FI 193 - Teoria Quântica de Sistemas de Muitos Corpos

1° Semestre de 2023
 02/08/2023
 Aula 2

O gás uniforme de elétrons
("jellium model")
sistema fictício de un gás de elétrons numa "matriz' vaiforme positiva (de tal forma a cancelar a carga elétrical. o que caracteriza o sistema:
a) DENSIDADE: N ELE'TRDNS, NUMA CAIXA DE VOLUKE V

$$
\mu=\frac{N}{V}
$$

LIMITE TERMODINÂMICO: $N \rightarrow \infty, v \rightarrow \infty, \mu=$ CONST.
b) TEMPERATURA: vaMOS fOCAR nO EST. FUND. ($T=0$) TOMAREMOS A INTERACAAO CONO SENDO:

$$
V(\pi)= \pm \frac{e^{2}}{\mu} e^{-\mu r} \quad \text { NO FIM, TOMAMOS } \mu \rightarrow 0
$$

SE $\mu=0$ DESDE O INÍCIO, o CARA'TER DE LONGOALCANCE DA interação COULOMBIANA APRESENTA dIFICULPADES. (CF, com a construcâo de Ewald do ESTADO SÓlIDD).

MATRIZ POSITIVA UNIFORME COM DENSIDADE de carga:

$$
\begin{aligned}
& \rho_{p}=m e \\
& \theta_{p}= \int \rho_{p} d V=N e=- \\
&-\operatorname{CARGA} \text { TOTAL } \\
& \text { DOS ELE'RONS. } .
\end{aligned}
$$

O Hamiltoniano na base de posição

$$
H_{E G}=K_{e}+U_{e e}+U_{p p}+U_{e p}
$$

$$
\begin{aligned}
& K=\sum_{\sigma} \int d^{3} r \psi_{\sigma}^{\dagger}(\mathbf{r})\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}\right) \psi_{\sigma}(\mathbf{r}) \\
& U_{e e}=\frac{e^{2}}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3} r d^{3} r^{\prime} \frac{e^{-\mu\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{\sigma}^{\dagger}(\mathbf{r}) \psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right) \psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right) \psi_{\sigma}(\mathbf{r}) \\
& U_{p p}=\frac{\rho^{2}}{2} \int d^{3} r_{1} d^{3} r_{2} \frac{e^{-\mu\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \quad \rho=\mu e \quad \\
& U_{e p}=-\rho e \sum_{\sigma} \int d^{3} r_{1} d^{3} r e^{-\mu \mu \mathbf{r}_{1}-\mathbf{r} \mid} \\
& \frac{\mathbf{r}_{1}-\mathbf{r} \mid}{} \psi_{\sigma}^{\dagger}(\mathbf{r}) \psi_{\sigma}(\mathbf{r})
\end{aligned}
$$

Análise de $U_{p p}$ e $U_{e p}$

$$
\left.\begin{array}{ll}
U_{p p}=\frac{\rho^{2}}{2} \int d^{3} r_{1} d^{3} r_{2} \frac{e^{-\mu\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} & \vec{x}=\vec{\imath}_{1}-\vec{\lambda}_{2} \\
\vec{\lambda}_{2} \\
\vec{\imath}_{2}
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
\vec{r}_{1} \\
\vec{x}
\end{array}\right.
$$

$$
=\frac{e^{2}}{2}\left(\frac{N}{V}\right)^{2} \underbrace{\int_{v}^{3} d_{2}}_{V} d^{3} x \underbrace{\frac{e^{-\mu x}}{x}}_{U(0)}
$$

DEFINO: TR. FOURIER: $U(\vec{q})=\int d^{3} x e^{-i \vec{g} \cdot \vec{x}} \frac{e^{-\mu x}}{x}=$

$$
\begin{aligned}
& =\int d^{3} x e^{-i q x \cos \theta} \frac{e^{-\mu x}}{x}=\int_{0}^{\infty} x^{2} d x \int_{0}^{\pi} 2 \pi \sin \theta d \theta e^{-i q x \cos \theta} \frac{e^{-\mu x}}{x} \\
& =\frac{4 \pi}{q^{2}+\mu^{2}} \Rightarrow U(0)=\frac{4 \pi}{\mu^{2}} \\
& U_{p p}=\frac{e^{2}}{2} \frac{N^{2}}{v} \frac{4 \pi}{\mu^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& U_{e p}=-\rho e \sum_{\sigma} \int d^{3} r_{1} d^{3} r \frac{e^{-\mu \mathbf{r}_{1}-\mathbf{r} \mid}}{\left|\mathbf{r}_{1}-\mathbf{r}\right|} \psi_{\sigma}^{\dagger}(\mathbf{r}) \psi_{\sigma}(\mathbf{r}) \quad \overrightarrow{\mathbf{x}}=\overrightarrow{r_{1}}-\vec{r} \\
& =-\frac{N}{V} e^{2} \sum_{\sigma} \int d^{3} \mu \underbrace{d^{3} x}_{U(0)} \frac{e^{-\mu x}}{x} \psi_{\sigma}^{+}(\pi) \psi_{\sigma}(\pi) \\
& =-\frac{N}{V} e^{2} u(0) \underbrace{\sum_{\sigma} \int^{2} d^{2} r \psi_{\sigma}^{+}(\vec{r}) \psi_{\sigma}(\vec{x})}_{\hat{N} \rightarrow N}=-\frac{N^{2}}{V} e^{2} \frac{4 \pi}{\mu^{2}} \\
& U_{p p}+U_{e p}=-\frac{N^{2}}{2 v} \frac{4 \pi e^{2}}{\mu^{2}}
\end{aligned}
$$

K_{e} na base de momentos
base de estados de partícula única:

$$
\begin{aligned}
& \langle\vec{r} \mid \vec{k}\rangle=\frac{e^{i \vec{k} \cdot \vec{n}}}{\sqrt{V}} \quad \int d_{n}^{3}\left|\psi_{\sqrt{k}}(\vec{x})\right|^{2}=\int d^{3} n \frac{1}{V}=1 \\
& K_{e}=\sum_{\sigma} \int d^{3} n \psi_{\sigma}^{+}(\lambda)\left[-\frac{\nabla^{2}}{2 m}\right] \psi_{\sigma}(\vec{r}) \text { (BASE DE Pos } 1 \subset \pi 0 \text {) } \\
& =\sum_{\sigma} \sum_{\vec{k}}\left(\frac{k^{2}}{2 m}\right) a_{\vec{k} \sigma}^{t} a_{\vec{k} \sigma} \\
& k_{e}=\sum_{\hat{k} \sigma}\left(\frac{k^{2}}{2 \mu}\right) \underbrace{a_{\vec{k} \sigma}^{+} a_{\vec{k} \sigma}}_{\hat{M}_{\vec{k} \sigma}} \\
& \psi_{\sigma}^{+}(\vec{r})=\sum_{\vec{k}} \frac{e^{\overrightarrow{i k} \cdot \vec{r}} a_{\vec{k} \sigma}^{t}, ~}{\sqrt{v}} \\
& \text { (BASE DE MOMENTOuS } \vec{k} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& U_{e e}=\frac{e^{2}}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3} r d^{3} r^{\prime} \frac{e^{-\mu\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \psi_{\sigma}^{\dagger}(\mathbf{r}) \psi_{\sigma^{\prime}}^{\dagger}\left(\mathbf{r}^{\prime}\right) \psi_{\sigma^{\prime}}\left(\mathbf{r}^{\prime}\right) \psi_{\sigma}(\mathbf{r}) \\
& =\frac{1}{2} \sum_{\substack{\vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3}, \vec{k}_{4} \\
\sigma_{2}, \sigma_{2}, \sigma_{3}, \sigma_{4}}}^{\left\langle\vec{k}_{k_{2}} \sigma_{2} ; \vec{k}_{2} \sigma_{2}\right| \cup\left|\vec{k}_{31} \sigma_{3} ; \vec{k}_{k_{4}} \sigma_{4}\right\rangle} a_{\vec{k}_{1} \sigma_{2}}^{+} a_{\overrightarrow{k_{2}} \sigma_{2}}^{+} a_{\vec{k} 4} \vec{\sigma}_{4} a_{k_{3} \sigma_{3}} \\
& \sigma_{2}, \sigma_{2}, \sigma_{3}, \sigma_{4} \\
& \Delta=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{3}, \sigma_{4}\right\rangle \int \frac{d^{3} n_{1} d^{3} \Lambda_{2}}{v^{2}} e^{-i \vec{k}_{1} \cdot \vec{\lambda}_{1}} e^{-i \vec{k}_{2} \cdot \vec{\lambda}_{2}}\left[\frac{e^{2} e^{-\mu\left|\lambda_{1} \cdot \vec{n}_{2}\right|}}{\left|\vec{\lambda}_{2}-\hat{\lambda}_{2}\right|}\right] x \\
& \times e^{i \vec{k}_{3} \cdot \vec{n}_{1}} e^{i \vec{k}_{4} \cdot \hat{n}_{2}}=\delta_{\sigma_{1} \sigma_{3}} \delta_{\sigma_{2} \sigma_{4}} \frac{e^{2}}{V^{2}} \int d^{3} r_{1} d^{3} n_{2} e^{-i\left[\left(\vec{k}_{2}-\vec{k}_{3}\right) \cdot \vec{n}_{2}+\left(\vec{k}_{2} \cdot \vec{k}_{4}\right) \cdot \vec{n}_{2}\right]} \\
& x \frac{e^{-\mu\left|\vec{\lambda}_{2}-\vec{\lambda}_{2}\right|}}{\left|\vec{\lambda}_{1}-\vec{\lambda}_{2}\right|} \quad \vec{x}=\vec{\lambda}_{1}-\vec{\lambda}_{2} \Rightarrow \vec{\lambda}_{2}=\vec{\lambda}_{1}-\vec{x} \\
& =\frac{e^{2}}{v^{2}} \delta_{\sigma_{1} \sigma_{3}} \delta_{\sigma_{2} \sigma_{1}} \int d^{3} r_{2} d^{3} x e^{-i\left[\left(\vec{k}_{1}-\vec{k}_{3}+\vec{k}_{2}-\vec{k}_{4}\right) \cdot \vec{r}_{2}\right]} e^{i\left(\vec{k}_{2}-\vec{k}_{4}\right) \cdot \vec{x}} x \\
& x \frac{e^{-\mu x}}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \int d^{3} \sim e^{-i \vec{q} \cdot \pi}=\delta_{\vec{q}, 1} V \\
& \rightarrow V \delta_{\vec{k}_{2}+\vec{k}_{2}, \overrightarrow{k_{3}}+\vec{k}_{4}} \\
& \int d^{3} x e^{i\left(\vec{k}_{2}-\vec{h}_{4}\right) \cdot \vec{x}} \frac{e^{-\mu x}}{x}=U\left(\vec{k}_{4}-\vec{k}_{2}\right) \\
& U_{e e}=\frac{e^{2}}{2 V} \sum_{\substack{\bar{k}_{k_{1}} \cdots \\
\sigma_{1} \cdots}} \delta_{\sigma_{1} \sigma_{3}} \delta_{\sigma_{2} \sigma_{4}} \delta_{\bar{k}_{1}+\bar{k}_{2}, \bar{k}_{3}+\bar{k}_{4}} U\left(\bar{k}_{4}-\bar{k}_{2}\right) \times \\
& a_{\overline{k_{2}} \sigma_{1}}^{+} a^{+} \overline{k_{2} \sigma_{2}} a_{k_{4} \sigma_{4}} a_{\overline{k_{3}} \sigma_{3}} \\
& =\frac{e^{2}}{2 V} \sum_{\substack{k_{1}-\\
\sigma_{1} \sigma_{2}}} \delta_{\bar{k}_{1}+\bar{x}_{2}, \bar{k}_{3}+\bar{k}_{4}} U\left(\bar{k}_{4}-\bar{k}_{2}\right) a_{\overline{k_{1}} \sigma_{1}} a^{+} \bar{k}_{2} \sigma_{2} a_{k_{4} \sigma_{2}} a_{\overline{k_{3}} \sigma_{1}} \\
& \begin{array}{l}
\vec{k}_{1}=\vec{k}_{3}-\vec{q} \\
\vec{k}_{2}=\vec{k}_{4}+\vec{q}
\end{array}=\frac{e^{2}}{2 v} \sum_{\overrightarrow{k_{3}} \vec{k}_{1} \vec{k}_{4}, \vec{q}} U(\vec{q}) a_{\vec{k}_{3}-\vec{q}_{1}, \sigma_{1}}^{+} a^{+} \vec{k}_{4}+\vec{q}_{3}, \sigma_{2} a_{\vec{k}_{4}} \sigma_{2} a_{k_{3} \sigma_{1}} \\
& \vec{k}_{4}-\vec{k}_{2}=-\vec{q}=\frac{e^{2}}{2 v} \sum_{k_{\sigma^{\prime}}, \vec{\sigma}_{2}^{\prime} \vec{l}}^{\sigma_{1}, \sigma_{2}} u(\vec{q}) a_{\vec{k}-\vec{k}, \sigma}^{+} a_{\vec{k}-\vec{g}, \sigma^{\prime}}^{+} a_{\vec{k} \vec{k}^{\prime} \sigma^{\prime}} a_{\vec{k}, \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& u(\stackrel{q}{q})=\frac{4 \pi}{q^{2}+\mu^{2}} \\
& \left\{a_{\lambda} a_{\mu}^{+}\right\}=\delta_{\lambda \mu} \\
& a_{\lambda} a_{\mu}^{+}=-a_{\mu}^{t} a_{\lambda}+\delta_{\lambda \mu}
\end{aligned}
$$

TERMO $\vec{q}=0$ DE Uee:

$$
\begin{aligned}
& U_{e e}(\vec{q}=0)=\frac{e^{2}}{2 v} \sum_{\substack{\vec{k}, \vec{k}^{\prime} \\
\sigma, \sigma^{\prime}}} O(\sigma) \underbrace{+}_{-a_{\vec{k}, \sigma}^{+} a_{\vec{k}, \sigma^{\prime}}^{+} a_{\vec{k}, \sigma}^{+} a_{\vec{k}, \sigma^{\prime}}^{+}, \sigma^{\prime}} a_{\vec{k}, \sigma^{\prime}} a_{\vec{k}, \sigma} . \\
& =+a_{\vec{k} \sigma}^{+} a_{k} a_{\vec{k}, \sigma 1}^{+} a_{\vec{k}}^{\prime}, \sigma^{\prime}- \\
& \text { - } \delta_{\bar{k} \overrightarrow{k^{\prime}}} \delta_{\sigma \sigma} a_{\vec{k}, \sigma} a_{\vec{k}, \sigma}= \\
& =\hat{M}_{\vec{k} \sigma} \hat{M}_{\vec{k} \sigma^{\prime}{ }^{\prime}}-\delta_{\vec{k} \vec{k}^{\prime}} \delta_{\sigma \sigma} \hat{M}_{\bar{n}, \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& U_{e e}(\vec{l}=0)=\frac{e^{2}}{2 V} U(0) \sum_{\sigma_{k \sigma^{\prime}}}\left[\hat{n}_{\vec{k}, \sigma} \hat{M}_{\vec{k}^{\prime}, \sigma^{\prime}}-\delta_{\bar{k} \vec{k}^{\prime}} \delta_{\sigma \sigma^{\prime} \bar{n}_{\bar{k}}}\right] \\
& =\frac{e^{2}}{2 V} U(0)[\underbrace{\left(\sum_{\vec{k} \sigma} \hat{N}_{\bar{h} \sigma}\right)}_{\hat{N}}(\underbrace{\sum_{k^{\prime} \sigma} \hat{M}_{\vec{h}}, \sigma}_{\hat{N}})-\underbrace{\sum_{\vec{k}, \sigma} \hat{M}_{\vec{k} \sigma}}_{\hat{N}}] \\
& =\frac{e^{2}}{2 V} U(0 i)\left(N^{2}-N\right)=\frac{N^{2} e^{2}}{2 V} U(0)\left(1-\frac{N}{N}\right) \\
& =\frac{N^{2}}{2 v} e^{2} \frac{4 \pi}{\mu^{2}}=-\left(u_{p p}+U_{e p}\right) \\
& U(\vec{q})=\frac{4 \pi}{q^{2}+\mu^{2}} \overrightarrow{\mu \rightarrow 0} \quad U(q)=\frac{4 \pi}{q^{2}} \\
& \vec{k}=\left(k_{x}, k_{y}, k_{z}\right) \xrightarrow{P B C} \frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right) \\
& \sum_{k}=\frac{V}{(2 \pi)^{3}} \int^{3} d^{3}
\end{aligned}
$$

Gás uniforme de elétrons ("jellium model")

$$
H_{E G}=\sum_{\mathbf{k}, \sigma} \frac{k^{2}}{2 m} a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma}+\frac{1}{2 V} \sum_{\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{q} \neq 0, \sigma_{1}, \sigma_{2}} \frac{4 \pi e^{2}}{q^{2}} a_{\mathbf{k}_{1}+\mathbf{q}, \sigma_{1}}^{\dagger} a_{\mathbf{k}_{2}-\mathbf{q}, \sigma_{2}}^{\dagger} a_{\mathbf{k}_{2}, \sigma_{2}} a_{\mathbf{k}_{1}, \sigma_{1}}
$$

Escala de comprimento disponível: raio de Bohr $\quad a_{0}=\frac{\hbar^{2}}{m e^{2}}$
Escala de energia disponível: Rydberg 1 Ryd $=\frac{e^{2}}{2 a_{0}}=13.6 \mathrm{eV}$

$$
\vec{k}=a_{0} \vec{k}^{\prime}, \ldots \quad\left[\vec{k}^{\prime}\right]=1
$$

DISTÂNCIA MÍDIA ENTRE OS ELE TRONS: $\frac{V}{N} \equiv \frac{4 \pi}{3}\left(n_{s} a_{0}\right)^{3}$

$$
n_{S}: \mu E D I D A \text { DO VOLUMEIERETROW }
$$

$r_{\text {s }}^{3} \sim \frac{1}{n} \quad r_{\text {s GRANDE }}=$ BAIXA DENSI DADE

$$
H_{E G}=\frac{e^{2}}{a_{0}} \frac{1}{r_{s}^{2}}\left(\sum_{\mathbf{k}^{\prime}, \sigma} \frac{k^{\prime 2}}{2} a_{\mathbf{k}^{\prime}, \sigma}^{\dagger} a_{\mathbf{k}^{\prime}, \sigma}+\frac{3 r_{s}}{2 N} \sum_{\mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}, \mathbf{q}^{\prime} \neq 0, \sigma_{1}, \sigma_{2}} \frac{1}{q^{\prime 2}} a_{\mathbf{k}_{1}^{\prime}+\mathbf{q}^{\prime}, \sigma_{1}}^{\dagger} a_{\mathbf{k}_{2}^{\prime}-\mathbf{q}^{\prime}, \sigma_{2}}^{\dagger} a_{\mathbf{k}_{2}^{\prime}, \sigma_{2}} a_{\mathbf{k}_{1}^{\prime}, \sigma_{1}}\right)
$$

$$
\begin{aligned}
& \overbrace{k_{F}}^{\substack { k_{z} \\
\begin{subarray}{c}{k_{k} \\
\text { Fumbice } \\
\text { Surfice }{ k _ { z } \\
\begin{subarray} { c } { k _ { k } \\
\text { Fumbice } \\
\text { Surfice } } }\end{subarray}} \\
& N=\sum_{k \sigma \sigma} \mu_{\vec{k}_{1} \sigma}=\sum_{k_{1} \sigma} \theta\left(k_{F}-k\right)=2 V \int \frac{d^{3} k}{(2 \pi)^{2}} \theta\left(k_{f}-k\right) \\
& =\frac{2 V}{(2 \pi)^{2}} \frac{4}{3} \pi k_{f}^{3} \Rightarrow \mu=\frac{N}{V}=\frac{k_{k f}^{3}}{3 \pi^{2}} \\
& E\left(r_{s}=0\right)=\left\langle k_{e}\right\rangle=2 v \int \frac{d^{3} k}{(2 \pi)^{3}} \theta\left(k_{F}-k\right\rangle \frac{k_{k}^{2}}{2 \mu}=\frac{V}{2 \pi^{2} m} \frac{k_{f}^{5}}{5}=\frac{3}{5} N \frac{k_{k}^{2}}{2 \mu} \\
& =\frac{3}{5} N E_{F}=\frac{3 N}{5} \frac{\left(\frac{9 \pi}{4}\right)^{2 / 3}}{\Lambda^{\xi}} \mathrm{By}_{y} d=\frac{2.2099}{\Lambda_{5}^{2}} \mathrm{R}_{y d}
\end{aligned}
$$

EM TEORIA DE PERTURBACETO EN Is:
$\angle \hat{V}\rangle_{0} \rightarrow$ EKERCI'CIO DA LISTA

$$
\begin{aligned}
\frac{\left\langle\hat{v}_{0}\right\rangle}{N} & =-\frac{3}{2 \pi}\left(\frac{9 \pi}{4}\right)^{1 / 3} \frac{1}{n_{s}} R_{y d}=-\frac{0.9163}{\Lambda_{s}} R_{y d} \\
\frac{E^{(i)}(n s)}{N} & =\left[\frac{2.2059}{n_{s}^{2}}-\frac{0.9163}{n_{s}}\right] R_{y d} \\
& =\frac{1}{n_{s}^{2}}\left[2.2099-0.9163 n_{s}\right] R_{y d}
\end{aligned}
$$

Expansão de alta densidade

$$
\epsilon\left(r_{s}\right) \simeq\left\{\begin{array}{c}
\left(\frac{2.210}{r_{s}^{2}}-\frac{0.916}{r_{s}}+0.062 \ln r_{s}-0.093+\mathcal{O}\left(r_{s} \ln r_{s}\right)\right) \mathrm{Ry}, \tag{3D}\\
\left(\frac{1}{r_{s}^{2}}-\frac{1.20}{r_{s}}-(0.38 \pm 0.04)-0.1726 r_{s} \ln r_{s}+\mathcal{O}\left(r_{s}\right)\right) \mathrm{Ry},
\end{array}\right.
$$

Limite de baixa densidade

$$
H_{E G}=\frac{e^{2}}{a_{0}} \frac{1}{r_{s}^{2}}\left(\sum_{\mathbf{k}^{\prime}, \sigma} \frac{k^{\prime \prime}}{2} a_{\mathbf{k}^{\prime}, \sigma}^{\dagger} \sigma_{\mathbf{k}^{\prime}, \sigma}+\frac{3 r_{s}}{2 N} \sum_{\mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}, \mathbf{q}^{\prime} \neq 0, \sigma_{1}, \sigma_{2}} \frac{1}{} \frac{1}{\prime_{2} a^{2}} a_{\mathbf{k}_{1}^{\prime}+\mathbf{q}^{\prime}, \sigma_{1}}^{\dagger} a_{\mathbf{k}_{\mathbf{2}}^{\prime}-\mathbf{q}^{\prime}, \sigma_{2}}^{\dagger} a_{\mathbf{k}_{2}, \sigma_{2}} a_{\mathbf{k}_{1}^{\prime}, \sigma_{1}}\right)
$$

MINIMIZAR A INTERAÇAO \rightarrow CONTECTURA: ORISTAL
—WIGNER CRYSTAL

Expansão de baixa densidade

$$
\begin{aligned}
& \frac{U}{N}=-\frac{1.8}{r_{s}} \operatorname{Ry}(3 \mathrm{D}) \\
& \frac{U}{N}=-\frac{2.2}{r_{s}} \operatorname{Ry}(2 \mathrm{D})
\end{aligned}
$$

Table 1.3. Energies per electron of the classical Wigner crystal for different Bravais lattices in three and two dimensions.

d	Lattice	$\frac{U}{N}\left(\frac{R y}{r_{s}}\right)$
3	Simple Cubic	-1.760
3	Face Centered Cubic	-1.79175
3	Body Centered Cubic	-1.79186
3	Hexagonal Close Packed	-1.79168
2	Square	-2.2
2	Hexagonal	-2.212

Fônons
$\frac{\Delta U}{N} \approx\left\{\begin{array}{lr}\frac{2.66}{\frac{3}{2}} \mathrm{Ry}, & (3 D-\mathrm{bcc}), \\ r_{s}^{2} & \\ \frac{1.59}{r_{s}^{\frac{3}{2}}} \mathrm{Ry}, & (2 D-\text { hexagonal }) .\end{array}\right.$

Estado fundamental ($\mathrm{T}=0$)

3D:

30.	50(2)	106(1)		
Líquido de Fermi paramagnético	Líquido de Fermi parcialmente polarizado FM		Cristal de Wigner bcc AFM ou FM?? não há precisão suficiente...	r_{S}

F. H. Zong, C. Lin, and D. M. Ceperley, Phys. Rev. E 66, 036703 (2002).
86.6(7)

Líquido de Fermi paramagnético
Cristal de Wigner bcc AFM (?) $\quad r_{S}$
Sam Azadi and N. D. Drummond, PRB 105, 245135 (2022).

Estado fundamental ($\mathrm{T}=0$)

2D:

$$
31(1)
$$

 paramagnético

Cristal de Wigner triangular AFM/LSQ(?)

38(5)
N. D. Drummond and R. J. Needs, PRL 102, 126402 (2009)

Temperatura x densidade

Unp. liquid: $r_{\mathrm{s}}<50$
FM liquid: $50<r_{\mathrm{s}}<100$
Wigner Crystal: $r_{\mathrm{s}}>100$

Ceperley, D. M. (2004). Introduction to quantum Monte Carlo methods applied to the electron gas, to appear in The electron liquid paradigm in condensed matter physics, Proceedings of the International School of Physics "Enrico Fermi", Course CLVII, edited by G. F. Giuliani and G. Vignale.

Unp. liquid: $r_{\mathrm{s}}<20$ Wigner Crystal: $r_{\mathrm{s}}>34$

Bernu, B., Candido, L., and Ceperley, D. M. (2001). Exchange frequencies in the 2D Wigner crystal, Physical Review Letters 86, 870-873.

Ref.: "Quantum theory of the electron liquid", Gabriele Giuliani and Giovanni Vignale, Cambridge (2005).

Resultados experimentais em 2D (ZnO)

"MgZnO/ZnO heterostructure confines a 2DES approximately 500 nm "

J. Falson, I. Sodemann, B. Skinner, D. Tabrea, Y. Kozuka, A. Tsukazaki, M. Kawasaki, K. von Klitzing, and J. H. Smet, Nat. Mat. 21, 311 (2022).

