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O gás uniforme de elétrons
(“jellium model”)
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O Hamiltoniano na base de posição
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Gás uniforme de elétrons
(“jellium model”)
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Escala de comprimento disponível: raio de Bohr

Escala de energia disponível: Rydberg
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Limite de alta densidade
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1.6 The Wigner crystal 39

components, on the other hand, can be expanded in powers of rs without encountering
divergences. When the two contributions are added together the dependence on qc cancels
out, and a finite result is obtained. The complete procedure, nowadays known, for historical
reasons, as the random phase approximation (RPA), will be described in detail in Chapter 5.

Following this procedure, it has been possible to derive an asymptotic expansion of the
electron gas energy for rs → 0. The result for the jellium model, expressed in Rydberg per
electron, is as follows:

ε(rs) "






(
2.210

r2
s

− 0.916
rs

+ 0.062 ln rs − 0.093 + O(rs ln rs)
)

Ry , (3D),
(

1
r2

s
− 1.20

rs
− (0.38 ± 0.04) − 0.1726 rs ln rs + O(rs)

)
Ry , (2D).

(1.107)

where we have used Eqs. (1.83) and (1.95) respectively for the zeroth and first order terms.35

The appearance of powers of ln rs in this formula shows that the energy is a nonanalytic
function of rs for rs → 0 and explains the failure of the naive perturbative approach. The
coefficients of the leading logarithmic terms in Eqs. (1.107) are in fact known exactly, being
equal to 2

π2 (1 − ln 2) and 23/2

3π
(10 − 3π ) in three and two dimensions respectively, and will

be discussed in Chapter 5. The constant term is the sum of the second order Onsager’s
exchange integral and a numerical constant stemming (among other terms) from the sum
over the diverging contributions. In practice, the asymptotic formulas are accurate only for
very small values of rs (see Figs. 1.11 and 1.15).

The difference between the exact energy and the sum of the noninteracting kinetic energy
and the exchange energy is commonly referred to as the correlation energy. Accordingly a
small correlation energy indicates that the description of the ground-state as a single Slater
determinant of plane waves (in which there are no correlations other than the ones implied
by the antisymmetry of the wave function) is somewhat accurate. As it will be made clear
in Chapter 2 however, it is rather difficult to find a physically compelling definition of the
correlation energy in general.36

1.6 The Wigner crystal

Having (for the time being) exhausted the discussion of the high-density behavior of the
ground-state energy of the jellium model, we now ask ourselves what can be learned from
consideration of the low-density limit. At very low density a system of electrically neutral
particles becomes effectively noninteracting because the average interparticle separation is
much larger than the (finite) range of the interaction. A system of electrons is anomalous in
this respect because, as the average distance between the electrons increases, the coulomb
potential energy decreases only as 1

rs
and thus eventually becomes much larger than the

35 The result in the two-dimensional case has been worked by Rajagopal and Kimball (1977). A calculation of the next order term
has been performed (Isihara and Toyoda, 1978). The result appears to be (0.865 ± 0.009) rs .

36 It is perhaps for this reason that Richard Feynman rather colorfully referred to this quantity as the stupidity energy (Feynman,
1972).
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1.6 The Wigner crystal 43

Table 1.3. Energies per electron of the
classical Wigner crystal for different Bravais

lattices in three and two dimensions.

d Lattice U
N

(
Ry
rs

)

3 Simple Cubic −1.760
3 Face Centered Cubic −1.79175
3 Body Centered Cubic −1.79186
3 Hexagonal Close Packed −1.79168

2 Square −2.2
2 Hexagonal −2.212

where the Misra functions φν(z) are defined as

φν(z) ≡
∫ ∞

1
dt e−zt tν . (1.119)

The parameter η is arbitrary: a typical choice is η = πn in two dimensions, and η = πn
2
3

in three dimensions. Because the $R and $G sums in Eq. (1.118) are rapidly converging, the
energy can be evaluated with any desired degree of accuracy.

Table 1.3 summarizes the results obtained for the classical energy of several Bravais
lattices in three and two dimensions (Scholl, 1967; Bonsall and Maradudin, 1977).
From these calculations one can conclude that, as anticipated, among the Bravais lat-
tices, the body-centered-cubic is favored in three dimensions and the hexagonal in two
dimensions.42

1.6.2 Zero-point motion

In order to refine the calculation of the ground-state energy of the low-density electron
system, we now examine the leading quantum mechanical corrections to the classical elec-
trostatic energy. The main correction arises from the fact that, as a consequence of quantum
mechanical uncertainty, electrons localized near a lattice site perform a zero-point motion,
which rises the energy relative to the classical value.

To address this question in detail, let us expand the potential energy of the classical
Wigner crystal up to second order in the displacements $ri − $Ri of the i-th electron from its
equilibrium position, which is taken to coincide with the i-th site of the classical Wigner
lattice.43 The first order terms in the expansion vanish, as the Wigner crystal is a local

42 See Eq. (1.131) for a useful interpolation formula for the total energy of a Wigner crystal.
43 Notice that this classical description treats the electrons as distinguishable particles, by associating them with different lattice

sites. In the low density limit, however, this approximation has a negligible effect on the energy.
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minimum of the potential energy. Thus, the hamiltonian takes the form:

Ĥ !
∑

i

p̂2
i

2m
+ 1

2

∑

i j,αβ

Vi j,αβ("̂r i − "Ri )α("̂r j − "R j )β + U ( "R1 . . . "Rn) , (1.120)

where α, β are cartesian labels, and Vi j,αβ represents the second derivative of the poten-
tial energy with respect to riα and r jβ , calculated at the equilibrium positions "ri = "Ri .
U ( "R1, . . . , "Rn) is the energy of the classical Wigner crystal. Note that the sum over i, j
now includes the case i = j . Because the momenta "̂pi are canonically conjugated to the
displacements "̂r i − "Ri , this quadratic hamiltonian can be solved by a standard transforma-
tion to normal modes. The transformed hamiltonian represents a set of Nd independent
harmonic oscillators of mass m and frequency ω"qλ, where "q is a vector in the first Brillouin
zone (BZ) of the Wigner crystal, and λ = 1, . . . , d is a polarization index. Making use of
the well-known results for the ground-state energy of the quantum harmonic oscillator, we
see that the ground-state energy of this hamiltonian is

E = U ( "R1, . . . , "Rn) +
∑

"q∈B Z ,λ

h̄ω"qλ

2
, (1.121)

where the last term is the sum of the zero point energies of the independent harmonic
oscillators.

For the present discussion we only need to know how the oscillator frequencies scale
with rs . From the homogeneity of the coulomb interaction we immediately see that the
second derivatives of the potential energy Vi j,αβ scale as e2

r3
s a3

B
and, therefore, the average

phonon energy, h̄ω̄, scales as h̄
√

Vi j,αβ

m ∼ Ry
r3/2

s
. Thus, the quantum mechanical correction to

the classical Wigner crystal energy scales as ∼ Ry
r3/2

s
, which, for large rs , is much smaller

than the classical potential energy, as anticipated. Notice that half of this correction is
kinetic energy, and half is potential. Also, the characteristic amplitude of the oscillations of

the electrons about their equilibrium positions is l ∼ h̄√
mω̄

∼ r
3
4

s aB , which is much smaller
than the average inter-electron distance, rsaB , proving, a posteriori, the consistency of the
Wigner crystal picture.

The calculation of the characteristic frequencies ω"qλ and of the zero point energy has been
carried out numerically by several authors (Coldwell, Horsfall, and Maradudin, 1960; Carr,
1961; Bonsall and Maradudin, 1977). Two representative results for the leading correction
to the classical energy are

%U
N

= 1
N

∑

"q∈B Z ,λ

h̄ω"qλ

2
≈






2.66

r
3
2

s

Ry , (3D − bcc),

1.59

r
3
2

s

Ry , (2D − hexagonal).
(1.122)

In addition to phonons, the Wigner crystal also supports collective spin excitations, which
are governed by the weak dependence of the energy on the relative orientation of the spin
on different lattice sites. The energy scale of these excitations is much lower than the energy
scale for phonons. A useful formula for the total energy of the Wigner crystal (Eq. (1.131))
is discussed in the next section.
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In addition to phonons, the Wigner crystal also supports collective spin excitations, which
are governed by the weak dependence of the energy on the relative orientation of the spin
on different lattice sites. The energy scale of these excitations is much lower than the energy
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Estado fundamental (T=0)
3D:

rs

50(2) 106(1)

Líquido de Fermi 
parcialmente
polarizado FM

Líquido de Fermi 
paramagnético

Cristal de Wigner bcc 
AFM ou FM?? não há 
precisão suficiente…

F. H. Zong, C. Lin, and D. M. Ceperley, Phys. Rev. E 66, 036703 (2002). 

rs

86.6(7)

Líquido de Fermi paramagnético Cristal de Wigner bcc AFM (?)

Sam Azadi and N. D. Drummond, PRB 105, 245135 (2022).



Estado fundamental (T=0)

2D:

rs

31(1) 38(5)

Cristal de Wigner 
triangular AFM/LSQ(?)

Líquido de Fermi 
paramagnético

Cristal de Wigner 
triangular FM

N. D. Drummond and R. J. Needs, PRL 102, 126402 (2009)
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52 Introduction to the electron liquid

Fig. 1.14. Tentative QMC phase diagram for a three dimensional electron gas. The magnetic phase
boundaries at finite temperature are estimated with the help of the Stoner model, discussed in
Exercise 8. (Ceperley, 2004); used with permission.

Fig. 1.15. Same as in Fig. 1.11 but for the case of a two dimensional electron gas. The dotted line
represents the asymptotic expression of Eq. (1.107) for the paramagnetic state.

The dependence of the energy on spin polarization is shown in Fig. 1.13. A polarization
transition is evident. At rs = 40, the system is still paramagnetic, with the unpolarized phase
stable. As the density decreases, at rs ≈ 50, the liquid becomes unstable with respect to a
partially spin polarized state. As the electronic density continues to decrease, the stable state
becomes more and more polarized, approaching full polarization (p = 1) at the freezing
transition rs ≈ 100.

Fig. 1.14 summarizes the discussion by presenting a tentative phase diagram based on
comparison of the energies of only three different phases of the jellium model, namely the
uniform paramagnetic liquid, the uniform (partially) spin-polarized liquid, and the Wigner
crystal.
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Fig. 1.16. Comparison of the total energy per particle for the paramagnetic (PM) and the ferromagnetic
(FM) phases of the electron gas in two dimensions for intermediate density values.
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Fig. 1.17. The spin polarization dependence of the ground-state energy of a uniform 2D electron
liquid, calculated from Eq. (1.132).

Fig. 1.18. QMC phase diagram for a two dimensional electron gas From Bernu et al. (2001); used
with permission.
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Resultados experimentais em 2D (ZnO)
ARTICLES NATURE MATERIALS

and B > Bc as the spin-polarized FL. However, while such a linear 
increase in ρ is consistent with our data (Supplementary Section 7), 
we caution that the theory of some studies in the literature23,24 is 
not a priori applicable to the states with relatively large rs and large 
resistivity that we are considering. In line with this concern, it is 
worth emphasizing that our results in this regime exhibit extreme 
deviations from the usual weak-coupling metallic conductivity, as 
evidenced, for example, by the 100-fold positive magnetoresistance 
and by a low-temperature resistance substantially higher than h/e2.

Turning our attention to n < nc, the insulating phase has the char-
acteristic transport attributes of a pinned WC, as evidenced by the 
large value of VT that develops at low temperature. The vanishing of 
the nonlinearity at temperatures above approximately T = 50 mK is 
consistent with thermal melting of a WC27. The nonlinearity in this 
regime is orders of magnitude larger than that of the spin-polarized 
FL phase discussed above, supporting our hypothesis that the two 
regimes host distinct phases. The positive magnetoresistance at 
n < nc that becomes clear at very low temperatures in Fig. 3c remains 
to be fully understood, although it is apparently consistent with cal-
culations28 that consider the effect of Zeeman splitting of localized 
states on hopping conduction. The presence of finite magnetoresis-
tance appears to preclude the conclusion that the state is fully spin 
polarized at low temperature in the range of rs studied. This is in con-
trast with a recent study of aluminium arsenides14, which reported 
an apparent divergence of the spin susceptibility in the insulating 
phase based upon no appreciable magnetoresistance for n < nc at a 
measurement temperature of T ≈ 300 mK (Supplementary Section 6 
for a discussion). The lack of clear spontaneous spin polarization at 
very low temperatures in our experiment agrees with the fact that the 
exchange energy scale J associated with spin ferromagnetic ordering 
of the WC at n < nc, as estimated by QMC, is smaller than ∣J∣ < 10 mK 
(Supplementary Section 6). The spins of the WC are therefore likely 
disordered by temperature fluctuations at Bx = 0. While we note 
that delicate hysteretic features in transport are indeed resolved for 
n ≤ nc, which upon first glance could indicate some ferromagnetic 
ordering (Supplementary Fig. 7), we, however, ascribe these fea-
tures to experimental artefacts associated with heating close to zero 
field and trapped flux in the superconducting coil, as the estimated 
coercive field in the presence of magnetostatic fields is ~10−7 T 
(Supplementary Section 5) and hence undetectable in experiment.

We now discuss one of the most remarkable findings of our 
study, namely the non-monotonicity of the in-plane saturation 
field Bc near the zero-field MIT. The non-monotonicity of Bc is 
a low-temperature property of the system and is absent above 
approximately 30 mK (Supplementary Fig. 4). In agreement with 
QMC calculations7, we find no clear evidence for a Stoner instabil-
ity of the itinerant liquid; finite magnetoresistance is always pres-
ent in the metal phase. By contrast, QMC has identified a possible 
antiferromagnetic crystal in between the paramagnetic FL and 
the fully spin-polarized WC. By adapting the QMC results from a 
study in the literature7 to include the in-plane field (Supplementary 
Section 3 for details), one obtains the phase diagram shown in Fig. 
4i. However, as we see from this phase diagram, the intermediate 
antiferromagnetic state does not offer any clear explanation for the 
non-monotonicity of the critical field Bc to spin polarize the sys-
tem. Moreover, as mentioned before, our lowest temperature scale 
T ≈ 20 mK is larger than the exchange energy scale J, or more pre-
cisely it is larger than the energy difference per electron of the ferro-
magnetic WC and the antiferromagnetic WC obtained from QMC, 
as detailed in Supplementary Section 6, and thus the spin order of 
the WC is likely destroyed by temperature fluctuations at Bx = 0. 
We therefore believe that the antiferromagnetic WC phase found 
in QMC is not likely to be the origin of the non-monotonicity of Bc 
that we observe. We note that the QMC employed in the literature7 
is variational in nature, and therefore it is always possible that other 
phases not considered could be behind the non-monotonicity of Bc, 
such as spin liquid states29,30 or spin-density-wave ordered states31,32.

The role of spatial variation in electron density may also be prom-
inent in the vicinity of n = nc. Even in the cleanest samples it is not 
possible to completely eliminate the role of disorder, which tends to 
produce variation in the local electron density, and leaves the WC 
phase with only finite-range order. When the average density is very 
close to nc, such variation causes the 2DES to break up into itiner-
ant and localized regions (Supplementary Section 8 for a discus-
sion). And even in the absence of disorder, variation in the local 
density can arise from Coulomb-frustrated phase separation6,33–35. 
While such phase separation may be important near n = nc, it does 
not provide an obvious explanation for the non-monotonicity of Bc 
as a function of n. Nevertheless, the phase separation picture can 
serve as a premise for interpreting the excess conductance presented 
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across the device (I) and local longitudinal voltage drop (V), yield-
ing a single I−V trace. The first derivative of this data provides the 
differential resistance (dV/dI) of the device as a function of I. We 
define ρ to be dV/dI in the small current limit (I → 0 nA), which 
probes the linear response of the equilibrium state of the system.

The magnetotransport of the device in the (Bz,n) parameter 
space where Bz is the out-of-plane magnetic field is presented in 
Fig. 1c. Oscillatory features in ρ as ∣Bz∣ is increased are associated 
with integer steps in Landau quantization. These states are labelled 
according to their filling factor ν = hn/eBz, where h is the Planck 
constant. A magnetotransport trace at n = 1.6 × 1010 cm−2 (rs = 30) 
is displayed in Fig. 1d with a robust ν = 1 quantum Hall state evi-
dent. Remarkably, this minimum remains apparent even when the 
zero-field resistance increases to approximately 108 Ω as the density 
is reduced to n = 1.3 × 1010 cm−2 (Bz = 0.5 T).

The data in Fig. 2a present ρ(n,T) of the device at zero magnetic 
field. This data reveal a crossover from a metallic dρ/dT > 0 to insu-
lating dependence dρ/dT < 0 at a critical density nc ≈ 1.6 × 1010 cm−2 
(corresponding to rs = 30), enabling us to associate the density nc 
with a zero-field metal–insulator transition (MIT) close to the 
quantum resistance value h/e2. Data for T ≲ 20 mK deviate from 
the systematic behaviour at higher temperatures, most likely due to 
the common issue of decoupling of the electron temperature from 
that of the immersion cryogen. The effect of an in-plane magnetic 
field is displayed in Fig. 2b, which indicates a positive magnetore-
sistance at all values of n. The value ρ = h/e2 is identified as a black 
line, which corresponds to a finite Bx where Bx is the magnetic field 
projected in-plane when n is larger than nc.

Examining spin susceptibility. The in-plane magnetic field per-
mits us to control the degree of spin polarization of the electrons, 
as the orbital coupling to in-plane fields is negligible due to the 
two-dimensional confinement. Figure 3a plots the magnetoresis-
tance of the device as a function of Bx at n = 2 × 1010 cm−2 and at 
various temperatures. From these curves we can identify two val-
ues of the magnetic field of interest: Bc, which is interpreted as the 
critical magnetic field required to reach full spin polarization, and 
is identified as the point at which ρ saturates to a value of ρB=sat 
(black triangle) and can be interpreted as the critical field required 
to reach full spin polarization8–12, and B*, at which there is a change 
in the sign of dρ/dT from metallic-like to insulating-like. The large 
dynamic range of ρ of the device makes it challenging to identify 
Bc(n) in Fig. 2b, and thus we plot the ratio ρB/ρB=sat where ρB is 
the resistivity at a given magnetic field in the (Bx,n) plane in Fig. 
3b. This aids visual identification of Bc as the fully spin-polarized 
2DES appears as an orange colour for any n in the figure. The data 
in Fig. 3b reveal a non-monotonic dependence of Bc as a function 
of n (dashed line) as the MIT is crossed. We observe an inflec-
tion point in the value of Bc/n around n = 1.8 × 1010 cm−2 (Fig. 3d), 
which is higher than the value nc associated with the zero-field 
MIT. While the procedure for determining Bc can be performed 
in multiple ways, as is discussed in Supplementary Section 10, a 
qualitatively similar trend is obtained. The in-plane field traces 
also reveal the presence of finite magnetoresistance even in the 
low-density limit (Fig. 3c), where the device is insulating for all 
magnetic fields.

The dotted line in Fig. 3b tracks B*, and thus, the (Bx,n) param-
eter space hosts two regions with an insulating-like temperature 
dependence dρ/dT < 0, namely at B > B* when n > nc, and at all Bx 
when n < nc. As we show in Supplementary Section 7, in the latter 
regime of n < nc, the temperature dependence is consistent with the 
activated or variable range hopping mechanisms that are character-
istic of insulators21 (including Wigner crystals22). By contrast, in the 
regime of n > nc and B > B* where we encounter what appears as a 
field-induced MIT, the dependence of resistivity on temperature is 
more consistent with a linear or power-law relation. Such a linear 
increase in ρ with T, and the accompanying change in sign of dρ/dT, 
has been shown theoretically to arise in metallic, correlated states 
with high spin polarization23,24. Thus, the temperature dependence 
points to a ground state at n > nc and B > Bc that is distinct from the 
low-density insulating phase for n < nc at rs > 30.

The value of Bc allows us to measure the renormalized spin sus-
ceptibility of the system, χ. Experimentally, it is convenient to use 
the following relationship:

B

c

n
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2π h̄

2

μ

B

1

g

∗
m

∗
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Here, μB is the Bohr magneton. The quasiparticle effective mass 
(m*) and effective g-factor (g*) are related to the renormalized sus-
ceptibility g*m*/m0 = 4πg0χ (Supplementary Section 4), where g0 is 
the bare electron g-factor. The Bc/n is presented in Fig. 3d as a func-
tion of n with corresponding values of g*m*/m0 plotted as vertical 
lines. As is observed from much higher densities (Supplementary 
Fig. 5), g*m*/m0 increases monotonically with decreasing n in the 
range 2.3 > n > 1.8 × 1010 cm−2. The estimated value of g*m*/m0 ≈ 15 
at n = nc represents a nearly 30-fold enhancement over the band 
value of 0.6. The relative magnitude of the magnetoresistance with 
in-plane field, ρB=0/ρB=sat, is generally suppressed when reducing n 
(Fig. 3e). However, the non-trivial dependence of the magnetoresis-
tance never disappears completely, as we discuss below.

Nonlinear charge transport is encountered throughout the 
parameter space and is revealed by studying the differential resis-
tance as a function of current. Figure 4a–c plots I−V traces at 
three distinct charge densities, corresponding to rs ≈ 25, 28 and 
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Fig. 1 | The device and quantum transport. a, Schematic of the device 
under study. b, Charge carrier density (n) as a function of gate bias (VG). 
c, Mapping of ρ as a function of Bz and n, taken in the limit I!→!0!nA where 
T!≈!10!mK. Integer quantum Hall filling factors ν are noted. d, Line trace of 
magnetoresistance corresponding to n!=!1.6!×!1010!cm−2 and rs!=!30.
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