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Aula passada
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Aula passada
Valores esperados no estado fundamental de operadores 
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X

↵�

ˆ
d3r lim

⌘!0+
lim
r!r0

[U↵� (r)G�↵ (rt; r
0t+ ⌘)]

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G(0)

↵�
(k,!) = �↵�G

(0) (k,!)

G(0) (k,!) =
1

! � ✏ (k) + i⌘sgn (k � kF )

G↵� (k,!) = V
X

n

"
h 0| S↵ (0) |n,ki hn,k| 

†
S�

(0) | 0i

! � ✏n,k (N + 1) + i⌘
+

+
h 0| 

†
S�

(0) |n,�ki hn,�k| S↵ (0) | 0i

! + ✏n,�k (N � 1)� i⌘

#

✏n,k (N ± 1) = En,k (N ± 1)� E0 (N ± 1)

G (k,!) = �↵�V
X

n


An,k

! � ✏n,k (N + 1) + i⌘
+

Bn,k

! + ✏n,�k (N � 1)� i⌘

�

6

�E1 > 0 ) ✏d < 0 ) ✏̃d <
U

2

�E2 > 0 ) ✏d > �U ) ✏̃d > �
U

2

iG↵� (rt; r
0t0) =

h 0H |T
h
 H↵ (r, t) 

†
H�

(r0, t0)
i
| 0Hi

h 0H | 0Hi

= ✓ (t� t0)
h 0H | H↵ (r, t) 

†
H�

(r0, t0) | 0Hi

h 0H | 0Hi

+⇣✓ (t0 � t)
h 0H | 

†
H�

(r0, t0) H↵ (r, t) | 0Hi

h 0H | 0Hi

iG↵� (x, y) =
D
T
h
 H↵ (x) 

†
H�

(y)
iE

bO =
X

↵�

ˆ
d3r †

↵
(r)U↵� (r) �

(r)

h 0|
bO | 0i = ⇣i

X

↵�

ˆ
d3r lim

⌘!0+
lim
r!r0

[U↵� (r)G�↵ (rt; r
0t+ ⌘)]

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G(0)

↵�
(k,!) = �↵�G

(0) (k,!)

G(0) (k,!) =
1

! � ✏ (k) + i⌘sgn (k � kF )

G↵� (k,!) = V
X

n

"
h 0| S↵ (0) |n,ki hn,k| 

†
S�

(0) | 0i

! � ✏n,k (N + 1) + i⌘
+

+
h 0| 

†
S�

(0) |n,�ki hn,�k| S↵ (0) | 0i

! + ✏n,�k (N � 1)� i⌘

#

✏n,k (N ± 1) = En,k (N ± 1)� E0 (N ± 1)

G (k,!) = �↵�V
X

n


An,k

! � ✏n,k (N + 1) + i⌘
+

Bn,k

! + ✏n,�k (N � 1)� i⌘

�

6

G(0) (k,ω) =
1

ω → ε (k) + iϑsgn (k → kF )
, ϑ ↑ 0+

H =
∑

ω

∫
d3rϖ†

ω
(r)

(
→
⊋2↓2

2m

)
ϖ
ω
(r)+

1

2

∑

ωε

∫
d3rd3r→ϖ†

ω
(r)ϖ†

ε
(r→)V (r→ r→)ϖ

ε
(r→)ϖ

ω
(r)

↔U↗ = ϱi
∑

ωε

∫
d3r lim

ϑ↑0+
lim
r↑r→

[Uωε (r)Gεω (rt; r
→t+ ϑ)]

↔V ↗ =
iϱ

2

∑

ω

∫
d3r lim

t→↑t+
lim
r↑r→

[(
iςt +

⊋2↓2

2m

)
Gωω (rt; r

→t→)

]

↔H↗ =
iϱ

2

∑

ω

∫
d3r lim

t→↑t+
lim
r↑r→

[(
iςt →

⊋2↓2

2m

)
Gωω (rt; r

→t→)

]

↔U↗ = ϱiV
∑

ωε

∫
d3kdω

(2φ)4
eiϖϑ [Uωε (k)Gεω (k,ω)]

↔H0↗ = ϱiV
∑

ω

∫
d3kdω

(2φ)4
eiϖϑ

(
k2

2m

)
Gωω (k,ω)

↔N↗ = ϱiV
∑

ω

∫
d3kdω

(2φ)4
eiϖϑGωω (k,ω)

↔S↗ = ϱiV
∑

ωε

∫
d3kdω

(2φ)4
eiϖϑ

(ωωε

2

)
Gεω (k,ω)

↔V ↗ =
iϱV

2

∑

ω

∫
d3kdω

(2φ)4
eiϖϑ

(
ω →

k2

2m

)
Gωω (k,ω)

↔H↗ =
iϱV

2

∑

ω

∫
d3kdω

(2φ)4
eiϖϑ

(
ω +

k2

2m

)
Gωω (k,ω)

Gωε (r, r
→,ω) = V

∑

n

[
↔!0|ϖSω (r) |!n↗ ↔!n|ϖ

†
Sε

(r→) |!0↗

ω → εn (N + 1)→ µ+ iϑ
+

+
↔!0|ϖ

†
Sε

(r→) |!n↗ ↔!n|ϖSω (r) |!0↗

ω + εn (N → 1)→ µ→ iϑ

]

εn (N ± 1) = En (N ± 1)→ E0 (N ± 1)

Gωε (k,ω) = V
∑

n

[
↔!0|ϖSω (0) |n,k↗ ↔n,k|ϖ

†
Sε

(0) |!0↗

ω → εn,k (N + 1)→ µ+ iϑ
+

+
↔!0|ϖ

†
Sε

(0) |n,→k↗ ↔n,→k|ϖSω (0) |!0↗

ω + εn,↓k (N → 1)→ µ→ iϑ

]

9



Valor esperado de um operador de dois 
corpos a partir da função de Green

Sistema homogêneo com interação de pares:

�E1 > 0 ) ✏d < 0 ) ✏̃d <
U

2

�E2 > 0 ) ✏d > �U ) ✏̃d > �
U

2

iG↵� (rt; r
0t0) =

h 0H |T
h
 H↵ (r, t) 

†
H�

(r0, t0)
i
| 0Hi

h 0H | 0Hi

= ✓ (t� t0)
h 0H | H↵ (r, t) 

†
H�

(r0, t0) | 0Hi

h 0H | 0Hi

+⇣✓ (t0 � t)
h 0H | 

†
H�

(r0, t0) H↵ (r, t) | 0Hi

h 0H | 0Hi

iG↵� (x, y) =
D
T
h
 H↵ (x) 

†
H�

(y)
iE

G↵� (rt; r
0t0) = G↵� (r, r

0, t� t0)

G↵� (rt; r
0t0) = G↵� (r� r0, t� t0) ⌘ G↵� (R, T )

G↵� (rt; r
0t0) = �↵�G (r� r0, t� t0) ⌘ �↵�G (R, T )

bO =
X

↵�

ˆ
d3r †

↵
(r)U↵� (r) �

(r)

h 0|
bO | 0i = ⇣i

X

↵�

ˆ
d3r lim

⌘!0+
lim
r!r0

[U↵� (r)G�↵ (rt; r
0t+ ⌘)]

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G(0)

↵�
(k,!) = �↵�G

(0) (k,!)

G(0) (k,!) =
1

! � ✏ (k) + i⌘sgn (k � kF )

H =
X

↵

ˆ
d3r †

↵
(r)

✓
�
~2r2

2m

◆
 
↵
(r)+

1

2

X

↵�

ˆ
d3rd3r0 †

↵
(r) †

�
(r0)U (r� r0) 

�
(r0) 

↵
(r)

6

�E1 > 0 ) ✏d < 0 ) ✏̃d <
U

2

�E2 > 0 ) ✏d > �U ) ✏̃d > �
U

2

iG↵� (rt; r
0t0) =

h 0H |T
h
 H↵ (r, t) 

†
H�

(r0, t0)
i
| 0Hi

h 0H | 0Hi

= ✓ (t� t0)
h 0H | H↵ (r, t) 

†
H�

(r0, t0) | 0Hi

h 0H | 0Hi

+⇣✓ (t0 � t)
h 0H | 

†
H�

(r0, t0) H↵ (r, t) | 0Hi

h 0H | 0Hi

iG↵� (x, y) =
D
T
h
 H↵ (x) 

†
H�

(y)
iE

G↵� (rt; r
0t0) = G↵� (r, r

0, t� t0)

G↵� (rt; r
0t0) = G↵� (r� r0, t� t0) ⌘ G↵� (R, T )

G↵� (rt; r
0t0) = �↵�G (r� r0, t� t0) ⌘ �↵�G (R, T )

bO =
X

↵�

ˆ
d3r †

↵
(r)U↵� (r) �

(r)

h 0|
bO | 0i = ⇣i

X

↵�

ˆ
d3r lim

⌘!0+
lim
r!r0

[U↵� (r)G�↵ (rt; r
0t+ ⌘)]

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G(0)

↵�
(k,!) = �↵�G

(0) (k,!)

G(0) (k,!) =
1

! � ✏ (k) + i⌘sgn (k � kF )

H =
X

↵

ˆ
d3r †

↵
(r)

✓
�
~2r2

2m

◆
 
↵
(r)+

1

2

X

↵�

ˆ
d3rd3r0 †

↵
(r) †

�
(r0)U (r� r0) 

�
(r0) 

↵
(r)

hUi =
i⇣

2

X

↵

ˆ
d3r lim

t0!t+
lim
r!r0

✓
i@t +

~2r2

2m

◆
G↵↵ (rt; r

0t0)

�

6
hHi =

i⇣

2

X

↵

ˆ
d3r lim

t0!t+
lim
r!r0

✓
i@t �

~2r2

2m

◆
G↵↵ (rt; r

0t0)

�

G↵� (k,!) = V
X

n

"
h 0| S↵ (0) |n,ki hn,k| 

†
S�

(0) | 0i

! � ✏n,k (N + 1) + i⌘
+

+
h 0| 

†
S�

(0) |n,�ki hn,�k| S↵ (0) | 0i

! + ✏n,�k (N � 1)� i⌘

#

✏n,k (N ± 1) = En,k (N ± 1)� E0 (N ± 1)

G (k,!) = �↵�V
X

n


An,k

! � ✏n,k (N + 1) + i⌘
+

Bn,k

! + ✏n,�k (N � 1)� i⌘

�

An,k =
���hn,k| †

S↵
(0) | 0i

���
2

� 0, Bn,k = |hn,�k| S↵ (0) | 0i|
2
� 0

⇧0 (q) = �2i

ˆ
d3kd!

(2⇡)4
G(0) (k,!)G(0) (k + q,! + ⌫)

= 2

ˆ
d3k

(2⇡)3


✓ (kF � k) ✓ (|k + q|� kF )

⌫ + ✏k � ✏k+q + i⌘
�
✓ (k � kF ) ✓ (kF � |k + q|)

⌫ + ✏k � ✏k+q � i⌘

�

ĤT (t) = Ĥ +

ˆ
d3x' (x, t) Â (x)

�
D
B̂ (x)

E
(t) =

ˆ
d3x0dt0DR

BA
(xt;x0t0)' (x0, t0)

iDR

BA
(xt;x0t0) = ✓ (t� t0) h 0|

h
B̂H (x, t) , ÂH (x0, t0)

i
| 0i

iDBA (xt;x0t0) = h 0|T
h
B̂H (x, t) ÂH (x0, t0)

i
| 0i

DR

BA
(k,!) = V

X

n

"
h 0| B̂ (0) |n,ki hn,k| Â (0) | 0i

! � (En � E0) + i⌘
�

h 0| Â (0) |n,ki hn,k| B̂ (0) | 0i

! + (En � E0) + i⌘

#

DBA (k,!) = V
X

n

"
h 0| B̂ (0) |n,ki hn,k| Â (0) | 0i

! � (En � E0) + i⌘
�

h 0| Â (0) |n,ki hn,k| B̂ (0) | 0i

! + (En � E0)� i⌘

#

ReDR

BA
(k,!) = ReDBA (k,!)

ImDR

BA
(k,!) = sgn (!) ImDBA (k,!)

�G↵� (r1⌧1; r2⌧2) = Tr

⇢
⇢̂

Z
T⌧

h
 
↵M

(r1⌧1) 
†
�M

(r2⌧2)
i�

7



Transformadas de Fourier

�E1 > 0 ) ✏d < 0 ) ✏̃d <
U

2

�E2 > 0 ) ✏d > �U ) ✏̃d > �
U

2

iG↵� (rt; r
0t0) =

h 0H |T
h
 H↵ (r, t) 

†
H�

(r0, t0)
i
| 0Hi

h 0H | 0Hi

= ✓ (t� t0)
h 0H | H↵ (r, t) 

†
H�

(r0, t0) | 0Hi

h 0H | 0Hi

+⇣✓ (t0 � t)
h 0H | 

†
H�

(r0, t0) H↵ (r, t) | 0Hi

h 0H | 0Hi

iG↵� (x, y) =
D
T
h
 H↵ (x) 

†
H�

(y)
iE

bO =
X

↵�

ˆ
d3r †

↵
(r)U↵� (r) �

(r)

h 0|
bO | 0i = ⇣i

X

↵�

ˆ
d3r lim

⌘!0+
lim
r!r0

[U↵� (r)G�↵ (rt; r
0t+ ⌘)]

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G↵� (k,!) = V
X

n

"
h 0| S↵ (0) |n,ki hn,k| 

†
S�

(0) | 0i

! � ✏n,k (N + 1) + i⌘
+

+
h 0| 

†
S�

(0) |n,�ki hn,�k| S↵ (0) | 0i

! + ✏n,�k (N � 1)� i⌘

#

✏n,k (N ± 1) = En,k (N ± 1)� E0 (N ± 1)

G (k,!) = �↵�V
X

n


An,k

! � ✏n,k (N + 1) + i⌘
+

Bn,k

! + ✏n,�k (N � 1)� i⌘

�

An,k =
���hn,k| †

S↵
(0) | 0i

���
2

� 0, Bn,k = |hn,�k| S↵ (0) | 0i|
2
� 0

6
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Operadores de um corpo
Valores esperados no estado fundamental de operadores 
de um corpo: exemplos.

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G(0)

↵�
(k,!) = �↵�G

(0) (k,!)

G(0) (k,!) =
1

! � ✏ (k) + i⌘sgn (k � kF )

H =
X

↵

ˆ
d3r †

↵
(r)

✓
�
~2r2

2m

◆
 
↵
(r)+

1

2

X

↵�

ˆ
d3rd3r0 †

↵
(r) †

�
(r0)U (r� r0) 

�
(r0) 

↵
(r)

hUi = ⇣i
X

↵�

ˆ
d3r lim

⌘!0+
lim
r!r0

[U↵� (r)G�↵ (rt; r
0t+ ⌘)]

hUi =
i⇣

2

X

↵

ˆ
d3r lim

t0!t+
lim
r!r0

✓
i@t +

~2r2

2m

◆
G↵↵ (rt; r

0t0)

�

hHi =
i⇣

2

X

↵

ˆ
d3r lim

t0!t+
lim
r!r0

✓
i@t �

~2r2

2m

◆
G↵↵ (rt; r

0t0)

�

hUi = ⇣iV
X

↵�

ˆ
d3kd!

(2⇡)4
ei!⌘ [U↵� (k)G�↵ (k,!)]

hH0i = ⇣iV
X

↵

ˆ
d3kd!

(2⇡)4
ei!⌘

✓
k2

2m

◆
G↵↵ (k,!)

hNi = ⇣iV
X

↵

ˆ
d3kd!

(2⇡)4
ei!⌘G↵↵ (k,!)

hSi = ⇣iV
X

↵�

ˆ
d3kd!

(2⇡)4
ei!⌘

⇣�↵�

2

⌘
G�↵ (k,!)

hV i =
i⇣V

2

X

↵

ˆ
d3kd!

(2⇡)4
ei!⌘

✓
! �

k2

2m

◆
G↵↵ (k,!)

hHi =
i⇣V

2

X

↵

ˆ
d3kd!

(2⇡)4
ei!⌘

✓
! +

k2

2m

◆
G↵↵ (k,!)

G↵� (k,!) = V
X

n

"
h 0| S↵ (0) |n,ki hn,k| 

†
S�

(0) | 0i

! � ✏n,k (N + 1) + i⌘
+

+
h 0| 

†
S�

(0) |n,�ki hn,�k| S↵ (0) | 0i

! + ✏n,�k (N � 1)� i⌘

#

7
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Operadores de dois corpos
Valores esperados de operadores de dois corpos: sistema 
homogêneo com interação de pares.

iG(0)

↵�
(rt; r0t0) =

�↵�
V

X

k

eik·(r�r0)e�i✏(k)(t�t
0
) [✓ (t� t0) ✓ (k � kF )� ✓ (t0 � t) ✓ (kF � k)]

G↵� (k,!) =

ˆ
d3RdTe�ik·Rei!TG↵� (R, T )

G↵� (R, T ) =

ˆ
d3kd!

(2⇡)4
eik·Re�i!TG↵� (k,!)

G(0)

↵�
(k,!) = �↵�G

(0) (k,!)

G(0) (k,!) =
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and

AS (ω) =
∑

k
AS (k,ω)

N(ω + |e|V) =
∑

k
AP(k,ω + |e|V) ∼ N(0) (10.39)

are the local spectral functions for the sample and probe, respectively. Typically, the probe is a
metal with a featureless density of states, and this justifies the replacement N(ω) ∼ N(0) in the
above expression. The quantity 2πt2N(0) = Γ is the characteristic resonance broadening width
created by the tunnelling out of the probe. If we now differentiate the current with respect to the
applied voltage, we see that the differential conductivity

G(V) =
dI
dV
=

(
2e2

!

)
Γ

∫
dω
π
A(S )(ω)

∼δ(ω+|e|V)︷!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!︷(
−
d f (ω + |e|V)

dω

)

At low temperatures, the derivative of the Fermi function gives a delta function in energy, so that

G(V) =
(
4e2Γ
h

)
AS (ω)|ω=−|e|V

Thus by mapping out the differential conductance as a function of position, it becomes possible to
obtain a complete spatial map of the spectral function on the surface of the sample.

10.7.3 ARPES, AIPES and inverse PES

ARPES (angle resolved photoemission spectroscopy), AIPES (angle integrated photoemision spec-
troscopy) and inverse PES (inverse photo-electron spectrosopy) are the alternative ways of probing
the hole and electron spectra in matter. The first two involve “photon in, electron out”, the second
“electron in, photon out”. The coupling of radiation to light involves the dipole coupling term

HI = −
∫

d3x$j(x) · $A(x)

where $j(x) = i e!2mψσ
†(x)$∇ψσ(x) is the paramagnetic electron current operator. Unlike STM or

neutron scattering, this is a strongly coupled interaction, and the assumption that we can use the
Golden Rule to relate the absorption to a correlation function is on much shakier ground. ARPES
spectroscopy involves the absorption of a photon, and the emission of a photo-electron from the
material. The interpretation of ARPES spectra is based on the “sudden approximation”, whereby it
is assumed that the dipole matrix element between the intial and final states has a slow dependence
on the incoming photon energy and momentum, so that the matrix element is i.e

〈ζ,k + q| − $j · $A|λ,q〉 ∼ Λ(q, êλ)〈ζ |ckσ|λ〉
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On the assumption that Λ is weakly energy and momentum dependent, we are able to directly relate
the absorption intensity to the spectral density beneath the Fermi energy,

IARPES (k,ω) ∝ f (−ω)A(k,−ω)

inγ e out

(10.40)

The appearance of the Fermi function masks states above the Fermi energy, and sometimes causes
problems for the interpretation of ARPES spectra near the Fermi energy - particularly for the es-
timation of anisotropic, superconducting gaps. There is a large caveat to go with this equation:
when photo-electrons escape from a surface, the component of their momentum perpendicular to
the surface is modified by interactions with the surface. Consequently, ARPES spectroscopy can not
resolve the momenta of the spectral function perpendicular to the surface. The other consideration
about ARPES, is that it is essentially a surface probe - X-ray radiation has only the smallest ability
to penetrate samples, so that the information obtained by these methods provides strictly a surface
probe of the system.

In recent years, tremendous strides in the resolution of ARPES have taken place, in large part
because of the interest in probing the electron spectrum of the quasi- two-dimensional cuprate super-
conductors. These methods have, for example, played an important role in exhibiting the anisotropic
d-wave gap of these materials.

Inverse photo-electron spectroscopy probes the spectral function above the Fermi energy. At
present, angle resolved IPES is not a as well developed, and most IPES work involves unresolved
momenta, i.e

IIPES (ω) ∝
∑

k
[1 − f (ω)]A(k,ω)

outγe in

(10.41)

In certain materials, both PES and IPES spectra are available. A classic example is in the spec-
troscopy of mixed valent cerium compounds. In these materials, the Ce atoms have a singly occu-
pied f-level, in the 4 f 1 configuration. PES spectroscopy is able to resolve the energy for the hole
excitation

4 f1 → 4 f 0 + e−, ∆EI = −E f

where E f is the energy of a single occupied 4 f level. By contrast, inverse PES reveals the energy to
add an electron to the 4 f 1 state,

e− + 4 f1 → 4 f 2, ∆EII = E f + U

where U is the size of the Coulomb interaction between two electrons in an f-state. By comparing
these two absorption energies, it is possible to determine the size of the Coulomb interaction energy

324

Parte imaginária da função de Green [B(k,µ-w)]

Distrib. Fermi-Dirac



Figure 1 compares raw ARPES data from vacuum
cleaved, near-optimally doped Bi2212, taken along the
nodal direction [solid red cut in Fig. 2(c) inset] using
6 eV laser photons (a), 28 eV photons from beam line
12.0.1 at the Advanced Light Source (ALS) (b), and 52 eV
photons from beam line 10.0.1 at the ALS (c). All three
images were taken at a similar temperature (16–26 K) and
are scaled identically in energy and momentum. A constant
offset was subtracted from (c) due to the presence of
second order light from the monochromator. A Mg filter
was used to suppress second order light from the data of
panel (b). The data of panels (b) and (c) may appear broad
compared to other synchrotron data [5], though this is an
illusion due to the very small k window chosen to better
highlight the details of the data.

To our knowledge, the data of Fig. 1 is the first direct
comparison of dispersive states measured at very low pho-
ton energy with those at higher energies, and so it is im-
portant to see that many features are accurately repro-
duced. Specifically, the band dispersion, Fermi surface,
and overall qualitative structure agree very well.
The band dispersions determined from Lorentzian fits to
momentum distribution curves (MDCs, intensity profiles at
constant energy) are overlaid on the images. The red dots
represent fits to every other MDC for the laser data and are
shown on all three plots for direct comparison. The blue
squares are the 28 eV dispersion, and the black triangles
are the 52 eV dispersion. The extremely minor differences
in the dispersion are well within the range of systematic
errors possible between different samples and experimen-

tal arrangements, and should not be considered significant
(notice that the laser dispersion falls between those from
different beam lines). This excellent agreement indicates
that many aspects of the sudden approximation remain
valid for the laser data.

The 6 eV photons of the current study do not have
enough energy to excite certain high energy loss features
such as bulk plasmons or other electronic excitations (e.g.,
due to Mott physics). Therefore, these experiments cannot
fully be in the sudden limit. Portions of the loss spectrum
such as the high binding-energy background may therefore
be reduced in the laser data. However, we note that there
are multiple components to the background including both
intrinsic and extrinsic parts of the spectral function, and we
are confident that some of the extrinsic scattering compo-
nents are reduced in the laser data [11]. Therefore, a
discussion of this higher energy portion of the spectrum
requires a comprehensive treatment of all these back-
ground terms, which is outside the scope of this Letter.

Although certain loss features may be absent from the
laser ARPES data, the dispersion kink at approximately
70 meV [5] is clearly seen in both the fits and the raw data
(Fig. 1). Since the kink is thought to be caused by the
coupling of electrons to a bosonic mode (e.g., a phonon), it
represents a loss feature, similar in many ways to the core-
level plasmon loss peaks used in past determinations of the
sudden threshold. The kink effect is also seen as a step
increase in the MDC widths (directly proportional to the
scattering rate) which are plotted in Fig. 2(b) and are

FIG. 1 (color). Comparison of ARPES along the node in near-
optimally doped Bi2212 using (a) 6 eV laser photons at T !
25 K, (b) 28 eV photons at T ! 26 K, and (c) 52 eV photons at
T ! 16 K. The images are scaled identically in E and k, and all
three contain MDC derived dispersion for the laser data (red
circles). Additionally, the dispersions for the data of panels (b)
and (c) are shown as blue squares and black triangles, respec-
tively.

FIG. 2 (color). (a) The MDC at the Fermi energy (red circles)
is shown along with a Lorentzian fit (blue line). (b) Lorentzian
MDC half-widths from the 25 K laser ARPES data of Fig. 1(a).
(c) Comparison of nodal (solid red line) and off-nodal (dotted
blue line) laser ARPES in the superconducting state. The loca-
tion of the cuts in the first Brillouin zone are shown in the inset.
(d) Comparison of the off-nodal cut from (c) in the normal (solid
red line) and superconducting (dotted blue line) states.
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Kramers-Kronig consistent with the dispersion [12]. This
step increase is seen with greater clarity for the laser data
than the synchrotron data. This is a strong indication that
relative to this excitation the laser ARPES experiment is in
the sudden regime, even though it may not be in the sudden
regime compared to plasmons or certain other electronic
excitations. This is consistent with recent theoretical work
showing that loss features from localized excitations
should persist to much lower photon energy (due to their
short interaction length) than those from plasmons [9], and
it suggests a new method to selectively disentangle corre-
lation effects from ARPES spectra.

The agreement between the laser and synchrotron ex-
periments should also be viewed as strong support for the
vast body of previous ARPES studies of Bi2212, as we now
see the same overall picture near the Fermi surface with a
probe that is significantly more bulk sensitive [13].
Figure 2 further illustrates this agreement, showing well-
known Bi2212 features as seen with improved clarity from
laser ARPES. Figure 2(a) shows the MDC at the Fermi
energy (red circles) along with a fit to the data (blue line).
The fit is a simple Lorentzian with no background. The
anisotropy of the superconducting gap [4,5] is shown in
Fig. 2(c) where energy distribution curves (EDCs, intensity
profiles at constant momentum) are shown at 25 K for the
nodal (solid red) and off-nodal (dotted blue) cuts shown in
the inset. Figure 2(d) shows the same off-nodal cut at T !
150 K (solid red curve) and at T ! 25 K (dotted blue
curve), illustrating the opening of the superconducting gap.

The low temperature MDC of Fig. 2(a) has a momentum
full width of 0.6% of the zone diagonal, or about
0:0068 !A"1. This corresponds to an electron mean free
path of about 150 Å, which is almost 5 times the length
scale of the ‘‘patchy’’ disorder measured in STM measure-
ments [2]. This long length scale is consistent with the
interpretation that the patchiness is associated with the
antinodal states only [14].

Great interest and controversy has existed over the na-
ture of the near-Fermi ARPES line shape of cuprate super-
conductors since it directly gives information about the
interactions felt by the electrons [4,5]. Particular attention
has been paid to the issue of the existence of quasiparticles,
the renormalized low-energy excitations which can be
mapped to the simpler noninteracting electron gas pre-
dicted by band theory. A lack of quasiparticles might signal
the need for an entirely new and exotic ground state to de-
scribe the high Tc superconductors. Strictly speaking, true
Landau quasiparticles exist only in the context of Fermi
liquid theory, where the excitations are infinitely sharp at
the Fermi surface and have energy widths with quadratic
dependence on energy and temperature. Although all of
these conditions may not exist in the cuprates, it would be
beneficial to be able to retain some aspects of the quasi-
particle picture. To do so to a reasonable degree, the elec-
tronic excitations must at least be sharper than their energy.
The fact that this quality has not yet been observed in

ARPES studies of cuprates has been used as key evidence
for the lack of quasiparticles.

Figure 3(a) shows EDCs along the node for three tem-
peratures at three k values each, along with fits to the data.
The fits are simply a Lorentzian plus a small background
[15], multiplied by a Fermi-Dirac function. This line shape
was chosen to represent lifetime broadened states, with no
Gaussian resolution broadening or ! dependence of the
electron self-energy ". Including ! dependence to " such
as in a Fermi liquid or marginal Fermi liquid [16] form
does improve the agreement even further [12], but will not
be discussed in this Letter. In order to minimize complica-
tions from the kink, we fit to peak energies of about
60 meV only. Compared to past experience with EDC
line shapes [4,5], the Lorentzian fits show surprisingly
good agreement with the data. Figure 3(b) shows the
Lorentzian full widths from similar fittings for many tem-
peratures plotted versus their peak position. The solid line
on the plot has a slope of one, indicating that peak binding
energies and full widths are equal. All points in the shaded
region can be considered quasiparticle-like, defined as
exci-
tations sharper than their energy. Quasiparticle-like exci-
tations so defined have never been seen in published
ARPES data of cuprates. True Landau quasiparticles
would become infinitely sharp at the Fermi surface, a
property that can never be fully realized in a real experi-
ment (as the Fermi energy is approached, the EDC widths
eventually must become dominated by resolution, impurity

FIG. 3 (color). (a) EDCs (triangles) and Lorentzian fits (blue
lines) at different temperatures (offset for clarity) for three
emission angles each. (b) Summary of EDC fitting results
showing full-width 2 Im" versus peak position. The shaded
region indicates where peak full widths are sharper than their
energy, which should be considered quasiparticle-like. (c) Raw
EDCs from the laser (red circles) and 52 eV synchrotron source
(black triangles) measured at the same k value.
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Laser Based Angle-Resolved Photoemission, the Sudden Approximation, and Quasiparticle-
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Cones de Dirac no grafeno

graphitic 60! [3,20]. This is not the ‘‘occasional’’ small
angle rotations proposed by STM measurements [25]. The
distribution of rotation angles is determined by an entropy
term that selects from a number of SiC-graphene commen-
surate angles with small energy differences [3]. There are
more commensurate angles per radian of arc at ! ¼ 0!,
which explains the observed broader distribution in
Fig. 3(a) [3]. Also note that the angular width of each dis-
crete rotation is very narrow (!! ¼ 0:045!) [see the inset
in Fig. 3(a)], corresponding to a distance of #1 "m. The
rotational domains are smaller than the macroscopic gra-
phene for two reasons. First, the x-ray coherence is limited
by the distance between SiC steps (#1 "m for these
samples). Second, as graphene flows over steps or pleats
in the film, small rotations are introduced in the continuous
sheet.

To show the correlation between graphene rotation angle
! and the "K rotation direction #, note that the "K
direction in ARPES is rotated 30! from the graphene
reciprocal space direction, a$G [see Fig. 1(a)]. This means
that the "K direction for a graphene sheet rotated ! from
the SiC h21#30i direction is at an angle # ¼ !þ 30! (see
Fig. 1). We have marked (in red solid lines) the discrete
rotation angles of the ARPES Dirac cones (near # ¼ 30!)

against the angular distribution measured by SXRD in
Fig. 3(a) [# ¼ 30! þ tan&1ðky=k"KÞ, where ky is taken
from ARPES scans like the one shown in Fig. 2]. It is clear
that the rotated cones correlate well with the data with
many more rotations between 2! and 10!. Note that the
SXRD beam size is#3 mm while the ARPES beam size is
#40 "m; this is why ARPES sees a small number of
discrete rotated cones and SXRD shows a more continuous
distribution averaged over a large beam footprint. In the
# ¼ 0! azimuth, discrete cones are not resolved [see inset
in Fig. 3(b)]. The reason discrete cones are not observed is
a combination of the narrow distribution of commensurate
rotations at! ¼ 30! [note that angular scale in Fig. 3(b) is
expanded by a factor of 2 compared to 3(a)] and the wide
angular acceptance used for this ARPES data set.
Nonetheless, the ARPES distribution of cones again co-
incides with the SXRD angular distribution [Fig. 3(b)].

FIG. 2 (color online). (a) ARPES measured band structure of
an 11-layer C-face graphene film grown on the 6H SiC. The
ARPES resolution was set at 7 meVat @! ¼ 30 eV. The sample
temperature is 6 K. The scan in ky is perpendicular to the
SiC h10#10iSiC direction at the K point (see Fig. 1). Two linear
Dirac cones are visible. (b) A MDC at BE ¼ EF & 0:675 eV
shows a third faint cone. Heavy solid line is a fit to the sum of six
Lorentzians (thin solid lines).
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FIG. 3 (color online). (a) SXRD angular distribution of the
diffuse arcs around!# 0. Inset in (a) shows a magnified view of
a single rotation angle. Vertical red lines mark the angular
position # (upper scale) of measured ARPES Dirac cones
relative to the h21#30i direction. (b) SXRD angular distribution
near !# 30!. Inset in (b) is constant energy cut at the Dirac
point showing the distribution of cones. Solid red line in (b) is
the measured distribution of Dirac cones versus # (upper
scale). Rectangle in (b) shows the ARPES angular resolution
(#0:34! for this data). ARPES data in (b) was taken at 15 K with@! ¼ 50 eV.
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determined by ellipsometry [3]. Graphitized samples were
transported in air and thermally annealed at 800–1100 !C
in UHV prior to measurement. The furnace-grown MEG
samples have exceptionally large sizes. In fact, STM stud-
ies have not yet found a single example of a discontinuous
top layer in a MEG sample, indicating that at least the
topmost layer is a continuous graphene sheet spanning the
entire macroscopic surface. Recent STM studies have
demonstrated the spectacular structural and electronic
properties of the topmost layer [17]. (Note that in contrast,
graphene grown in UHV has sheets that are "50–100 nm
in size [3,21,22].)

ARPES measurements were made on different samples
at both the Cassiopée beam line at the SOLEIL synchrotron
in Gif sur Yvette and at the 12.0.1 beam line at the
Advanced Light Source (ALS) at Lawrence Berkeley
National Lab with base pressures <10#10 Torr. The
high-resolution Cassiopée beam line is equipped with a
modified Peterson PGM monochromator with a resolution
E=!E ’ 70 000 at 100 eV and 25 000 for lower energies.
The detector is a$15! acceptance Scienta R4000 detector
with a base resolution of !E< 1 meV (for signal-to-noise
concerns the experimental resolution was set at 7 meV).
The high-resolution ARPES at the ALS were taken with a
total energy resolution of 25 meV using an SES100
electron spectrometer. The surface x-ray diffraction
(SXRD) experiments were performed at the Advanced

Photon Source, Argonne National Laboratory, on the
6IDB-!CAT UHV beam line with @! ¼ 16:2 keV.
The primary result of this work is shown in Fig. 2(a),

where we display the band structure of an 11-layer gra-
phene film grown on the C face of 6H SiC. Data are taken

near the K point (kx ¼ 1:704 "A#1, kz " 0:02c&, where

c& ¼ 2"=6:674 "A ¼ 0:941 "A#1) and not at the H point
of graphite (kz " 0:5c&). The figure shows two bright
intersecting Dirac cones; a third faint cone is more easily
visible in the momentum dispersion curve (MDC) in
Fig. 2(b). The Dirac cones in Fig. 2(a) are the first mea-
sured nearly unperturbed " bands expected from an iso-
lated graphene sheet. Band maps on different samples and
different parts of the sample show similar results: multiple
rotated linearly dispersing Dirac cones. Because ARPES is
sensitive to 3–4 surface layers at 30 eV, there is no influ-
ence on the measured bands from the graphene-SiC inter-
face. The difference ED # EF from the graphene surface
layers varied from sample to sample. The doping was
measured to be as high as "33 meV p-doped on some
samples and n-doped as low as #14 meV on others. This
gives a charge density that ranges between "1011 and
1010 cm#2, comparable to IR measurements from similar
films (5' 109 cm#2) [11]. The doping fluctuation is most
likely due to surface adsorbates at these low sample
temperatures.
Two points must be stressed. First, these films are not

graphitic. While the band splitting from AB stacking, seen
in bilayer or multilayer graphene films grown on the Si face
of SiC, is observed, they are a fraction of the measured
cones [5,6,23]. In fact, AB planes are so few they can be
viewed as stacking faults in these films. The second point
that must be kept in mind is that furnace-grown and UHV-
grown graphene are very different, both structurally and
electronically. In addition to the poor structural order of
UHV-grown graphene, ARPES measurements on UHV-
grown C-face graphene show a large electron doping of
ED # EF ¼ 0:2 eV with poorly developed " and # bands
[24]. The doping level difference is likely due to charge
coupling between the SiC and the thinner UHV films,
while the broad " bands are due to film disorder. The
remarkable result of multiple linear bands characteristic
of rotated but isolated single graphene sheets confirms
predictions that the unique stacking of MEG films grown
on the C face of SiC preserves the symmetry of isolated
graphene [18–20]. To demonstrate this we first point out a
few structural details of C-face films.
We have plotted SXRD azimuthal scans near $ ¼ 0!

and 30! in Fig. 3. Note that, while the exact distribution of
graphene rotation angles is sample dependent, the proba-
bility of rotation angles near$ ¼ 30! is nearly equal to the
probability of angles near 0!, regardless of sample or film
thickness (i.e., the area under the x-ray curves is nearly
equal:

R
I0d$=

R
I30d$" 1:1$ 0:3). This, along with

SXRD reflectivity measurements, implies that approxi-
mately every other sheet is rotated "30! instead of the

FIG. 1 (color online). (a) 2D Brillouin zone of graphene near
EF showing the six Dirac cones. The graphene reciprocal lattice
vector a&G (and therefore the cones) are shown rotated by $
relative to the SiC h21#30i direction. (b) A schematic diffraction
pattern of graphene grown on SiCð000#1Þ. The SiC (*) and the
graphene patterns (d) from a $ ¼ 30! rotated film are shown.
Diffuse graphene arcs also seen on C face are centered at$¼0!.
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Using high energy and k resolution dispersion curves
allows us to measure two important effects. First, the bands
are linear. This is demonstrated more clearly in Fig. 4
where we plot the position of one branch of a Dirac cone
(determined by fitting the ARPES MDCs to Lorentzian
peaks). Within the error bars of the experiment, there are
no significant deviations from linearity. The average Fermi
velocity, derived from the slope of Eð!kÞ, was found to be
hvFi ¼ 1:0$ 0:05% 106 m= sec for energies down to
&0:5 eV below ED. This value is larger than vF for bulk
graphite (vF ’ 0:86% 106 m= sec ) [26] but within error
bars of values obtained from both IR measurements
(1:02$ 0:01% 106 m=s) [11] and scanning tunneling
spectroscopy (1:07$ 0:01% 106 m=s) [17].

The second point to note is the narrow Lorentzian half
width at half maximum (!) of a MDC [inset of Fig. 4]. ! is
inversely proportional to the carrier scattering time " ¼
1=ð2!vFÞ [27]. Because ! is within error bars of the
instrument resolution, we are only able to place a lower
bound of "> 20 fs. This is consistent with " from IR
measurements (100–300 fs) [11]. Also note that there is
no measurable change in " between 6 and 300 K.

ARPES measurements show that the band structure of
MEG graphene grown on the C face of SiC consists of
multiple undistorted, linearly dispersing graphene bands
originating from individual rotated layers in the multilayer
film. The observed Dirac cones definitively demonstrate
that most of the graphene sheets in the MEG films can be
considered as electronically ideal isolated graphene sheets.
The origin of this unique behavior is a result of MEG’s
unique stacking order. All that is required to preserve
graphene’s linear dispersion in a multilayer stack is to
break the AB-stacking symmetry of graphite. This is real-
ized by introducing a relative rotation angle between two
adjacent sheets that is not 60' (i.e., graphite stacking) [18–

20]. As C-face graphene films grow, the substrate appar-
ently forces relative rotation of &30$ 7' making graph-
itic AB-stacked pairs low density faults in the film. The
significance of this result is that uniform single- or double-
layer graphene films are not necessarily a requirement for
graphene electronics, since even multilayer films have the
required electronic properties.
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FIG. 4 (color online). E( EF vs !ky ¼ kD ( ky. ky is the
Lorentzian center from fits to ARPES MDCs and kD is the
position of the Dirac cone center. Solid line is a linear fit.
Inset is a plot of the MDC HWHM ! as a function of binding
energy at 6 K (d) and 300 K ()). Data were taken with an
energy and k resolution of !E ¼ 7 meV and !ky & 0:01 "A(1 at@! ¼ 30 eV. Dashed line in the inset is the ARPES resolution
used for this data set.
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