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O modelo de Heisenberg
Como vimos, o modelo de Hubbard em semi-preenchimento (um elétron por sítio) no 
limite U >> t é descrito por:
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O modelo acima, é antiferromagnético: J>0. 
Genericamente, podemos considerar também o caso ferromagnético: J<0



Comparing these two equations, and noting that
�S� •s�L�<0 and that Jspin(U) decreases as U increases,
proves analytically that Uc1�Uc2 (Fisher, Kotliar, and
Moeller, 1995). This is in complete agreement with the
numerical work described in Sec. VII which tackles the
full problem numerically with exact diagonalization
methods (Rozenberg, Moeller, and Kotliar, 1994).

The projective method described in this section is a
particular implementation of the idea of renormaliza-
tion. It was taylored specifically to solve the LISA equa-
tions. It is worth stressing the reasons why the renormal-
ization group invented by Wilson to solve the single
impurity Kondo model does not work for the impurity
models arising in the context of the LISA applications.
The essential insight is that because of the self-
consistency conditions the energy scales of the impurity
are also the energy scales of the bath. The impurity
models are thus in an intermediate coupling regime. The
logarithmic discretization of Wilson’s mesh and the Wil-
son recursion procedure was intended to deal with a
mismatch in energy scales, typical of a weak-coupling
situation in which the Kondo coupling was much smaller
than the conduction electron bandwidth. Notice that,
even in the Kondo model, the calculation of Green’s
functions is not possible to very high precision for all
energies (cf. Hewson, 1993). In the LISA context, we are
not interested in the low-energy eigenvalue spectrum
(which we can calculate using the renormalization
group), but in the whole single-particle excitation spec-
trum (Green’s function), which is fed back into the low-
energy sector via the self-consistency condition. It is thus

not surprising that a direct numerical renormalization
group approach in the LISA context is faced with rather
serious difficulties. For early attempts to implement the
Wilson scheme to solve the LISA equations see Sakai
and Kuramoto (1994) and Shimizu and Sakai (1995).

VII. THE HUBBARD MODEL AND THE MOTT TRANSITION

In this section, we review the application of the LISA
method to the physics of the Hubbard model. We shall
be concerned with the phase diagram, thermodynamics,
one-particle spectra, and two-particle response func-
tions. The control parameters are the temperature T ,
and the interaction strength U/t . In order to reveal the
full variety of possible behavior, we shall also consider
models with different degrees of magnetic frustration.
This introduces a third parameter, which can be for ex-
ample the ratio of nearest-neighbor to next-nearest
neighbor hopping amplitudes t1/t2 . As a function of
these parameters, the Hubbard model at half-filling has,
within the LISA, four possible phases: a paramagnetic
metallic phase, a paramagnetic insulating phase, an insu-
lating antiferromagnetic phase, and (in the presence of
magnetic frustration) an antiferromagnetic metallic
phase. The effect of doping away from half-filling will
also be considered towards the end of this section (Sec.
VII.H).

A. Early approaches to the Mott transition

We shall put a special emphasis in this section on the
transition between the paramagnetic metal and the para-

FIG. 23. Experimental phase diagram for the
metal-insulator transition in V2O3 as a func-
tion of doping with Cr or Ti and as a function
of pressure (after McWhan et al., 1973). See
also recent results by Carter et al. (1992,
1993) that report a low temperature metallic
phase with antiferromagnetic order in
V2�yO3 .
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Hüfner, S., 1994, Adv. Phys. 43, 183.
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• Pressão aumenta t, diminui U/t, favorece o comportamento metálico.
• Pressão química: elemento de raio iônico maior/menor aumenta o 

parâmetro de rede e age como pressão negativa/positiva.
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Mott Transition and Transport Crossovers in the Organic Compound
!-!BEDT-TTF"2Cu#N!CN"2$Cl

P. Limelette,1 P. Wzietek,1 S. Florens,2,1 A. Georges,2,1 T. A. Costi,3 C. Pasquier,1 D. Jérome,1 C. Mézière,4 and P. Batail4
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We have performed in-plane transport measurements on the two-dimensional organic salt
!-!BEDT-TTF"2Cu#N!CN"2$Cl. A variable (gas) pressure technique allows for a detailed study of the
changes in conductivity through the insulator-to-metal transition. We identify four different transport
regimes as a function of pressure and temperature (corresponding to insulating, semiconducting,‘‘bad
metal,’’ and strongly correlated Fermi-liquid behaviors). Marked hysteresis is found in the transition
region, which displays complex physics that we attribute to strong spatial inhomogeneities. Away from
the critical region, good agreement is found with a dynamical mean-field calculation of transport
properties using the numerical renormalization group technique.

DOI: 10.1103/PhysRevLett.91.016401 PACS numbers: 71.30.+h, 74.70.Kn, 74.25.Fy

The Mott metal-insulator transition (MIT) is a key
phenomenon in the physics of strongly correlated elec-
tron materials. It has been the subject of extensive ex-
perimental studies in transition metal oxides, such as
!V1%xCrx"2O3 or chalcogenides such as NiS2%xSex (for
a review, see Ref. [1]). In contrast to chemical composi-
tion, hydrostatic pressure allows in principle a continuous
sweeping through the transition. For these materials,
however, the appropriate range of pressure is several kilo-
bars. For this reason, many fundamental aspects of the
MIT are yet to be studied in detail. This issue is particu-
larly important in view of recent theoretical predictions
for, e.g., spectroscopy and transport close to the transi-
tion, which should be put to experimental test [2].
Layered charge-transfer salts of the !-!BEDT-TTF"2X
family (where X is a monoanion) offer a remarkable
opportunity for such a study. Indeed, these compounds
are known to display a great sensitivity to hydrostatic
pressure [3]. The !-!BEDT-TTF"2Cu#N!CN"2$Cl com-
pound, in particular, (abbreviated !-Cl below) displays
a very rich phase diagram with paramagnetic insulating,
antiferromagnetic insulating, superconducting, and me-
tallic phases when pressure is varied over a range of a few
hundred bars [3–5].

In this Letter, we report on an extensive experimental
study of the in-plane resistivity of the !-Cl compound for
a range of pressure spanning both the insulating and the
metallic phases. In contrast to previous studies [3], pres-
sure is varied continuously using a helium gas cell, at
constant temperature. By analyzing the pressure and
temperature dependence of the measured resistivity, we
have identified important crossover lines, which are sum-
marized on the phase diagram of Fig. 1. These crossovers
separate four different regimes of transport (to be de-
scribed below) within the paramagnetic phase, corre-

sponding to an ‘‘insulator,’’ a ‘‘semiconductor,’’ a ‘‘bad
metal,’’ and a Fermi-liquid metallic regime. Our mea-
surements were performed both with increasing and de-
creasing pressure sweeps, yielding a determination of the
two spinodal lines Pc

1!T" and Pc
2!T" shown in Fig. 1 (see

also Fig. 3 below).
A critical comparison is made to dynamical mean-field

theory (DMFT [2]), which describes successfully the
observed transport crossovers, while the critical region
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FIG. 1 (color online). Pressure-temperature phase diagram of
the !-Cl salt. The crossover lines identified from our transport
measurements delimit four regions, as described in the text.
The spinodal lines defining the region of coexistence of insu-
lating and metallic phases (hatched) are indicated, as well as
the line where d"=dP is maximum. The latter yields an
estimate of the first-order transition line, ending in a critical
end point. The transition line into an antiferromagnetic insu-
lating phase has been taken from Ref. [5], while the super-
conducting phase [3,5] below 13 K has been omitted.
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FIG. 7 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu[N(CN)2]Cl. At low temperatures it undergoes a
first-order Mott transition from an antiferromagnetic (AF)
insulator (section III.B) to a metal when hydrostatic pres-
sure is applied (section III.C). As the temperature is raised
the line of first order transitions ends in a critical point with
novel critical exponents (section III.C.1). In the insulating
phase raising the temperature destroys the antiferromagnetic
order. At the very lowest temperatures the metallic state be-
comes superconducting (section III.E). As the temperature is
raised superconductivity gives way to a metal with coherent
intralayer charge transport (section III.D.2) and a pseudogap
(section III.D.3). Further, raising the temperature results in a
loss of coherence in the intralayer transport. This incoherent
metallic phase is referred to as a ‘bad-metal’ (section III.D).
From (Limelette, Wzietek, Florens, Georges, Costi, Pasquier,
Jérome, Mézière, and Batail, 2003). [Copyright (2003) by the
American Physical Society.]

half-filled. Hence, these calculations predict that the or-
ganic layers are metallic, in contrast to the rich phase
diagram observed (Figs. 7 and 8).

The κ phase salts of BEDT-TTF are strongly
dimerised, that is the molecules stack in pairs within the
crystal, cf. Fig. 9. The frontier molecular orbitals of the
BEDT-TTF molecule are π orbitals, i.e., they have nodes
in the plane of the molecule, cf. Fig. 11. Thus, these or-
bitals overlap with the equivalent orbitals on the other
molecule in the dimer, cf. Fig. 11, more than they over-
lap with the orbitals of any other BEDT-TTF molecule.
This, combined with the greater physical proximity of
the two molecules within the dimer, means that the am-
plitude for an electron to hop between two molecules
within the same dimer has a much larger magnitude than
the amplitude for hopping between molecules in different
dimers. This suggests that the interdimer hopping might
be integrated out of an effective low energy Hamiltonian
(Kino and Fukuyama, 1996; McKenzie, 1998).

Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2

1Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
2Division of Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan

3CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
(Received 15 October 2004; revised manuscript received 6 April 2005; published 18 October 2005)

The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott

Superconductor

(Fermi liquid)
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(Spin liquid) onset TC

R = R0 + AT2

T1T = const.

(dR/dT)max
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FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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FIG. 8 Pressure-temperature phase diagram of κ-(BEDT-
TTF)2Cu2(CN)3. This is similar to that of κ-(BEDT-TTF)2-
Cu[N(CN)2]Cl (Fig. 7), but has important differences. Most
importantly the Mott insulating phase does not show any
signs of long range magnetic order down to 20 mK (the
lowest temperature studied; see section III.B and Fig. 12).
Thus, κ-(BEDT-TTF)2Cu2(CN)3 is believed to be a spin liq-
uid at ambient and low pressures. Further, there is no evi-
dence of a pseudogap in κ-(BEDT-TTF)2Cu2(CN)3 (see sec-
tion III.D.4). These differences are believed to result from the
greater geometrical frustration in κ-(BEDT-TTF)2Cu2(CN)3
(cf. Table I, Eq. (9) and Fig. 9). From (Kurosaki et al.,
2005). [Copyright (2005) by the American Physical Society.]

1. Dimer model of the band structure of κ-(BEDT-TTF)2X

The dimer model described above is the simplest, and
most widely studied, model of the electronic structure for
the κ-(BEDT-TTF)2X salts and leads to the Hubbard
model on an anisotropic lattice at half filling (McKenzie,
1998; Powell and McKenzie, 2006). The Hamiltonian of
this model is

Ĥ = −t
�

�ij�σ

ĉ†iσ ĉjσ − t�
�

[ij]σ

ĉ†iσ ĉjσ + U
�

i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓,(9)

where ĉ(†)iσ destroys (creates) an electron with spin σ on
site (dimer) i, t and t� are the hopping amplitudes be-
tween neighbouring dimers in the directions indicated in
Fig. 9, and U is the effective Coulomb repulsion between
two electrons on the same site (dimer). This model is, up
to an overall scale factor, governed by two dimensionless
ratios: t�/t, which sets the strength of the frustration in
system and U/W , which determines the strength of elec-
tronic interactions. Here, W is the bandwidth, which is
determined by the values of t and t�. These two ratios
can be manipulated experimentally by hydrostatic pres-
sure,4 P , or by studying materials with different anions,

4 It has often been emphasised (Kanoda, 1997) that increased
hydrostatic pressures correspond to decreased correlation (de-
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• Vamos considerar o caso FM: J<0
• Baixas temperaturas: T<<J
• Fase ordenada.
• Spin S qualquer.

Considerações de simetria:
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Dispersão de magnons num FM

time reversal and space inversion symmetry breaks the
degeneracy of the magnon energy and leads to a splitting
of the magnon band structure. The asymmetric dispersion
relation can be understood in terms of the antisymmetric
DMI, which is a consequence of the spin-orbit coupling
[15,19]. In such cases, the extended Heisenberg spin
Hamiltonian (HSH) may be used to obtain the DM vectors.
The extended HSH reads as H ¼ "P

i!jJijSi # Sj þP
i!jDij # Si % Sj " K

P
iðSi # êÞ2. The first term repre-

sents the symmetric exchange interaction with the isotropic
exchange coupling constant Jij between spins Si and Sj,
the second term represents the antisymmetric DMI with
the DM vectors Dij, and the last term accounts for the
magnetic anisotropy energy in the system with an easy axis
along ê (K denotes the effective magnetic anisotropy
energy constant). The solid lines in Fig. 1 are the fits
based on the extended HSH given above. The fit parame-
ters are K ¼ 0, J1 ¼ 7:5ð5Þ meV, J2 ¼ 4:5ð3Þ meV,
j2Dx

1 þ !Dx
1j ¼ 0:9ð3Þ meV, and jDx

2j ¼ 0:5ð3Þ meV. The
subscript 1(2) represents the nearest-neighbor (next-
nearest-neighbor) interaction. Dx

1 ( !Dx
1) is the longitudinal

component of the DM vector of the nearest neighbors in the
same atomic plane (in the neighboring atomic plane). A
detailed discussion and a comparison to the literature can
be found in Ref. [15].

The splitting of the magnon band structure shown
in Fig. 1 is very similar to the well-known Rashba effect
observed for electrons in a two-dimensional electron gas or
at metal surfaces [7–9]. Therefore, the effect may be called
the ‘‘magnon Rashba effect’’ [20]. More importantly, we
observed that the magnons’ lifetimes are different when

they propagate along opposite (but crystallographically
equivalent) directions. Our experimental results are in
line with the recent theoretical calculations based on
the multiband Hubbard model [20]. The difference in the
lifetime when the magnons propagate along opposite di-
rections is a consequence of the spin-orbit coupling. The
spin-orbit-induced damping is a well-known damping
mechanism for small wave-vector magnons, in particular,
in the case of the uniform ferromagnetic resonance mode
(q ¼ 0). As a simple model for the intrinsic ferromagnetic
resonance damping, one may imagine the precession of
the spin that is coupled to its orbital motion via the spin-
orbit coupling. The orbital motion is perturbed by the
lattice simultaneously and hence cannot follow the same
phase anymore and it results in a damping. For high wave-
vector magnons, the damping is mainly governed by dis-
sipation into the Stoner states (known as Landau damping)
[21]. In the case of Fe films on W(110), magnons are
subjected to a large spin-orbit coupling coming mainly
from the hybridization with the tungsten substrate. In
such a case, a spin-orbit-induced damping is superimposed
to the Landau type of damping. Since the time reversal
inverts the angular and linear momentum, it inverts the
spin-orbit contribution to the lifetime (the lifetime of
magnons with þM, þq is identical to the one of magnons
with "M, "q). This is exactly what we observe in our
experiment.
The spin Hamiltonian discussed above does not account

for the magnons’ lifetimes. In order to obtain detailed
information on the magnons’ lifetimes and amplitudes,
one needs to perform a full intensity and broadening analy-
sis of the excitations. For that, the SPEEL spectra are
measured at a fixed scattering geometry and with exactly
the same parameters (like incidence energy, beam current,
and energy resolution) and only the sample magnetization
is switched to the opposite direction. The experiment is
designed such that the magnons propagate in the mirror
symmetry plane of the magnetization. Since the magnon
intensity depends on the scattering matrix elements, keep-
ing the scattering geometry and experimental parameters
unchanged during the experiment would avoid the effects
caused by geometry on the electron scattering processes
and thereby on the magnon intensity. Reversing the mag-
netization is equivalent to time inversion; therefore, one
can reverse the magnon propagation direction only by
reversing the direction of the magnetization. This approach
opens a possibility to measure the magnons with positive
and negative wave vectors without changing the scattering
geometry. The SPEELS intensity spectra are recorded for
different wave vectors. The difference spectra are obtained
according to IDiff: ¼ I# " I" (I# and I" represent the inten-
sity of the scattered electrons for the incidence of spin-
down and spin-up electrons, respectively). The obtained
SPEELS difference spectra are fitted with Voigt profiles
[22], which then are plotted in Fig. 2 as a contour map (the

FIG. 1 (color online). (a) Magnon dispersion relation mea-
sured on a 2 ML Fe on W(110) at room temperature and for
two different magnetization directions. The inset shows a mag-
nified part of the graph for a smaller energy and wave-vector
window. (b) The energy splitting defined as "EðqÞ ¼
EMk½#110)ðqÞ " EMk½1#10)ðqÞ obtained from (a). The symbols repre-

sent the experimental results, while the solid lines represent the
fits based on the extended Heisenberg spin Hamiltonian.
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A key part of spintronics is concerned with effects,
which are linked to the spin-dependent phenomena [1].
In 1960, Rashba proposed a formalism which nicely de-
scribes the existence of a spin-split band structure in
wurtzite crystals [2]. Later on, Bychkov and Rashba
showed that such a spin splitting can also occur in quantum
wells [3]. The physical explanation of this spin splitting
phenomenon is rather straightforward: in a semiconductor
quantum well, if the potential well is asymmetric, the
electrons move in an effective electric field, E, induced
by the potential gradient of the quantum well. In the
reference frame of the electron, this electric field trans-
forms into an effective magnetic field, B [4], which causes
a splitting in the energy levels of electrons with different
spins. A similar effect is expected for the electrons in the
absence of an inversion symmetry and in the presence of a
large spin-orbit coupling [5]. A spin-split band structure
has been observed on some metallic surfaces, where the
inversion symmetry is broken [6] and could be explained in
analogy to the conventional Rashba effect in semiconduc-
tor heterostructures [7–9]. The idea is further tailored to the
surface alloys composed of heavy elements. The combina-
tion of strong spin-orbit interaction of the heavy elements
with structural effects enhances the local potential
gradients at the surface and thereby results in a large
Rashba splitting [10]. The Rashba effect has been explored
in detail in various systems, and even some spintronic
devices are proposed based on this effect [11–14].

Magnons describe the collective and single particle ex-
citations of a spin system. Although for small wave vectors
they have a parabolic dispersion relation in ferromagnets
(similar to the one of the free electrons), they are classified
as bosonic quasiparticles (with a spin of 1@), unlike the
electrons. One of the most interesting phenomena is the
effect of the relativistic spin-orbit coupling on magnons as
bosonic quasiparticles. Such an effect has not been
explored in detail. Only recently, we have shown that the
presence of the spin-orbit coupling in a spin system with
broken inversion symmetry leads to an asymmetric mag-
non dispersion relation via the antisymmetric exchange

interaction, known as Dzyaloshinskii-Moriya interaction
(DMI) [15]. In principle, the spin-orbit coupling in the
presence of the broken inversion symmetry may also
influence the magnon lifetime and amplitude.
In this Letter, we will show that a large spin-orbit

coupling in the presence of the broken space inversion
symmetry does not only break the degeneracy of the mag-
non energy but also influences the magnon lifetime and
amplitude (modulus). By probing the surface magnons
along a direction lying exactly in the mirror symmetry
plane of the film magnetization, we demonstrate that
(i) in addition to the magnon energy, the magnon lifetime
and amplitude are substantially affected by the presence of
the spin-orbit coupling, and (ii) a careful analysis of the
magnon spectra in real time and space reveals that the
magnons with the same energy (eigenfrequency) but oppo-
site propagation direction propagate differently in the pres-
ence of the spin-orbit coupling. Moreover, we will
comment on the role of temperature on the observed effects
within the temperature range of 10–300 K.
The magnon dispersion relation is measured along the

!"- !H direction of the surface Brillouin zone for a two-
atomic-layer thick Fe film grown on W(110) at room
temperature using spin-polarized electron energy loss
spectroscopy (SPEELS) [16]. A two-atomic-layer thick
Fe film on W(110) is ferromagnetic, with a Curie tempera-
ture far above room temperature [17]. It shows a strong
uniaxial magnetic anisotropy with an easy axis along the
h!110i direction [17]. The dispersion relation is obtained by
measuring the SPEEL spectra at different wave vectors
[16,18]. The measurements were performed for the mag-
netization parallel to the ½!110" and ½1!10" directions. The
results of such measurements are summarized in Fig. 1,
demonstrating that the magnon dispersion relation is split
into two branches for magnetization along two opposite
directions. The dispersion relation is antisymmetric, mean-
ing that the magnon energies for positive wave vectors are
equal to the ones with negative wave vectors and opposite
magnetization direction (or vice versa). In fact, the pres-
ence of the relativistic spin-orbit coupling in the absence of
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Dispersão de magnons num FM

Figure 1: Magnon dispersions of bcc Fe for high-symmetry directions. Experimental data, for pure Fe 
at 10 K:  [20], and for Fe (12 Si) at room temperature:   [22]. Calculated dispersions are depicted by 
solid circles and line. The right-hand panel shows the calculated magnon total density of states (in 
states/(meVcell)). Note the Kohn-like anomalies ("cusps'') in the theoretical spectrum. 

Magnon spectrum and related finite-temperature magnetic properties: A first-principle approach
S. V. Halilov, A. Y. Perlovgif, P. M. Oppeneer and H. Eschrig
Europhys. Lett, 39, 91-96 (1997)



Spin waves and electronic 
interactions in La2CuO4, R. Coldea 
et al., Phys. Rev. Lett. 86, 5377 
(2001)
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FIG. 1 (color). (A) The CuO2 plane showing the atomic
orbitals (Cu 3dx22y2 and O 2px,y) involved in the magnetic
interactions. J, J 0, and J 00 are the first-, second-, and third-
nearest-neighbor exchanges and Jc is the cyclic interaction
which couples spins at the corners of a square plaquette.
Arrows indicate the spins of the valence electrons involved
in the exchange. (B) Lower surface is the dispersion relation
for J ! 136 meV and no higher-order magnetic couplings or
quantum corrections. The upper surface shows the effect of the
higher-order magnetic interactions determined by the present
experiment. Color represents spin-wave intensity.

Figure 2A shows data in the form of constant energy
scans for wave vectors around the antiferromagnetic zone
center. As E increases, counterpropagating modes become
apparent.

As the zone boundary is approached and there is less
dispersion, inspection of Fig. 1B reveals that it should be
easier to locate the spin waves via energy scans performed
at a fixed wave vector. Figure 2B shows a series of such
scans collected at various points along the zone bound-
ary. The spin waves have a clearly noticeable dispersion,
from a minimum of 292 6 7 meV near Q ! !3"4, 1"4#
to a maximum of 314 6 7 meV near !1"2, 0#. This is
in obvious contrast to the dispersionless behavior of lin-
ear spin-wave theory for the nearest-neighbor Heisenberg
model. We have collected data throughout the Brillouin
zone, and Fig. 3A shows the resulting dispersion along
major symmetry directions obtained from cuts of the type
shown in Fig. 2. Figure 3B displays the corresponding
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FIG. 2. Scattering from the spin waves in La2CuO4 (T !
295 K). Data result from 68 h (A) and 98 h (B) counting at
a proton current of 170 mA. The sample is described in [10].
Solid lines are fits to a spin-wave cross section convolved with
the instrumental resolution. (A) Const-E cuts near the AF zone
center for an incident energy Ei ! 250 meV. Qz wave vector
components at scan centers are l ! 2.8 (bottom panel), 6.2, and
9.6 r.l.u. of 0.477 Å21. Open circles are a background mea-
sured near the !0, 0# position. Dashed curve is the instrumental
response to spin waves of infinite velocity. (B) Const-Q cuts,
with Ei ! 750 meV, yield the dispersion along the AF zone
boundary. Vertical dotted line at E ! 300 meV is a guide to
the eye. l values at peak position vary from 8.8 (bottom panel)
to 9.5 (top panel). A background measured near the nuclear
zone center !1, 0# has been subtracted. Dashed curve is the in-
strumental response to a dispersionless mode.

spin-wave intensities, in absolute units calibrated using
acoustic phonon scattering from the sample.

To understand our results, we consider a Heisenberg
Hamiltonian including higher-order couplings [13–16]

H ! J
X

$i,j%
Si ? Sj 1 J 0

X

$i,i0%
Si ? Si0 1 J 00

X

$i,i00%
Si ? Si00

1 Jc

X

$i,j,k,l%
&!Si ? Sj# !Sk ? Sl# 1 !Si ? Sl# !Sk ? Sj#

2 !Si ? Sk# !Sj ? Sl#' , (1)

where J , J 0, and J 00 are the first-, second-, and third-
nearest-neighbor magnetic exchanges where the paths
are illustrated in Fig. 1A. Jc is the ring exchange in-
teraction coupling four spins (labeled clockwise) at
the corners of a square plaquette. Each spin coupling
is counted once in Eq. (1). Using classical (large-S)
linear spin-wave theory the dispersion relation is [15,17]

vQ ! 2Zc!Q#
q

A2
Q 2 B2

Q, AQ ! J 2 Jc"2 2 !J 0 2
Jc"4# !1 2 nhnk# 2 J 00(1 2 !n2h 1 n2k#"2), BQ ! !J 2
Jc"2# !nh 1 nk#"2, nx ! cos!2px#, and Zc!Q# is a
renormalization factor [12] that includes the effect of
quantum fluctuations. Within linear spin-wave theory all

5378
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three higher-order spin couplings (J 0, J 00, and Jc! have
similar effects on the dispersion relation and intensity
dependence; therefore they cannot be determined inde-
pendently from the data without additional constraints.
We first assume that only J and J 0 are significant as in
[18], i.e., J 00 ! Jc ! 0. The solid lines in Fig. 2 are fits
to a one-magnon cross section, and Fig. 3 shows fits to
the extracted dispersion relation and spin-wave intensity.
As can be seen in the figures, the model provides an
excellent description of both the spin-wave energies and
intensities. The extracted nearest-neighbor exchange
J ! 111.8 6 4 meV is antiferromagnetic, while the
next-nearest-neighbor exchange J 0 ! 211.4 6 3 meV
across the diagonal is ferromagnetic. A wave-vector-
independent quantum renormalization factor [12] Zc !
1.18 was used in converting spin-wave energies into ex-
change couplings. The zone-boundary dispersion becomes
more pronounced upon cooling as shown in Fig. 3A, and
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FIG. 3. (A) Dispersion relation along high symmetry direc-
tions in the 2D Brillouin zone, see inset (C), at T ! 10 K (open
symbols) and 295 K (solid symbols). Squares were obtained
for Ei ! 250 meV, circles for Ei ! 600 meV, and triangles
for Ei ! 750 meV. Points extracted from constant-E(-Q) cuts
have a vertical (horizontal) bar to indicate the E(Q) integration
band. Solid (dashed) line is a fit to the spin-wave dispersion re-
lation at T ! 10 K (295 K) as discussed in the text. (B) Wave-
vector dependence of the spin-wave intensity at T ! 295 K
compared with predictions of linear spin-wave theory shown by
the solid line. The absolute intensities [11] yield a wave-vector-
independent intensity-lowering renormalization factor of 0.51 6
0.13 in agreement with the theoretical prediction of 0.61 [12]
that includes the effects of quantum fluctuations.

the dispersion at T ! 10 K can be described by the
couplings J ! 104.1 6 4 meV and J 0 ! 218 6 3 meV.

A ferromagnetic J 0 contradicts theoretical predictions
[19], which give an antiferromagnetic superexchange J 0.
Wave-vector-dependent quantum corrections [20] to the
spin-wave energies can also lead to a dispersion along the
zone boundary even if J 0 ! 0, but with sign opposite to our
result. Another problem with a ferromagnetic J 0 comes
from measurements on Sr2Cu3O4Cl2 [21]. This material
contains a similar exchange path between Cu21 ions to
that corresponding to J 0 in La2CuO4 and analysis of the
measured spin-wave dispersion leads to an antiferromag-
netic exchange coupling for this path [21].

While we cannot definitively rule out a ferromagnetic
J 0, we can obtain a natural description of the data in terms
of a one-band Hubbard model [22], an expansion of which
yields the spin Hamiltonian in Eq. (1) where the higher-
order exchange terms arise from the coherent motion of
electrons beyond nearest-neighbor sites [13–15]. The
Hubbard Hamiltonian has been widely used as a starting
point for theories of the cuprates and is given by

H ! 2t
X

"i,j#,s!",#
$cy

iscjs 1 H.c.! 1 U
X

i
ni"ni# , (2)

where "i, j# stands for pairs of nearest neighbors counted
once. Equation (2) has two contributions: the first is
the kinetic term characterized by a hopping energy t
between nearest-neighbor Cu sites and the second the
potential energy term with U being the penalty for
double occupancy on a given site. At half filling, the
case for La2CuO4, there is one electron per site and for
t%U ! 0, charge fluctuations are entirely suppressed
in the ground state. The remaining degrees of freedom
are the spins of the electrons localized at each site. For
small but nonzero t%U, the spins interact via a series of
exchange terms, as in Eq. (1), due to coherent electron
motion touching progressively larger numbers of sites.
If the perturbation series is expanded to order t4 (i.e.,
4 hops), one regains the Hamiltonian (1) with the ex-
change constants J ! 4t2%U 2 24t4%U3, Jc ! 80t4%U3,
and J 0 ! J 00 ! 4t4%U3 [13–15]. We again fitted the
dispersion and intensities of the spin-wave excitations
using these expressions for the exchange constants and
linear spin-wave theory. The fits are indistinguishable
from those for variables J and J 0. Again assuming
[23] Zc ! 1.18, we obtained t ! 0.33 6 0.02 eV and
U ! 2.9 6 0.4 eV (T ! 295 K), in agreement with t
and U determined from photoemission [24] and optical
spectroscopy [25]. The corresponding exchange val-
ues are J ! 138.3 6 4 meV, Jc ! 38 6 8 meV, and
J 0 ! J 00 ! Jc%20 ! 2 6 0.5 meV (the parameters at
T ! 10 K are t ! 0.30 6 0.02 eV, U ! 2.2 6 0.4 eV,
J ! 146.3 6 4 meV, and Jc ! 61 6 8 meV). Us-
ing these values, the higher-order interactions amount
to &11% (T ! 295 K) of the total magnetic energy
2$J 2 Jc%4 2 J 0 2 J 00! required to reverse one spin on a
fully aligned Néel phase.
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FrustraçãoThey also identified deviations from the Arrhenius form at lower tem-
peratures as a result of Coulomb interactions between monopoles. In 
an intriguing paper, Bramwell and colleagues applied an old theory put 
forward by Onsager18 for the electric-field dependence of thermal charge 
dissociation in electrolytes — the Wien effect — to the magnetic analogue 
in spin ice, that is, to the dis association of monopole–antimonopole pairs 
with a magnetic field19. The theory allows an extraction of the absolute 
value of the magnetic charge of a monopole from the dependence of the 
magnetic relaxation rate on the magnetic field. The authors measured 
muon spin relaxation in Dy2Ti2O7 to obtain the rate, and from this they 
extracted a magnetic charge in near perfect agreement with theoreti cal 
expectations. In addition to these quantitative measures of the energy 
and charge of a monopole, two recent papers presented neutron-scat-
tering mea surements in magnetic fields, interpreting them as evidence 
of monopoles and the ‘strings’ emanating from monopoles20,21. Many 
more experiments in which the monopoles in spin ice are studied and 
manipulated are likely to emerge soon.

Quantum spin liquids
In spin ice, as the temperature is lowered, the spins themselves fluctuate 
ever more slowly, eventually falling out of equilibrium and freezing 
below about 0.5 K (from theory, it is predicted that, in equilibrium, 
the spins should order at T = 0.1−0.2 K (ref. 6)). This is a consequence 
of the large energy barriers between different ice-rule configurations, 
which require the flipping of at least six spins, and the weak quantum 
amplitude for such large spins to cooperatively tunnel through these 
barriers. By contrast, for materials with spins of S = ½ and approximate 
Heisenberg symmetry, quantum effects are strong, and there are no 
obvious energy barriers. I now turn to such materials in the search for 
a QSL ground state, in which spins continue to fluctuate and evade 
order even at T = 0 K. Such a QSL is a strange beast: it has a non-mag-
netic ground state that is built from well-formed local moments. The 
theoretical possibility of QSLs has been hotly debated since Anderson 
proposed them in 1973 (ref. 22).

Wavefunctions and exotic excitations
A natural building block for non-magnetic states is the valence bond, 
a pair of spins that, owing to an antiferromagnetic interaction, forms a 
spin-0 singlet state (Fig. 3a). A valence bond is a highly quantum object, 
the two spins being maximally entangled and non-classical. If all of the 
spins in a system are part of valence bonds, then the full ground state has 
spin 0 and is non-magnetic. One way in which this can occur is by the 
partitioning of all of the spins into specific valence bonds, which are static 
and localized. Mathematically, such a ground state is well approximated as 
a product of the valence bonds, so that each spin is highly entangled with 
only one other, its valence-bond partner. This is known as a valence-bond 
solid (VBS) state (Fig. 3a) and occurs in several materials23–25. VBS states 
are interesting because, for instance, they provide an experimental way 
of studying Bose–Einstein condensation of magnons (which are triplet 
excitations of the singlet valence bonds) in the solid state26.

A VBS state is not, however, a true QSL, because it typically breaks 
lattice symmetries (because the arrangement of valence bonds is not 
unique) and lacks long-range entanglement. To build a QSL, the valence 
bonds must be allowed to undergo quantum mechanical fluctuations. 
The ground state is then a superposition of different partitionings of 
spins into valence bonds (Fig. 3b, c). If the distribution of these partition-
ings is broad, then there is no preference for any specific valence bond 
and the state can be regarded as a valence-bond ‘liquid’ rather than a 
solid. This type of wavefunction is generally called a resonating valence-
bond (RVB) state22. RVB states became subjects of intense theoretical 
interest when, in 1987, Anderson proposed that they might underlie the 
physics of high-temperature superconductivity4. Only relatively recently, 
however, have RVB wavefunctions been shown to be ground states of 
many specific model Hamiltonians27–32.

It is now understood that not all QSLs are alike. Generally, different 
states have different weights of each valence-bond partition in their 
wavefunctions. The valence bonds need not be formed only from nearby 

spins33. If a valence bond is formed from spins that are far apart, then 
those spins are only weakly bound into a singlet and the valence bond can 
be ‘broken’ to form free spins with relatively little energy. So states that 
have a significant weight from long-range valence bonds have more low-
energy spin excitations than states in which the valence bonds are mainly 
short range (see, for example, ref. 34). There are also other excitations that 
do not break the valence bonds but simply re arrange them. Such excita-
tions can have low energy even in short-range RVB states.

Given the possibility of different QSL states, it is interesting to attempt 
to classify these states. This problem is only partly solved, but it is clear 
that the number of possible states is huge, if not infinite. For instance, 
Wen has classified hundreds of different ‘symmetrical spin liquids’ 
(QSLs with the full space-group symmetry) for S = ½ antiferromagnets 
on the square lattice35. Finding the correct QSL ground state among all 
of the many pos sible RVB phases, many of which have similar energies, 
is a challenge to theory, reminiscent of the landscape problem in string 
theory, in high-energy physics.

Even with this diversity of possible states, one feature that theorists 
expect QSLs to have in common is that they support exotic excitations. 
What is meant by exotic? In most phases of matter, all of the excitations 
can be constructed from elementary excitations that are either electron-
like (spin S = ½ and charge ±e) or magnon-like (spin S = 1 and charge 
neutral). Only in rare examples, such as the fractional quantum Hall 
states, do the elementary excitations differ from these, in this case by 
carrying fractional quantum numbers. The magnetic monopoles in spin 

A triangle of antiferromagnetically interacting Ising spins, which must 
point upward or downward, is the simplest example of frustration. All 
three spins cannot be antiparallel. As a re sult, instead of the two ground 
states mandated by the Ising symmetry (up and down), there are six 
ground states (see figure; blue circles denote magnetic ions, arrows 
indicate the direction of spin, and black and red lines indicate the shape 
of the triangular lattice, with red lines denoting the axis on which the 
spins are parallel). On 2D and 3D lattices, such degeneracies can persist. 
When they do, fluctuations are enhanced and ordering is suppressed. 
On the basis of this fact, Ramirez introduced a simple empirical measure 
of frustration that has become widely used50. At high temperatures, the 
spin (or magnetic) susceptibility of a local-moment magnet generally 
has a Curie–Weiss form, χ!≈ C/(T − ΘCW), where T is temperature and 
C is the Curie constant. This allows extraction of the Curie–Weiss 
temper ature, ΘCW, from a plot of 1/χ versus T. |ΘCW| provides a natural 
estimate for the strength of magnetic interactions (ΘCW!<!0 for an 
antiferromagnet) and sets the scale for magnetic ordering in an 
unfrustrated material. By comparing the Curie–Weiss temper ature with 
the temperature at which order freezes, Tc, the frustration parameter, f, is 
obtained: f = |ΘCW|/Tc. Typically, f!>!5–10 indicates a strong suppression 
of ordering, as a result of frustration. For such values of f, the temperature 
range Tc!<!T!<!|ΘCW| defines the spin-liquid regime. 

Box 1 | Elements of frustration
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these configurations and the positions of protons in the tetrahedrally 
coordinated O2− framework of water ice10.

When kBT << Jeff, the system fluctuates almost entirely within the 
two-in and two-out manifold of states. It turns out that the number of 
such states is exponentially large, so a low-temperature entropy remains 
even within this limit. This entropy, first estimated by Pauling in 1935 
(ref. 11), has been measured in spin ice10. Although the spins remain 
paramagnetic in this regime, the ‘ice rules’ imply strong correlations: 
for instance, if it is known that two spins on a tetrahedron are pointing 
out, then the other two spins must point in. The correlated paramagnet 
is a simple example of a classical spin liquid. A key question is whether 
the local constraints have long-range consequences: is the spin liquid 
qualitatively distinguishable from an ordinary paramagnet? Interest-
ingly, the answer for spin ice is ‘yes’.

Analogies to electromagnetism
To understand how long-range effects arise from a local constraint, 
it is helpful to use an analogy to electromagnetism. Each spin can be 
thought of as an arrow pointing between the centres of two tetrahedra 
(Fig. 2b). This defines a vector field of flux lines on the lattice, which 

because of the two-in, two-out rule is divergence free. In this sense, the 
vectors de fine an ‘artificial’ magnetic field, b, on the lattice (the field can 
be taken to have unit magnitude on each link, with the sign determined 
by the arrows). Because the spins are not ordered but fluctuating, the 
magnetic field also fluctuates. However, because the magnetic field lines 
do not start or end, these fluctuations include long loops of flux (Fig. 2b) 
that communicate spin correlations over long distances.

The nature of the long-distance spin correlations was derived by Young-
blood and colleagues in a mathematically analogous model of a fluctuating 
ferroelectric, in which the electric polarization is similarly divergence-
less12; this was subsequently rederived for spin ice13. The result is that the 
artificial magnetic field, at long wavelengths, fluctuates in equilibrium just 
as a real magnetic field would in a vacuum, albeit with an effective mag-
netic permeability. For the spins in spin ice, this implies power-law ‘dipo-
lar’ correlations that are anisotropic in spin space and decay as a power 
law (~1/r3, where r is the distance between the spins) in real space. It is 
remarkable to have power-law correlations without any broken symmetry 
and away from a critical point. After Fourier transformation of these cor-
relations on the lattice, a static spin structure factor with ‘pinch points’ at 
reciprocal lattice vectors in momentum space is obtained12–14.

Such dipolar correlations have recently been observed in high 
resolu tion neutron-scattering experiments by Fennell and colleagues15. 
At the pinch points, if the ice rules are obeyed perfectly, a sharp singular-
ity is expected, as well as a precise vanishing of the scattering intensity 
along lines passing through the reciprocal lattice vectors. The rounding 
of this singu larity gives a measure of the ‘spin-ice correlation length’, 
which is estimated to grow to 2–300 Å (a large number) at a temperature 
of 1.3 K. In the future, it may be interesting to see how this structure 
changes at even lower temper atures, at which spin ices are known to 
freeze and fall out of equilibrium. Although the argument of Young-
blood and colleagues12 and the model outlined above rely on equilib-
rium, arguments by Henley suggest that the pinch points could persist 
even in a randomly frozen glassy state14.

Magnetic monopoles
Interestingly, the magnetostatic analogy goes beyond the equilibrium 
spin correlations. One of the most exciting recent developments in this 
area has been the discovery of magnetic monopoles in spin ice16. These 
arise for simple mi croscopic reasons. Even when kBT << Jeff, violations of 
the two-in, two-out rule occur, although they are costly in energy and, 
hence, rare. The sim plest such defect consists of a single tetrahedron 
with three spins pointing in and one pointing out, or vice versa (Fig. 2c). 
This requires an energy of 2Jeff relative to the ground states. From a 
magnetic viewpoint, the centre of this tetrahedron becomes a source or 
sink for flux, that is, a magnetic monopole. A monopole is a somewhat 
non-local object: to create a monopole, a semi-infinite ‘string’ of spins 
must be flipped, starting from the tetrahedron in question (Fig. 2c). 
Nevertheless, when it has been created, the monopole can move by 
single spin flips without energy cost, at least when only the dominant 
nearest-neighbour exchange, Jeff, is considered.

Remarkably, the name monopole is physically apt: this defect carries 
a real ‘magnetic charge’16. This is readily seen because the physical mag-
netic moment of the rare-earth atom is proportional to the pseudo-
magnetic field, M = gμBb, where g is the Landé g factor and μB is the Bohr 
magneton. Thus, a monopole with the non-zero divergence =•b also 
has a non-zero =•M. The ac tual magnetic charge (which measures the 
strength of the Coulomb inter action between two monopoles) is, how-
ever, small: at the same distance, the magnetostatic force between two 
monopoles is approximately 14,000 times weaker than the electrostatic 
force between two electrons. Nevertheless, at low temperatures, this is 
still a measurable effect.

A flood of recent papers have identified clear signatures of magnetic 
monopoles in new experiments and in previously published data. Jaubert 
and Holdsworth showed that the energy of a monopole can be extracted 
from the Arrhe nius behaviour of the magnetic relaxation rate17. They 
found that in Dy2Ti2O7 the energy of a monopole is half that of a single 
spin flip, reflecting the fractional character of the magnetic monopoles. 

Figure 1 | Frustrated magnetism on 2D and 3D lattices. Two types of 2D 
lattice are depicted: a triangular lattice (a) and a kagomé lattice (b). The 3D 
lattice depicted is a pyrochlore lattice (c). In experimental ma terials, the 
three-fold rotational symmetry of the triangular and kagomé lattices may 
not be perfect, allowing different exchange interactions, J and Jʹ, on the 
horizontal and diagonal bonds, as shown. Blue circles denote magnetic ions, 
arrows indicate the direction of spin and black lines indicate the shape of the 
lattice. In b, ions and spins are depicted on only part of the illustrated lattice. 
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spinons are inherently 1D, they are confined to the chains, and to take 
advantage of the transverse exchange, they must be bound into S = 1 
‘triplon’ bound states (Fig. 3b). These triplons move readily between 
chains and are responsible for the transverse dispersion observed in 
the experiment. Thus, the observation of triplons provides a means to 
distinguish 1D spinons from their higher-dimensional counterparts. 
A quantitative theory of this physics agrees well with the data, with no 
adjustable parameters. It is therefore understood that Cs2CuCl4 is an 
example of ‘dimensional reduction’ induced by frustration and quan-
tum fluctuations. This phenomenon was unexpected and might have a 
role in other correlated materials. Perhaps it is related to the cascade of 
phases that is observed in the isostructural material Cs2CuBr4 in applied 
magnetic fields75.

Spin–orbital quantum criticality in FeSc2S4
Among the entries in Table 1, FeSc2S4 stands out as a material that has 
not only spin degeneracy but also orbital degeneracy. This is common 
in transition-metal-containing compounds76,77. It is possible to imagine 
a quantum orbital liquid78–80, analogous to a QSL. Like the more familiar 
(theoretically) QSL, the quantum orbital liquid is experimentally elu-
sive. Nevertheless, experimen talists have observed that FeSc2S4, which 
has a twofold orbital degeneracy, evades order down to T = 50 mK, and 
on this basis it was characterized as a spin–orbital liquid81–83.

Recently, it was suggested that this liquid behaviour is due not to frus-

tration but to a competition between spin–orbit coupling and magnetic 
exchange84. Microscopic estimates of the spin–orbit interaction, λ, 
indeed show that its strength, λ/kB = 25–50 K, is comparable to the Curie–
Weiss temperature, 45 K. As a result, the material is serendipitously close 
to a quantum crit ical point between a magnetically ordered state and 
a ‘spin–orbital sin glet’, induced by spin–orbit coupling84 (Fig. 5). This 
picture seems to explain data from a variety of experiments, including 
NMR81, neutron-scattering82, spin susceptibility83 and specific-heat83 
measurements. Most notably, the anomalously small excitation gap of 
2 K that was measured in neutron-scattering82 and NMR81 experiments 
is understandable — this gap vanishes on approaching the quantum 
critical point. If the theory is correct, FeSc2S4 can be viewed as a kind of 
spin–orbital liquid with significant long-distance entanglement between 
spins and orbitals. Because the material is not precisely at the quantum 
critical point, however, there is a finite correlation length; therefore, this 
entanglement does not persist to arbitrarily long distances, as would be 
expected in a true RVB state.

Future directions
I have only touched the surface of the deep well of phenomena to 
be ex plored, experimentally and theoretically, in frustrated magnets 
and spin liq uids. In spin ice, there are subtle correlations, collective 
excitations and emergent magnetic monopoles, all of which are highly 
amenable to laboratory studies. In sev eral frustrated magnets with spin 

Figure 4 | Excitations of quantum antiferromagnets. a, In a quasi-1D 
system (such as the triangular lattice depicted), 1D spinons are formed as 
a domain wall between the two antiferromagnetic ground states. Creating 
a spinon (yellow arrow) thus requires the flipping of a semi-infinite line 
of spins along a chain, shown in red. The spinon cannot hop between 
chains, because to do so would require the coherent flipping of an infinite 

number of spins, in this case all of the red spins and their counterparts on 
the next chain. b, A bound pair of 1D spinons forms a triplon. Because a 
finite number of spins are flipped between the two domain walls (shown 
in red), the triplon can coherently move between chains, by the flipping of 
spins along the green bonds. c, In a 2D QSL, a spinon is created simply as an 
unpaired spin, which can then move by locally adjusting the valence bonds.

Table 1 | Some experimental materials studied in the search for QSLs
Material Lattice S ΘCW (K) R* Status or explanation 

κ-(BEDT-TTF)2Cu2(CN)3 Triangular† ½ −375‡ 1.8 Possible QSL
EtMe3Sb[Pd(dmit)2]2 Triangular† ½ −(375–325)‡ ? Possible QSL  
Cu3V2O7(OH)2•2H2O (volborthite) Kagomé† ½ −115 6 Magnetic
ZnCu3(OH)6Cl2 (herbertsmithite) Kagomé ½ −241 ? Possible QSL 
BaCu3V2O8(OH)2 (vesignieite) Kagomé† ½ −77 4 Possible QSL  
Na4Ir3O8 Hyperkagomé ½ −650 70 Possible QSL  
Cs2CuCl4 Triangular† ½ −4 0 Dimensional reduction 
FeSc2S4 Diamond 2 −45 230 Quantum criticality
BEDT-TTF, bis(ethylenedithio)-tetrathiafulvalene; dmit, 1,3-dithiole-2-thione-4,5-ditholate; Et, ethyl; Me, methyl. *R is the Wilson ratio, which is de fined in equation (1) in the main text. For EtMe3Sb[Pd(dmit)2]2 
and ZnCu3(OH)6Cl2, experimental data for the intrinsic low-temperature specific heat are not available, hence R is not determined. †Some degree of spatial anisotropy is present, implying that Jʹ#≠#J in Fig. 1a. ‡A 
theoretical Curie–Weiss temperature (ΘCW) calcu lated from the high-temperature expansion for an S#=#½ triangular lattice; ΘCW#=#3J/2kB, using the J fitted to experiment. 
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Figure 2 Low-temperature heat capacities of -(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators -(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated -(BEDT-TTF)2Cu[N(CN)2]Br and �0-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of -(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of -(BEDT-TTF)2Cu2(CN)3 and other
-type BEDT-TTF salts. -(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �0-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight diVerence in the lattice contribution
is observed, attributable to the diVerence of crystal packing,
but the overall temperature dependence resembles that of
the -type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T

�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic diVerence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the � term),
even in the insulating salt. The magnitude of � is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T

�1

versus T
2 plot down to T =0 K. However, the low-temperature data

show an appreciable sample dependence. Figure 2a,b shows data for
diVerent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite � term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.

15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T

�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the �
term in the present insulating state is intrinsic.

The well known Mott insulators -(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�0-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing � value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A � value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
diVerent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the
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b contains the data of the typical antiferromagnetic insulators -(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated -(BEDT-TTF)2Cu[N(CN)2]Br and �0-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of -(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of -(BEDT-TTF)2Cu2(CN)3 and other
-type BEDT-TTF salts. -(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �0-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight diVerence in the lattice contribution
is observed, attributable to the diVerence of crystal packing,
but the overall temperature dependence resembles that of
the -type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T

�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic diVerence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the � term),
even in the insulating salt. The magnitude of � is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T

�1

versus T
2 plot down to T =0 K. However, the low-temperature data

show an appreciable sample dependence. Figure 2a,b shows data for
diVerent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite � term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.

15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T

�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the �
term in the present insulating state is intrinsic.

The well known Mott insulators -(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�0-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing � value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A � value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
diVerent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the
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Calor específico linear em T é típico de férmions. Em algumas 
teorias, as excitações elementares são férmions neutros (“spinons”) 

S. Yamashita et al., Nature Phys. 4, 459 (2008) 



Condutividade térmica linear em T?

Essas mesmas excitações fermiônicas 
neutras (“spinons”) deveriam dar 
origem a k(T)~T . 
Mas o resultado experimental é 
exponencial (gap?) 

M. Yamashita et al., Nature Phys. 5, 44 (2009) 
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Figure 2 | Thermal conductivity in the low-temperature region. Thermal
conductivity divided by temperature plotted as a function of T

2 below
300 mK in zero field (blue for sample A and green for sample B) and at
µ0H = 10 T (red, sample A) applied perpendicular to the basal plane.
Convex and non-T

2 dependent /T is observed for both crystals. /T of
sample A at 10 T shows a nearly parallel shift from that in zero field. It is
immediately obvious that /T for all data vanishes as extrapolating to
T ! 0 K, indicating the absence of the gapless fermionic excitations. This is
in sharp contrast to the specific-heat measurements, which claim the
presence of gapless excitations4.

As it is not possible to directly probe the microscopic spin
structure using neutron scattering owing to the compound’s
organic nature, thermodynamic measurements must be adopted to
unveil the low-lying excitation of -(BEDT-TTF)2Cu2(CN)3. Very
recent specific-heat measurements of -(BEDT-TTF)2Cu2(CN)3
show a large linear temperature-dependent contribution,
� ⇠ 15mJK�2 mol�1 (ref. 4), which suggests the presence of
gapless excitations, similar to the electronic specific heat in metals.
This observation provides strong support for several theoretical
models, including a QSL with gapless ‘spinons’, which, like its
1D predecessors are (fermionic) elementary excitations that carry
spin-1/2 and zero charge2,3, which are to be compared with
conventional (bosonic) magnons that carry spin-1. However, it is
premature to conclude that the QSL in -(BEDT-TTF)2Cu2(CN)3
is gapless from these measurements because the specific-heat data
are plagued by a very large nuclear Schottky contribution below 1K
(ref. 4), whichwould necessarily lead to ambiguity. Incorporation of
a probe that is free from such a contamination is strongly required22.

As pointed out in ref. 3, thermal conductivity () measurements
are highly advantageous as probes of elementary excitations in
QSLs, because  is sensitive exclusively to itinerant excitations and
is totally insensitive to localized entities such as are responsible
for Schottky contributions. The heat is carried primarily by
acoustic phonons (ph) and magnetic contributions (mag). Indeed,
a large magnetic contribution to the heat current is observed in
low-dimensional spin systems23,24.

As shown in Fig. 1, the thermal conductivity exhibits an
unusual behaviour characterized by a hump structure around
T

⇤ ' 6K. A similar hump is observed in the magnetic part of the
specific heat4 and NMR relaxation rate1,10 around T

⇤, although
no structural transition has been detected. These results obviously
indicate that mag occupies a substantial portion in  . Various
scenarios, such as a crossover to a QSL state4, a phase transition
associated with the pairing of spinons2, spin-chirality ordering25,
Z2 vortex formation26 and exciton condensation27, have been
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Figure 3 | Comparison between the data and the theory based on the
gapless QSL with a spinon Fermi surface. /T data (sample A) in zero
field (blue) plotted together with expected dependence of equation (1). The
green line is for the clean limit (1/⌧ = 0) and brown for a dirty case with the
mean free path as short as 10a, where a(' 0.8 nm) is the lattice parameter
of the triangular lattice.

suggested as a possible source of the anomaly at T ⇤ and warrant
further studies.

The thermal conductivity at µ0H = 0 and 10 T in the
low-temperature regime (T < 300mK) is shown in Fig. 2. A
striking deviation of /T from a T

2 dependence is observed for
both samples; both curves exhibit a convex trend. At such low
temperatures, the mean free path of phonons is as long as the
crystal size and ph/T has a T

2 dependence, which has indeed
been reported in a similar compound -(BEDT-TTF)2Cu(NCS)2
(ref. 28). Therefore, the observed non-T 2 dependence, together
with the fact that  is enhanced by magnetic field, definitely
indicates the substantial contribution of mag in  even in this
T range.

The results shown in Fig. 2 provide key information on the
elementary excitations from the QSL state of -(BEDT-TTF)2Cu2
(CN)3. Most importantly, it is extremely improbable from the
experimental data that /T in the T ! 0K regime has a finite
residual value for data of both samples in zero field and that
of sample A under 10 T. (Indeed, a simple extrapolation of both
data in zero field even gives a negative intersect.) These results
lead us to conclude that /T vanishes at T = 0K. It should be
stressed that the vanishing /T immediately indicates the absence
of low-lying fermionic excitations, in sharp contrast to the finite �
term reported in the heat capacity measurements4. We believe that
the heat capacity measurements incorrectly suggest the presence of
gapless excitation, possibly owing to the large Schottky contribution
at low temperatures.

The present conclusion is reinforced by comparing the data with
the thermal conductivity calculated by assuming a spinon Fermi
surface with gapless excitations3, which is given as



T
=

"
~
k
2
B

✓
kBT

✏F

◆2/3

+ mA

k
2
B

1
⌧

#�1
1
d

, (1)

where ✏F is the Fermi energy, m is the electron mass, A is the
unit cell area of the layer, d is the interlayer distance and ⌧ is the
impurity scattering time. Estimating ✏F = J as in 1D spin systems29,
we compare our result with equation (1) as shown in Fig. 3. It is

NATURE PHYSICS | VOL 5 | JANUARY 2009 | www.nature.com/naturephysics 45

LETTERS

0 T
1 T
4 T
8 T

1 2 3 4 5

25

50

75

100

125

C pT
–1

 (m
J 

K–2
 m

ol
–1

)

0

150

25

50

75

100

125

0 T
1 T
4 T
8 T

T 2 (K2) T 2 (K2)

0 6 1 2 3 4 50 6

C pT
–1

 (m
J 

K–2
 m

ol
–1

)

0

150

   -(d8:BEDT-TTF)2Cu[N(CN)2]Br

   -(BEDT-TTF)2Cu[N(CN)2]CI

  '-(BEDT-TTF)2ICI2β

a b
κ

κ

Figure 2 Low-temperature heat capacities of -(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators -(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated -(BEDT-TTF)2Cu[N(CN)2]Br and �0-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of -(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of -(BEDT-TTF)2Cu2(CN)3 and other
-type BEDT-TTF salts. -(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �0-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight diVerence in the lattice contribution
is observed, attributable to the diVerence of crystal packing,
but the overall temperature dependence resembles that of
the -type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T

�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic diVerence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the � term),
even in the insulating salt. The magnitude of � is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T

�1

versus T
2 plot down to T =0 K. However, the low-temperature data

show an appreciable sample dependence. Figure 2a,b shows data for
diVerent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite � term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.

15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T

�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the �
term in the present insulating state is intrinsic.

The well known Mott insulators -(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�0-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing � value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A � value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
diVerent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the
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