M. Yamashita *et al.*, Nature Phys. **5**, 44 (2009)