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Transição metal-isolante de Mott-Hubbard em semi-preenchimento:
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Primeiras descrições teóricas

magnetic insulator. This is an example of a Mott transi-
tion, i.e., of a metal-insulator transition driven by the
strength of electron-electron interactions in a homoge-
neous system. It is realized experimentally in three-
dimensional transition metal oxides, such as V2O3, and
can be driven by varying pressure, temperature, and
composition (for general references, see, e.g., Mott,
1990; Tsuda et al., 1991). Figure 23 reproduces the ex-
perimental phase diagram found for V2O3 by varying
these parameters (McWhan et al., 1973). Since the early
ideas of Mott (1949, 1956, 1961), this transition has been
the subject of numerous experimental and theoretical
investigations. From a theoretical point of view, several
ideas have been put foward that we shall briefly review.
They are rather different from one another and corre-
spond to the various possible ways of approaching the
transition in the phase diagram of Fig. 23, coming from
different phases (Fig. 24). The LISA provides for the
first time a unified framework in which the various
phases (and their relative stability) can be studied within
a single model, so that the validity of the previous ap-
proaches can be assessed and put in perspective.

Early work of Hubbard (1964) provided a description
of the transition rather close in spirit to Mott’s original
views. He attempted to give an effective band descrip-
tion of the correlated system (Fig. 25), and proposed
that the original density of states (of half-width D) gets

split for large U into a lower Hubbard band (corre-
sponding to holes, or empty sites) and an upper Hub-
bard band (corresponding to doubly occupied sites). For
large U these bands are separated by a gap of order
U�2D . As U is reduced there is a critical value of U
where the two bands merge again and a metal is recov-
ered. Hence, the Hubbard picture of the metal-insulator
transition is associated with the closure of a gap. This
description obviously relies on the large U insulating
limit as a starting point, and as we shall see is actually
qualitatively valid there. It fails however to provide a
description of the metal consistent with Fermi-liquid
properties.

On the other hand, Brinkman and Rice (1970), build-
ing on the work of Gutzwiller (1965), started from the
metallic phase which they described as a strongly renor-
malized Fermi liquid with a reduced low-energy scale
(or effective Fermi energy). This scale is of the order of
ZD , where Z is the quasiparticule residue, related to the
quasiparticle effective mass in this approach by
m*/m�1/Z . As the interaction strength increases, this
energy scale vanishes at a critical value of the interaction
UBR , with Z�(UBR−U). In this framework, the metal
insulator transition is driven by the localization of the
Fermi-liquid quasiparticles, m*/m�1/(UBR−U)→�, and
their disappearance in the insulator. This approach is a
consistent low-energy description of the strongly corre-
lated metal, but does not account for the high-energy
excitations forming the Hubbard bands, which should be
present already in the metallic state. Furthermore, it
gives an oversimplified picture of the insulator, which is
caricatured as a collection of independent local moment
with no residual antiferromagnetic exchange and an in-
finite susceptibility at T=0. The Brinkman-Rice ap-
proach can be justified formally using slave bosons
methods (Kotliar and Ruckenstein, 1986). In that case,
the Hubbard bands and incoherent features, absent at
the saddle point level, are reintroduced by the fluctua-
tions around the slave-boson condensate, and the disap-
pearance of the resonance coincides with the closing of
the gap (Castellani et al. 1992; Raimondi and Castellani,
1993; see also Kotliar, 1993a).

Finally, early arguments by Slater (1951) focus on the
possibility of long-range antiferromagnetic order at low
enough temperature. At weak coupling, this possibility
is confirmed (on bipartite lattices) by a simple Hartree-
Fock approximation. In this picture, the driving force
behind the metal-insulator transition is the doubling of
the unit cell which makes the band structure of the sys-

FIG. 24. Classic theories for the description of the various
phases.

FIG. 25. Schematic evolution of the density
of states with U in the Hubbard picture.
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• A descrição de Hubbard III: do isolante para o metal; duas bandas (de 
Hubbard) separadas que se tocam na transição (J. Hubbard, Proc. R. 
Soc. (London) A 281, 401 (1964))

• A descrição de Brinkman e Rice: do metal para o isolante; 
desaparecimento das quasi-partículas, m* → ∞ ; não há bandas de 
Hubbard (W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970))
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Teoria dinâmica de campo médio 
(Dynamical mean field theory)
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X.Y.Zhang, M. Rozenberg G. Kotliar (PRL 1993)
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the numerically exact continuous time quantum
Monte Carlo (CTQMC) method [13,14].

Results.—Fig. 1(a) shows the phase diagram of the
Hubbard model within cluster DMFT at half-filling in the
absence of long range order. For interaction strength U <
Uc2ðTÞ, we find a metallic solution while forU >Uc1ðTÞ, a
Mott insulating solution exists. The two transition lines
Uc1ðTÞ and Uc2ðTÞ cross at a second order endpoint, at
temperature TMIT # 0:09t and interaction strength UMIT #
6:05t. It is clear that one of the most salient features of the
single-site DMFT phase diagram [shown in Fig. 1(b)],
namely, the existence of a first order phase transition,
survives in plaquette DMFT.

Still there are substantial modifications to the single-site
DMFT results when U=t is close to its critical value.
Namely, (i) Strong short ranged antiferromagnetic correla-
tions significantly reduce the value of critical U at which
the second order endpoint occurs. Note that the plaquette-
DMFT critical Uð#6:05tÞ is in very favorable agreement
with the Monte Carlo crossover U at which the pseudogap
develops at intermediate temperatures accessible by deter-
minantal Monte Carlo calculations (Fig. 5 in Ref. [15]).
This criticalU will increase if the system is more frustrated
at short distance. For example, the inclusion of the next
nearest hopping t0 has this effect and was studied in
Ref. [16]. (ii) The shape of the coexistence region, where
both metallic and insulating solutions exist, is significantly
different. The high temperature crossover lines (dashed
line above T # 0:1t in Fig. 1) are similar since at high
temperature the entropy of the paramagnetic insulator is of
the order of logð2Þ in both cluster and single-site approach.
As the temperature is increased, the large entropy insulat-
ing state wins over the lower entropy metallic state. At low
temperature, the situation is very different. In single-site
DMFT, the metal wins at low temperature in the transition
region because the emergence of the itinerant quasiparticle
inside the Mott gap lowers the free energy of the strongly
disorderedMott state. In the cluster case, the Mott insulator
at very low temperature is very different and has small
entropy due to short range singlet formation. The small
entropy of this state can be confirmed by the ‘‘valence
histogram’’ shown in the inset of Fig. 1(a). The high
temperature insulating state, which has entropy of the order
of logð2Þ, populates many states of the plaquette with
significant probability. In contrast, there is only one sig-
nificant eigenvalue of the density matrix in low tempera-
ture, corresponding to the singlet state. The insulating
phase at low temperature has thus very small entropy,
and the bad metal has larger entropy; hence, decreasing
temperature favors insulator over metal. The actual first
order line (dashed line in Fig. 1(a) inside the coexistence
region, where the free energy of the two phases equals)
therefore bends back and criticalU decreases with decreas-
ing temperature. It is apparent that the zero temperature
transition in cluster DMFT happens at Uc1 and not at Uc2

as in DMFT.

While the shape of the DMFT phase diagram strongly
resembles the phase diagram of the Cr-doped V2O3, the
reentrant shape of the cluster-DMFT transition resembles
more the !-organic diagram [17] as pointed out in Ref. [4].
To understand the effects brought about by the short

range magnetic correlations near the transition, we focus
on the local spectral functions displayed in Fig. 2. As in
single-site DMFT, below Uc1 [Fig. 2(a)] the system is a
normal Fermi liquid with a reduced width of the quasipar-
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FIG. 1 (color online). (a) The phase diagram of the paramag-
netic half-filled Hubbard model within plaquette CDMFT. Inset:
The histogram of the two insulating states. It shows the proba-
bility for a given cluster eigenstate among the 16 eigenstates of
the half filled plaquette. The singlet plaquette ground state has
the highest probability. (b) For comparison, the corresponding
phase diagram of the single-site DMFT (using the same 2D
density of states) is shown. The coexistence region is shown as
the shaded region. The dashed line marks the crossover above
the critical point. The crossover line was determined by the
condition that the imaginary part of the self-energy at few lowest
Matsubara frequencies is flat at the crossover value of U. For
easier comparison, the x axis is rescaled and the reduced value of
Ur ¼ U%UMIT

UMIT
is used. The critical value of U is UMIT ¼ 6:05t in

the cluster case and UMIT ¼ 9:35t in the single-site case.
Pentagons in panel (a) mark the points in phase diagram for
which we present the local spectral functions in Fig. 2.
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Comparing these two equations, and noting that
�S� •s�L�<0 and that Jspin(U) decreases as U increases,
proves analytically that Uc1�Uc2 (Fisher, Kotliar, and
Moeller, 1995). This is in complete agreement with the
numerical work described in Sec. VII which tackles the
full problem numerically with exact diagonalization
methods (Rozenberg, Moeller, and Kotliar, 1994).

The projective method described in this section is a
particular implementation of the idea of renormaliza-
tion. It was taylored specifically to solve the LISA equa-
tions. It is worth stressing the reasons why the renormal-
ization group invented by Wilson to solve the single
impurity Kondo model does not work for the impurity
models arising in the context of the LISA applications.
The essential insight is that because of the self-
consistency conditions the energy scales of the impurity
are also the energy scales of the bath. The impurity
models are thus in an intermediate coupling regime. The
logarithmic discretization of Wilson’s mesh and the Wil-
son recursion procedure was intended to deal with a
mismatch in energy scales, typical of a weak-coupling
situation in which the Kondo coupling was much smaller
than the conduction electron bandwidth. Notice that,
even in the Kondo model, the calculation of Green’s
functions is not possible to very high precision for all
energies (cf. Hewson, 1993). In the LISA context, we are
not interested in the low-energy eigenvalue spectrum
(which we can calculate using the renormalization
group), but in the whole single-particle excitation spec-
trum (Green’s function), which is fed back into the low-
energy sector via the self-consistency condition. It is thus

not surprising that a direct numerical renormalization
group approach in the LISA context is faced with rather
serious difficulties. For early attempts to implement the
Wilson scheme to solve the LISA equations see Sakai
and Kuramoto (1994) and Shimizu and Sakai (1995).

VII. THE HUBBARD MODEL AND THE MOTT TRANSITION

In this section, we review the application of the LISA
method to the physics of the Hubbard model. We shall
be concerned with the phase diagram, thermodynamics,
one-particle spectra, and two-particle response func-
tions. The control parameters are the temperature T ,
and the interaction strength U/t . In order to reveal the
full variety of possible behavior, we shall also consider
models with different degrees of magnetic frustration.
This introduces a third parameter, which can be for ex-
ample the ratio of nearest-neighbor to next-nearest
neighbor hopping amplitudes t1/t2 . As a function of
these parameters, the Hubbard model at half-filling has,
within the LISA, four possible phases: a paramagnetic
metallic phase, a paramagnetic insulating phase, an insu-
lating antiferromagnetic phase, and (in the presence of
magnetic frustration) an antiferromagnetic metallic
phase. The effect of doping away from half-filling will
also be considered towards the end of this section (Sec.
VII.H).

A. Early approaches to the Mott transition

We shall put a special emphasis in this section on the
transition between the paramagnetic metal and the para-

FIG. 23. Experimental phase diagram for the
metal-insulator transition in V2O3 as a func-
tion of doping with Cr or Ti and as a function
of pressure (after McWhan et al., 1973). See
also recent results by Carter et al. (1992,
1993) that report a low temperature metallic
phase with antiferromagnetic order in
V2�yO3 .
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• Pressão aumenta t, diminui U/t, favorece o comportamento metálico.
• Pressão química: elemento de raio iônico maior/menor aumenta o 

parâmetro de rede e age como pressão negativa/positiva.



Experimentos em (V0.989Cr0.011)2O3  sob pressão (P. Limelette et al., Science 302, 89 (2003)).

(V0.989Cr0.011)2O3

• Histerese: transição de primeira ordem
• Note como a linha de transições termina num ponto crítico
• Como a transição líquido-gás!

Coexistência metal-isolante
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Mott Transition and Transport Crossovers in the Organic Compound
!-!BEDT-TTF"2Cu#N!CN"2$Cl

P. Limelette,1 P. Wzietek,1 S. Florens,2,1 A. Georges,2,1 T. A. Costi,3 C. Pasquier,1 D. Jérome,1 C. Mézière,4 and P. Batail4
1Laboratoire de Physique des Solides (CNRS, U.R.A. 8502), Bâtiment 510, Université de Paris-Sud, 91405 Orsay, France

2LPT-Ecole Normale Supérieure (CNRS-UMR 8549), 24, rue Lhomond, 75231 Paris Cedex 05, France
3Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany

4Laboratoire Chimie Inorganique, Matériaux et Interfaces (CIMI), FRE 2447 CNRS, Université d’Angers, 49045 Angers, France
(Received 27 January 2003; published 2 July 2003)

We have performed in-plane transport measurements on the two-dimensional organic salt
!-!BEDT-TTF"2Cu#N!CN"2$Cl. A variable (gas) pressure technique allows for a detailed study of the
changes in conductivity through the insulator-to-metal transition. We identify four different transport
regimes as a function of pressure and temperature (corresponding to insulating, semiconducting,‘‘bad
metal,’’ and strongly correlated Fermi-liquid behaviors). Marked hysteresis is found in the transition
region, which displays complex physics that we attribute to strong spatial inhomogeneities. Away from
the critical region, good agreement is found with a dynamical mean-field calculation of transport
properties using the numerical renormalization group technique.

DOI: 10.1103/PhysRevLett.91.016401 PACS numbers: 71.30.+h, 74.70.Kn, 74.25.Fy

The Mott metal-insulator transition (MIT) is a key
phenomenon in the physics of strongly correlated elec-
tron materials. It has been the subject of extensive ex-
perimental studies in transition metal oxides, such as
!V1%xCrx"2O3 or chalcogenides such as NiS2%xSex (for
a review, see Ref. [1]). In contrast to chemical composi-
tion, hydrostatic pressure allows in principle a continuous
sweeping through the transition. For these materials,
however, the appropriate range of pressure is several kilo-
bars. For this reason, many fundamental aspects of the
MIT are yet to be studied in detail. This issue is particu-
larly important in view of recent theoretical predictions
for, e.g., spectroscopy and transport close to the transi-
tion, which should be put to experimental test [2].
Layered charge-transfer salts of the !-!BEDT-TTF"2X
family (where X is a monoanion) offer a remarkable
opportunity for such a study. Indeed, these compounds
are known to display a great sensitivity to hydrostatic
pressure [3]. The !-!BEDT-TTF"2Cu#N!CN"2$Cl com-
pound, in particular, (abbreviated !-Cl below) displays
a very rich phase diagram with paramagnetic insulating,
antiferromagnetic insulating, superconducting, and me-
tallic phases when pressure is varied over a range of a few
hundred bars [3–5].

In this Letter, we report on an extensive experimental
study of the in-plane resistivity of the !-Cl compound for
a range of pressure spanning both the insulating and the
metallic phases. In contrast to previous studies [3], pres-
sure is varied continuously using a helium gas cell, at
constant temperature. By analyzing the pressure and
temperature dependence of the measured resistivity, we
have identified important crossover lines, which are sum-
marized on the phase diagram of Fig. 1. These crossovers
separate four different regimes of transport (to be de-
scribed below) within the paramagnetic phase, corre-

sponding to an ‘‘insulator,’’ a ‘‘semiconductor,’’ a ‘‘bad
metal,’’ and a Fermi-liquid metallic regime. Our mea-
surements were performed both with increasing and de-
creasing pressure sweeps, yielding a determination of the
two spinodal lines Pc

1!T" and Pc
2!T" shown in Fig. 1 (see

also Fig. 3 below).
A critical comparison is made to dynamical mean-field

theory (DMFT [2]), which describes successfully the
observed transport crossovers, while the critical region
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FIG. 1 (color online). Pressure-temperature phase diagram of
the !-Cl salt. The crossover lines identified from our transport
measurements delimit four regions, as described in the text.
The spinodal lines defining the region of coexistence of insu-
lating and metallic phases (hatched) are indicated, as well as
the line where d"=dP is maximum. The latter yields an
estimate of the first-order transition line, ending in a critical
end point. The transition line into an antiferromagnetic insu-
lating phase has been taken from Ref. [5], while the super-
conducting phase [3,5] below 13 K has been omitted.
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FIG. 7 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu[N(CN)2]Cl. At low temperatures it undergoes a
first-order Mott transition from an antiferromagnetic (AF)
insulator (section III.B) to a metal when hydrostatic pres-
sure is applied (section III.C). As the temperature is raised
the line of first order transitions ends in a critical point with
novel critical exponents (section III.C.1). In the insulating
phase raising the temperature destroys the antiferromagnetic
order. At the very lowest temperatures the metallic state be-
comes superconducting (section III.E). As the temperature is
raised superconductivity gives way to a metal with coherent
intralayer charge transport (section III.D.2) and a pseudogap
(section III.D.3). Further, raising the temperature results in a
loss of coherence in the intralayer transport. This incoherent
metallic phase is referred to as a ‘bad-metal’ (section III.D).
From (Limelette, Wzietek, Florens, Georges, Costi, Pasquier,
Jérome, Mézière, and Batail, 2003). [Copyright (2003) by the
American Physical Society.]

half-filled. Hence, these calculations predict that the or-
ganic layers are metallic, in contrast to the rich phase
diagram observed (Figs. 7 and 8).

The κ phase salts of BEDT-TTF are strongly
dimerised, that is the molecules stack in pairs within the
crystal, cf. Fig. 9. The frontier molecular orbitals of the
BEDT-TTF molecule are π orbitals, i.e., they have nodes
in the plane of the molecule, cf. Fig. 11. Thus, these or-
bitals overlap with the equivalent orbitals on the other
molecule in the dimer, cf. Fig. 11, more than they over-
lap with the orbitals of any other BEDT-TTF molecule.
This, combined with the greater physical proximity of
the two molecules within the dimer, means that the am-
plitude for an electron to hop between two molecules
within the same dimer has a much larger magnitude than
the amplitude for hopping between molecules in different
dimers. This suggests that the interdimer hopping might
be integrated out of an effective low energy Hamiltonian
(Kino and Fukuyama, 1996; McKenzie, 1998).

Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3
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The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.
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Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott
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R = R0 + AT2

T1T = const.
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Mott insulator

Metal

Pressure (10-1GPa)

FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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FIG. 8 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu2(CN)3. This is similar to that of κ-(BEDT-TTF)2-
Cu[N(CN)2]Cl (Fig. 7), but has important differences. Most
importantly the Mott insulating phase does not show any
signs of long range magnetic order down to 20 mK (the
lowest temperature studied; see section III.B and Fig. 12).
Thus, κ-(BEDT-TTF)2Cu2(CN)3 is believed to be a spin liq-
uid at ambient and low pressures. Further, there is no evi-
dence of a pseudogap in κ-(BEDT-TTF)2Cu2(CN)3 (see sec-
tion III.D.4). These differences are believed to result from the
greater geometrical frustration in κ-(BEDT-TTF)2Cu2(CN)3
(cf. Table I, Eq. (9) and Fig. 9). From (Kurosaki et al.,
2005). [Copyright (2005) by the American Physical Society.]

1. Dimer model of the band structure of κ-(BEDT-TTF)2X

The dimer model described above is the simplest, and
most widely studied, model of the electronic structure for
the κ-(BEDT-TTF)2X salts and leads to the Hubbard
model on an anisotropic lattice at half filling (McKenzie,
1998; Powell and McKenzie, 2006). The Hamiltonian of
this model is

Ĥ = −t
�

�ij�σ

ĉ†iσ ĉjσ − t�
�

[ij]σ

ĉ†iσ ĉjσ + U
�

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓,(9)

where ĉ(†)iσ destroys (creates) an electron with spin σ on
site (dimer) i, t and t� are the hopping amplitudes be-
tween neighbouring dimers in the directions indicated in
Fig. 9, and U is the effective Coulomb repulsion between
two electrons on the same site (dimer). This model is, up
to an overall scale factor, governed by two dimensionless
ratios: t�/t, which sets the strength of the frustration in
system and U/W , which determines the strength of elec-
tronic interactions. Here, W is the bandwidth, which is
determined by the values of t and t�. These two ratios
can be manipulated experimentally by hydrostatic pres-
sure,4 P , or by studying materials with different anions,

4 It has often been emphasised (Kanoda, 1997) that increased
hydrostatic pressures correspond to decreased correlation (de-
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Ultracold quantum gases in optical lattices
Artifi cial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely 

created by interfering optical laser beams. These so-called optical lattices act as versatile potential 

landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model 

systems of quantum many-body systems in periodic potentials for probing nonlinear wave 

dynamics and strongly correlated quantum phases, building fundamental quantum gates or 

observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern 

and interdisciplinary fi eld of research.

IMMANUEL BLOCH
Institut für Physik, Johannes Gutenberg-Universität, D-55099 
Mainz, Germany.
 e-mail: bloch@uni-mainz.de

Ultracold bosonic and fermionic quantum gases are 
versatile and robust systems for probing fundamental 
condensed-matter physics problems1–12, as well as 
! nding applications in quantum optics and quantum 
information processing13 and understanding atomic 
and molecular physics14,15. Storing such ultracold 
quantum gases in arti! cial periodic potentials of light 
has opened innovative manipulation and control 
possibilities, in many cases creating structures 
far beyond those currently achievable in typical 
condensed-matter physics systems. Amazingly, 
strong correlation e" ects can be observed in dilute 
atomic gases despite the densities of the particles in 
the trapping potentials being more than ! ve orders 
of magnitude less than that of the air surrounding 
us! Ultracold quantum gases in optical lattices can in 
fact be considered as quantum simulators, as Richard 
P. Feynman originally conceived for a quantum 
computer: a powerful simulator in which a highly 
controllable quantum system can be used to simulate 
the dynamical behaviour of another complex quantum 
system16,17. As a simulator, an optical lattice o" ers 
remarkably clean access to a particular hamiltonian 
and thereby serves as a model system for testing 
fundamental theoretical concepts, at times providing 
textbook examples of quantum many-body e" ects.

STORING NEUTRAL ATOMS IN OPTICAL POTENTIALS

Typically, ultracold neutral atoms are stored in 
magnetic traps, in which only a small subset of the 
available atomic spin states — the so-called weak-
! eld-seeking states — can be trapped. # is limitation 
is generally overcome by using optical dipole traps 
that rely on the interaction between an induced 
dipole moment in an atom and an external electric 

! eld. Such a ! eld can, for example, be provided by 
the oscillating electric light ! eld from a laser, which 
induces an oscillating dipole moment in the atom 
while at the same time interacts with this dipole 
moment in order to create a trapping potential18 
Vdip(r) for the atoms:

Vdip(r) = –d•E(r) ∝ α(ωL)E(r)  2.

Here α(ωL) denotes the polarizability of an atom and 
I(r) ∝ E(r)  2 characterizes the intensity of the laser 
light ! eld, with E(r) its electric ! eld amplitude at 
position r. # e laser light is usually tuned far away from 
an atomic resonance frequency, such that spontaneous 
emission e" ects from resonant excitations can be 
neglected and the resulting dipole potential is purely 
conservative in nature. It can be attractive for laser light 
with a frequency ωL smaller than the atomic resonance 
frequency ω0, or repulsive for a laser frequency larger 
than the atomic resonance frequency.

A periodic potential can then be formed simply 
by overlapping two counter-propagating laser beams. 
# e interference between the two laser beams forms 
an optical standing wave with period λL/2, which can 
trap the atoms. By interfering more laser beams, one 
can obtain one-, two- and three-dimensional (1D, 2D 
and 3D) periodic potentials. # e 1D lattice, formed 
by a pair of laser beams, creates a single standing-
wave interference pattern — e" ectively an array of 
2D disk-like trapping potentials. Two orthogonal 
optical standing waves create an array of 1D potential 
tubes (see Fig. 1a), in which the atoms can only move 
along the weakly con! ning axis of the potential tube, 
thus realizing 1D quantum behaviour, with the radial 
motion being completely frozen out for low-enough 
temperatures. # ree orthogonal optical standing 
waves correspond to a 3D simple cubic crystal (see 
Fig. 1b), in which each trapping site acts as a tightly 
con! ning harmonic oscillator potential.

One important advantage of using optical ! elds 
to create a periodic trapping potential is that the 
geometry and depth of the potential are under the 
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complete control of the experimentalist. For example, 
the geometry of the trapping potentials can be changed 
by interfering laser beams under a di! erent angle, thus 
making even more complex lattice con" gurations19, 
such as Kagomé lattices20. # e depth of such optical 
potentials can even be varied dynamically during 
an experimental sequence by simply increasing or 
decreasing the intensity of the laser light, thus turning 
experimental investigations of the time dynamics of 
fundmental phase transitions into a reality.

Each periodic potential formed by a single 
standing wave has the form

Vlat(x) = V0sin2(kLx),

where kL = 2π/λL is the wave vector of the laser 
light used to form the optical standing wave and V0 
represents the lattice potential depth, usually given 
in units of the recoil energy ER = h _ 2kL

2/2m (m being 
the mass of a single neutral atom), which is a natural 
energy scale for neutral atoms in periodic light " elds. 
Note that by choosing to interfere two laser beams 
at an angle less than 180°, one can form periodic 
potentials with a larger period.

# e motion of a single particle in such periodic 
potentials is described in terms of Bloch waves 
with crystal momentum q. However, an additional 
harmonic con" nement arises due to the gaussian 
pro" le of the laser beams (see Fig. 2). Although this 
harmonic con" nement is usually weak (typically 
around 10–200 Hz oscillation frequencies) 
compared with the con" nement of the atoms on 
each lattice site (typically around 10–40 kHz), it 
generally leads to an inhomogeneous environment 
for the trapped atoms. One must be careful, 
therefore, when comparing experimental results 
derived for a homogeneous periodic potential case 
to the ones obtained under the inhomogeneous 
trapping conditions as described.

Owing to the large degree of control over the 
optical lattice parameters, a number of detection 
techniques have become available to directly measure 
the band populations present in the periodic potential. 
A good example of such a measurement technique 
is the mapping of a Bloch state in the nth energy 
band with crystal momentum q onto a free-particle 
momentum in the nth Brillouin zone (see Fig. 3). # is 
can be achieved by adiabatically lowering the lattice 
potential depth, such that the crystal momentum 
of the excitation is preserved during ramp-down. 
# en, the crystal momentum is eventually mapped 
onto a free-particle momentum in the corresponding 
Brillouin zone21,22 (see Fig. 3). For instance, for an 
equal statistical mixture of Bloch states in the lowest 
energy band, one expects a homogeneously " lled 
momentum distribution of the atom cloud within 
the " rst Brillouin zone (a square in momentum space 
with width 2h _ kL). # e atom cloud for such an input 
state should then expand like a square box a$ er the 
adiabatic lowering of the optical lattice potential, 
which has indeed been observed experimently22–24. 
Occupation of higher energy bands becomes visible 
as higher Brillouin zones are populated, and the atom 
cloud expands in a stair-case density distribution a$ er 
adiabatic turn-o! 23 (see Fig. 3e).

a

b

Figure 1 Optical lattice potentials formed by superimposing two or three orthogonal standing waves. 
a, For a 2D optical lattice, the atoms are confi ned to an array of tightly confi ning 1D potential tubes. 
b, In the 3D case, the optical lattice can be approximated by a 3D simple cubic array of tightly 
confi ning harmonic oscillator potentials at each lattice site.
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Figure 2 Optical lattice potentials. a, The standing-wave interference pattern creates a periodic 
potential in which the atoms move by tunnel coupling between the individual wells. b, The gaussian 
beam profi le of the lasers, a residual harmonic trapping potential, leads to a weak harmonic confi nement 
superimposed over the periodic potential. Thus the overall trapping confi guration is inhomogeneous.
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complete control of the experimentalist. For example, 
the geometry of the trapping potentials can be changed 
by interfering laser beams under a di! erent angle, thus 
making even more complex lattice con" gurations19, 
such as Kagomé lattices20. # e depth of such optical 
potentials can even be varied dynamically during 
an experimental sequence by simply increasing or 
decreasing the intensity of the laser light, thus turning 
experimental investigations of the time dynamics of 
fundmental phase transitions into a reality.

Each periodic potential formed by a single 
standing wave has the form

Vlat(x) = V0sin2(kLx),

where kL = 2π/λL is the wave vector of the laser 
light used to form the optical standing wave and V0 
represents the lattice potential depth, usually given 
in units of the recoil energy ER = h _ 2kL

2/2m (m being 
the mass of a single neutral atom), which is a natural 
energy scale for neutral atoms in periodic light " elds. 
Note that by choosing to interfere two laser beams 
at an angle less than 180°, one can form periodic 
potentials with a larger period.

# e motion of a single particle in such periodic 
potentials is described in terms of Bloch waves 
with crystal momentum q. However, an additional 
harmonic con" nement arises due to the gaussian 
pro" le of the laser beams (see Fig. 2). Although this 
harmonic con" nement is usually weak (typically 
around 10–200 Hz oscillation frequencies) 
compared with the con" nement of the atoms on 
each lattice site (typically around 10–40 kHz), it 
generally leads to an inhomogeneous environment 
for the trapped atoms. One must be careful, 
therefore, when comparing experimental results 
derived for a homogeneous periodic potential case 
to the ones obtained under the inhomogeneous 
trapping conditions as described.

Owing to the large degree of control over the 
optical lattice parameters, a number of detection 
techniques have become available to directly measure 
the band populations present in the periodic potential. 
A good example of such a measurement technique 
is the mapping of a Bloch state in the nth energy 
band with crystal momentum q onto a free-particle 
momentum in the nth Brillouin zone (see Fig. 3). # is 
can be achieved by adiabatically lowering the lattice 
potential depth, such that the crystal momentum 
of the excitation is preserved during ramp-down. 
# en, the crystal momentum is eventually mapped 
onto a free-particle momentum in the corresponding 
Brillouin zone21,22 (see Fig. 3). For instance, for an 
equal statistical mixture of Bloch states in the lowest 
energy band, one expects a homogeneously " lled 
momentum distribution of the atom cloud within 
the " rst Brillouin zone (a square in momentum space 
with width 2h _ kL). # e atom cloud for such an input 
state should then expand like a square box a$ er the 
adiabatic lowering of the optical lattice potential, 
which has indeed been observed experimently22–24. 
Occupation of higher energy bands becomes visible 
as higher Brillouin zones are populated, and the atom 
cloud expands in a stair-case density distribution a$ er 
adiabatic turn-o! 23 (see Fig. 3e).
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Figure 1 Optical lattice potentials formed by superimposing two or three orthogonal standing waves. 
a, For a 2D optical lattice, the atoms are confi ned to an array of tightly confi ning 1D potential tubes. 
b, In the 3D case, the optical lattice can be approximated by a 3D simple cubic array of tightly 
confi ning harmonic oscillator potentials at each lattice site.
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Figure 2 Optical lattice potentials. a, The standing-wave interference pattern creates a periodic 
potential in which the atoms move by tunnel coupling between the individual wells. b, The gaussian 
beam profi le of the lasers, a residual harmonic trapping potential, leads to a weak harmonic confi nement 
superimposed over the periodic potential. Thus the overall trapping confi guration is inhomogeneous.
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Markus Greiner et al., Nature 415, 39 (2002)
These were obtained after suddenly releasing the 
atoms from an optical lattice potential with different 
potential depths V0 after a time of flight of 15 ms. 
Values of V0 were: a, 0 Er; b, 3 Er; c, 7 Er; d, 10 Er; e, 
13 Er; f, 14 Er; g, 16 Er; and h, 20 Er.

Transição superfluido-isolante de Mott: 87Rb
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Comparing these two equations, and noting that
�S� •s�L�<0 and that Jspin(U) decreases as U increases,
proves analytically that Uc1�Uc2 (Fisher, Kotliar, and
Moeller, 1995). This is in complete agreement with the
numerical work described in Sec. VII which tackles the
full problem numerically with exact diagonalization
methods (Rozenberg, Moeller, and Kotliar, 1994).

The projective method described in this section is a
particular implementation of the idea of renormaliza-
tion. It was taylored specifically to solve the LISA equa-
tions. It is worth stressing the reasons why the renormal-
ization group invented by Wilson to solve the single
impurity Kondo model does not work for the impurity
models arising in the context of the LISA applications.
The essential insight is that because of the self-
consistency conditions the energy scales of the impurity
are also the energy scales of the bath. The impurity
models are thus in an intermediate coupling regime. The
logarithmic discretization of Wilson’s mesh and the Wil-
son recursion procedure was intended to deal with a
mismatch in energy scales, typical of a weak-coupling
situation in which the Kondo coupling was much smaller
than the conduction electron bandwidth. Notice that,
even in the Kondo model, the calculation of Green’s
functions is not possible to very high precision for all
energies (cf. Hewson, 1993). In the LISA context, we are
not interested in the low-energy eigenvalue spectrum
(which we can calculate using the renormalization
group), but in the whole single-particle excitation spec-
trum (Green’s function), which is fed back into the low-
energy sector via the self-consistency condition. It is thus

not surprising that a direct numerical renormalization
group approach in the LISA context is faced with rather
serious difficulties. For early attempts to implement the
Wilson scheme to solve the LISA equations see Sakai
and Kuramoto (1994) and Shimizu and Sakai (1995).

VII. THE HUBBARD MODEL AND THE MOTT TRANSITION

In this section, we review the application of the LISA
method to the physics of the Hubbard model. We shall
be concerned with the phase diagram, thermodynamics,
one-particle spectra, and two-particle response func-
tions. The control parameters are the temperature T ,
and the interaction strength U/t . In order to reveal the
full variety of possible behavior, we shall also consider
models with different degrees of magnetic frustration.
This introduces a third parameter, which can be for ex-
ample the ratio of nearest-neighbor to next-nearest
neighbor hopping amplitudes t1/t2 . As a function of
these parameters, the Hubbard model at half-filling has,
within the LISA, four possible phases: a paramagnetic
metallic phase, a paramagnetic insulating phase, an insu-
lating antiferromagnetic phase, and (in the presence of
magnetic frustration) an antiferromagnetic metallic
phase. The effect of doping away from half-filling will
also be considered towards the end of this section (Sec.
VII.H).

A. Early approaches to the Mott transition

We shall put a special emphasis in this section on the
transition between the paramagnetic metal and the para-

FIG. 23. Experimental phase diagram for the
metal-insulator transition in V2O3 as a func-
tion of doping with Cr or Ti and as a function
of pressure (after McWhan et al., 1973). See
also recent results by Carter et al. (1992,
1993) that report a low temperature metallic
phase with antiferromagnetic order in
V2�yO3 .
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Janiš, V., 1993, J. Phys Cond. Matter 5, L425.
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Mott Transition and Transport Crossovers in the Organic Compound
!-!BEDT-TTF"2Cu#N!CN"2$Cl
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We have performed in-plane transport measurements on the two-dimensional organic salt
!-!BEDT-TTF"2Cu#N!CN"2$Cl. A variable (gas) pressure technique allows for a detailed study of the
changes in conductivity through the insulator-to-metal transition. We identify four different transport
regimes as a function of pressure and temperature (corresponding to insulating, semiconducting,‘‘bad
metal,’’ and strongly correlated Fermi-liquid behaviors). Marked hysteresis is found in the transition
region, which displays complex physics that we attribute to strong spatial inhomogeneities. Away from
the critical region, good agreement is found with a dynamical mean-field calculation of transport
properties using the numerical renormalization group technique.

DOI: 10.1103/PhysRevLett.91.016401 PACS numbers: 71.30.+h, 74.70.Kn, 74.25.Fy

The Mott metal-insulator transition (MIT) is a key
phenomenon in the physics of strongly correlated elec-
tron materials. It has been the subject of extensive ex-
perimental studies in transition metal oxides, such as
!V1%xCrx"2O3 or chalcogenides such as NiS2%xSex (for
a review, see Ref. [1]). In contrast to chemical composi-
tion, hydrostatic pressure allows in principle a continuous
sweeping through the transition. For these materials,
however, the appropriate range of pressure is several kilo-
bars. For this reason, many fundamental aspects of the
MIT are yet to be studied in detail. This issue is particu-
larly important in view of recent theoretical predictions
for, e.g., spectroscopy and transport close to the transi-
tion, which should be put to experimental test [2].
Layered charge-transfer salts of the !-!BEDT-TTF"2X
family (where X is a monoanion) offer a remarkable
opportunity for such a study. Indeed, these compounds
are known to display a great sensitivity to hydrostatic
pressure [3]. The !-!BEDT-TTF"2Cu#N!CN"2$Cl com-
pound, in particular, (abbreviated !-Cl below) displays
a very rich phase diagram with paramagnetic insulating,
antiferromagnetic insulating, superconducting, and me-
tallic phases when pressure is varied over a range of a few
hundred bars [3–5].

In this Letter, we report on an extensive experimental
study of the in-plane resistivity of the !-Cl compound for
a range of pressure spanning both the insulating and the
metallic phases. In contrast to previous studies [3], pres-
sure is varied continuously using a helium gas cell, at
constant temperature. By analyzing the pressure and
temperature dependence of the measured resistivity, we
have identified important crossover lines, which are sum-
marized on the phase diagram of Fig. 1. These crossovers
separate four different regimes of transport (to be de-
scribed below) within the paramagnetic phase, corre-

sponding to an ‘‘insulator,’’ a ‘‘semiconductor,’’ a ‘‘bad
metal,’’ and a Fermi-liquid metallic regime. Our mea-
surements were performed both with increasing and de-
creasing pressure sweeps, yielding a determination of the
two spinodal lines Pc

1!T" and Pc
2!T" shown in Fig. 1 (see

also Fig. 3 below).
A critical comparison is made to dynamical mean-field

theory (DMFT [2]), which describes successfully the
observed transport crossovers, while the critical region
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FIG. 1 (color online). Pressure-temperature phase diagram of
the !-Cl salt. The crossover lines identified from our transport
measurements delimit four regions, as described in the text.
The spinodal lines defining the region of coexistence of insu-
lating and metallic phases (hatched) are indicated, as well as
the line where d"=dP is maximum. The latter yields an
estimate of the first-order transition line, ending in a critical
end point. The transition line into an antiferromagnetic insu-
lating phase has been taken from Ref. [5], while the super-
conducting phase [3,5] below 13 K has been omitted.
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FIG. 7 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu[N(CN)2]Cl. At low temperatures it undergoes a
first-order Mott transition from an antiferromagnetic (AF)
insulator (section III.B) to a metal when hydrostatic pres-
sure is applied (section III.C). As the temperature is raised
the line of first order transitions ends in a critical point with
novel critical exponents (section III.C.1). In the insulating
phase raising the temperature destroys the antiferromagnetic
order. At the very lowest temperatures the metallic state be-
comes superconducting (section III.E). As the temperature is
raised superconductivity gives way to a metal with coherent
intralayer charge transport (section III.D.2) and a pseudogap
(section III.D.3). Further, raising the temperature results in a
loss of coherence in the intralayer transport. This incoherent
metallic phase is referred to as a ‘bad-metal’ (section III.D).
From (Limelette, Wzietek, Florens, Georges, Costi, Pasquier,
Jérome, Mézière, and Batail, 2003). [Copyright (2003) by the
American Physical Society.]

half-filled. Hence, these calculations predict that the or-
ganic layers are metallic, in contrast to the rich phase
diagram observed (Figs. 7 and 8).

The κ phase salts of BEDT-TTF are strongly
dimerised, that is the molecules stack in pairs within the
crystal, cf. Fig. 9. The frontier molecular orbitals of the
BEDT-TTF molecule are π orbitals, i.e., they have nodes
in the plane of the molecule, cf. Fig. 11. Thus, these or-
bitals overlap with the equivalent orbitals on the other
molecule in the dimer, cf. Fig. 11, more than they over-
lap with the orbitals of any other BEDT-TTF molecule.
This, combined with the greater physical proximity of
the two molecules within the dimer, means that the am-
plitude for an electron to hop between two molecules
within the same dimer has a much larger magnitude than
the amplitude for hopping between molecules in different
dimers. This suggests that the interdimer hopping might
be integrated out of an effective low energy Hamiltonian
(Kino and Fukuyama, 1996; McKenzie, 1998).

Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2

1Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
2Division of Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan

3CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
(Received 15 October 2004; revised manuscript received 6 April 2005; published 18 October 2005)

The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott
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R = R0 + AT2
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FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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FIG. 8 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu2(CN)3. This is similar to that of κ-(BEDT-TTF)2-
Cu[N(CN)2]Cl (Fig. 7), but has important differences. Most
importantly the Mott insulating phase does not show any
signs of long range magnetic order down to 20 mK (the
lowest temperature studied; see section III.B and Fig. 12).
Thus, κ-(BEDT-TTF)2Cu2(CN)3 is believed to be a spin liq-
uid at ambient and low pressures. Further, there is no evi-
dence of a pseudogap in κ-(BEDT-TTF)2Cu2(CN)3 (see sec-
tion III.D.4). These differences are believed to result from the
greater geometrical frustration in κ-(BEDT-TTF)2Cu2(CN)3
(cf. Table I, Eq. (9) and Fig. 9). From (Kurosaki et al.,
2005). [Copyright (2005) by the American Physical Society.]

1. Dimer model of the band structure of κ-(BEDT-TTF)2X

The dimer model described above is the simplest, and
most widely studied, model of the electronic structure for
the κ-(BEDT-TTF)2X salts and leads to the Hubbard
model on an anisotropic lattice at half filling (McKenzie,
1998; Powell and McKenzie, 2006). The Hamiltonian of
this model is

Ĥ = −t
�

�ij�σ

ĉ†iσ ĉjσ − t�
�

[ij]σ

ĉ†iσ ĉjσ + U
�

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓,(9)

where ĉ(†)iσ destroys (creates) an electron with spin σ on
site (dimer) i, t and t� are the hopping amplitudes be-
tween neighbouring dimers in the directions indicated in
Fig. 9, and U is the effective Coulomb repulsion between
two electrons on the same site (dimer). This model is, up
to an overall scale factor, governed by two dimensionless
ratios: t�/t, which sets the strength of the frustration in
system and U/W , which determines the strength of elec-
tronic interactions. Here, W is the bandwidth, which is
determined by the values of t and t�. These two ratios
can be manipulated experimentally by hydrostatic pres-
sure,4 P , or by studying materials with different anions,

4 It has often been emphasised (Kanoda, 1997) that increased
hydrostatic pressures correspond to decreased correlation (de-


