FI 193 – Teoria Quântica de Sistemas de Muitos Corpos

2° Semestre de 2023 01/08/2023 Aula 1

http://sites.ifi.unicamp.br/emiranda/ (Aba Ensino)

- Ementa (estimada) do curso:
- •Alguns modelos comuns
- •Teoria de perturbação
- •Aplicações clássicas
- •Resposta linear
- Supercondutividade

Avaliação: listas (50%) e monografia (50%)

Bibliografia: Notas de aula (serão postadas no site) Mahan, Fetter & Walecka, Coleman

O problema de muitos corpos CRISTAL: IONS E ELETRONS PRIMEIRA ABORDAGEN: RESOLVER (the lake) HIN(t>>= i2+14(t>> OU $H|_{E} > = E|_{E} >$ PARA OS ELETRONS DADA A REDE DE IONS. $N_{e} = 10^{23}$ $\frac{V_{e}=10^{c_{1}}}{1} + \frac{N_{e}}{2} + \frac{P_{e}}{2} + \frac{N_{e}}{2} \vee (\vec{x}_{i}) + \frac{P_{i}}{2} \vee (\vec{x}_{i} - \vec{x}_{j})$ $= \frac{1}{1} + \frac{P_{e}}{2} + \frac{P_{e}}{2} \vee (\vec{x}_{i}) + \frac{P_{e}}{2$ $V(\pi) = c^2$ N(TI, ..., The) - 3 XNE VARIA JEIS ABSOLUTA MENTE IMPOSSIUEL DE SER RESOLUID NUMERICAMENTE, NEM A ARMAZENAGEME POSSIVEL EXPERIMENTOS MEDEN QUANTIDADES MAIS SIMPLES, QUE REPRESENTAN MEDIAS SOBRE OS ELETRONS, NEDIAS TEMPORAIS, MEDIAS ESPACIAIS, ETC. A IDEIA E' FOCAR EN OBJETOS MAIS SIMPLES: (a) MATRIZ PENSIDADE DE UM CORPO: S(x, x')= S&n2dn3... dn ~ 4*(x', x2, x3..., x) × $\kappa \Psi (\vec{\lambda}, \vec{\lambda}_{2}, \vec{\lambda}_{3}, \cdots, \vec{\lambda}_{N})$ CON ELA E' POSSÍVEL COLCULAR QUANTIQADES FISICAS, COMO SUALQUER VALOR ESPERADO DE UN OPERADOR DE UM CORPO. (b) FUNÇÕES DE GREEN. 1 CORPOR $G(\mathcal{R}_3, t_3; \mathcal{R}_2, t_2) = -i < Y_{3+} |T[\Psi_{n}(\mathcal{R}_2, t_3) \Psi_{n}(\mathcal{R}_2, t_3)] H_{n}$

supercondutores ferromagnetos antiferromagnetos)S					
hydrogen 1																	helium 2
																	пе
1.00794(7) lithium	beryllium		Key:	element name								boron	carbon	nitrogen	oxygen	fluorine	4.002602(2) neon
3	4		at	omic numb	er							5	6	7	8	9	10
Li	Ве		S	ymbo	DI 🔰							B	(C)	N	0	F	Ne
6.941(2)	9.012182(3)		2003 atomic	weight (mean re	elative mass)							10.811(7)	12.0107(8)	14.0067(7)	15.9994(3)	18.9984032(5)	20.1797(6)
sodium 11	magnesium 12											aluminium	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg											(A)	Si	P	S	CI	Ar
22.989770(2)	24.3050(6)	e e e e di una	tit o mis soo		a haa mala ma		leen	ashalt	niekel		=1=+	26.981538(2)	28.0855(3)	30.973761(2)	32.065(5)	35.453(2)	39.948(1)
19	20	21	22	23	24	25	26	27	28	29	2inc 30	gallium 31	germanium 32	arsenic 33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	(Cu)	Zn	Ga	Ge	As	Se	Br	Kr
39.0983(1)	40.078(4)	44.955910(8)	47.867(1)	50.9415(1)	51.9961(6)	54.938049(9)	55.845(2)	58.933200(9)	58.6934(4)	63.546(3)	65.38(2)	69.723(1)	72.64(1)	74.92160(2)	78.96(3)	79.904(1)	83.798(2)
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium	molybdenum 42	technetium 43	ruthenium	rhodium 45	palladium 46	silver 47	cadmium 48	indium	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Rb	Sr	Ÿ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te	Ĩ	Xe
85.4678(3)	87.62(1)	88.90585(2)	91.224(2)	92.90638(2)	95.96(2)	[98]	101.07(2)	102.90550(2)	106.42(1)	107.8682(2)	112.411(8)	114.818(3)	118.710(7)	121.760(1)	127.60(3)	126.90447(3)	131.293(6)
caesium	barium	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine 85	radon 86
55	50	1	115	13	14		0			^ · · ·			DI	03 D:		05	
US	ва	LU	HI	la	VV	ĸe	US	Ir	Μ	AU	Hg		PD	BI	20	Αι	ĸn
132.90545(2)	137.327(7)	174.9668(1)	178.49(2)	180.9479(1) dubnium	183.84(1)	186.207(1)	190.23(3)	192.217(3)	195.078(2) darmstadtium	196.96655(2)	200.59(2)	204.3833(2)	207.2(1)	208.98038(2)	[209]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
[223]	[226]	[262]	[267]	[268]	[271]	[272]	[270]	[276]	[281]	[280]	[285]	[284]	[289]	[288]	[293]		[294]

Lanthanoids

Actinoids

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	vtterbium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70
ds	(La)	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.9055(2)	140.116(1)	140.90765(2)	144.24(3)	[145]	150.36(3)	151.964(1)	157.25(3)	158.92534(2)	162.500(1)	164.93032(2)	167.259(3)	168.93421(2)	173.054(5)
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.0381(1)	231.03588(2)	238.02891(3)	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Quebra espontânea de simetria

A emergência na física da matéria condensada e as quebras espontâneas de simetria, *Ciencia & Cultura* 65, 32 (2013)

O ESTADO FUNDAMENTAL DE UN SISTEMA TEM MENOS SIMETRIA QUE O HADILTONIANO, FERROMACNETO: $\vec{M} = \frac{2}{3} \langle \vec{S}_{1} \rangle_{\frac{1}{2}} O$ SE T< C ENBORA H SEJA INVARIANTE POR ROTAÇÕES DE SPIN.

Ordem magnética

- A. Paramagnetismo
- B. Ferromagnetismo
- C. Antiferromagnetismo
- D. Ferrimagnetismo
- E. Vidro de spin

Parâmetros de ordem

Ordem cristalina

DENSIDAGE 8(R): $\tilde{g}(\bar{q}) = \int dx e^{i\bar{q}\cdot\bar{x}} g(\bar{x})$

Cristais líquidos

Cholesteric

Ordens superfluida e supercondutora

MATRIZ DENS. DE UM CORPO: $S(\pi,\pi') \xrightarrow{[\pi-\pi'] \to \infty} \begin{cases} 0 & T > T_c \\ 0 & T > T_c \\ const. & T < T_c \end{cases}$

Excitações elementares

DESCRIÇÃO DOS ESTADOS EXELTADOS DE UN SISTEMA: EXEMPLO: ELETRONS/FERMIONS

E COM INTERAÇÕES ?: TEORIA DOS LIQUIDOS DE FERMI: (a) EXCITAÇÕES ELEMENTORES ESTÃO NUMA CORRES. PONDÊNCIA UM PARA UM COM AS DO SISTEMA LIRE.

b) AS MASSAS EFETIVAS DOS QUASE-ELETRONS (BURACOS) mt > m c) HA' INTERAÇÕES EFETIVAS ENTRE AS QUASE-PARTICULAS QUE AFETAM AS QUANTIDADES FISICAS

Defeitos: Ferromagnetismo e domínios

In bulk material the domains usually cancel, leaving the material unmagnetized. Iron will become magnetized in the direction of any applied magnetic field. This magnetization will produce a magnetic pole in the iron opposite to that pole which is nearest to it, so the iron will be attracted to either pole of a magnet.

Externally applied magnetic field.

Defeitos

Discordância

Disclinação em cristal líquido

Porco-espinho

Boojum em um nemático

Universalidade

Universalidade

Fig. 16.2 Reduced temperature vs. reduced density in the gas-liquid coexistence region, for eight different substances.

Expoentes críticos

$$M(T) = \operatorname{Tr} \left\{ \frac{e^{-\beta H}}{Z} S(\mathbf{r}) \right\} \text{ ferromagneto}$$
$$\rho(T) = \operatorname{Tr} \left\{ \frac{e^{-\beta H}}{Z} \rho(\mathbf{r}) \right\} \text{ líquido - gás}$$

$$C_V(T) \sim \frac{1}{|T - T_c|^{\alpha}}$$

$$O(\mathbf{r}) = \begin{cases} S(\mathbf{r}) - M(T) & \text{ferromagneto} \\ \rho(\mathbf{r}) - \rho(T) & \text{l'quido} - \text{gás} \end{cases} \quad T < T_c : \begin{cases} M(T) \sim (T_c - T)^{\beta} \\ \rho_l(T) - \rho_g(T) \sim (T_c - T)^{\beta} \end{cases}$$

$$G(\mathbf{r}) = \operatorname{Tr} \left\{ \frac{e^{-\beta H}}{Z} O(\mathbf{r}) O(0) \right\} \sim \begin{cases} e^{-r/\xi(T)}/r^{(d-1)/2} & T < T_c \text{ ou } T > T_c \\ 1/r^{d-2} + \eta & T = T_c \end{cases}$$

$$\xi\left(T\right) \sim \frac{1}{\left|T - T_{c}\right|^{\nu}}$$

Expoentes críticos

3D I	sing exponents	v	α	η	β	
EXPT	liquid-vapour	0.6297(4)	0.111(1)	0.042(6)	0.324(2)	
	fluid mixtures	0.6297(7)	0.111(2)	0.038(3)	0.327(3)	
	uniaxial magnets	0.6300(17)	0.110(5)		0.325(2)	
PFT	6,7- <i>l</i> MZM [16]	0.6304(13)	0.109(4)	0.034(3)	0.326(1)	
	$O(\varepsilon^5) \exp [16]$	0.6290(25)	0.113(7)	0.036(5)	0.326(3)	
Lattice	HT exp [17]	0.63012(16)	0.1096(5)	0.0364(2)	0.3265(1)	
	MC [18]	0.63020(12)	0.1094(4)	0.0368(2)	0.3267(1)	

Table 1: Estimates of the critical exponents of the 3D Ising universality class, from experiments (taken from the review [1]), resummation of the FT 6,7-loop calculations within the MZM scheme and of $O(\varepsilon^5)$ expansions, and from lattice techniques: 25th order high-temperature (HT) expansion and Monte Carlo (MC) simulations.

E. Vicari, Critical phenomena and renormalization-group flow of multi-parameter Φ^4 field theories, PoSLAT2007, 023 (2007)