# Fl 193 – Teoria Quântica de Sistemas de Muitos Corpos

1° Semestre de 2025 25/03/2025 Aula 8

# O modelo de Heisenberg

Como vimos, o modelo de Hubbard em semi-preenchimento (um elétron por sítio) no limite U >> t é descrito por:

$$H = J \sum_{\langle ij \rangle} \left( \mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4} \right)$$
$$J = \frac{4t^2}{U} > 0$$

O modelo acima, é antiferromagnético: *J*>0.

Genericamente, podemos considerar também o caso ferromagnético: J<0



**TEMPERATURE (°K)** 



• Pressão aumenta *t*, diminui *U/t*, favorece o comportamento metálico.

 Pressão química: elemento de raio iônico maior/menor aumenta o parâmetro de rede e age como pressão negativa/positiva.



Czjzek et al., JMMM 3, 58 (1976)

#### Condutores orgânicos fortemente bi-dimensionais $\kappa$ -(BEDT-TTF)<sub>2</sub>Cu[N(CN)<sub>2</sub>]Cl



# Teoria de ondas de spin

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

- Vamos considerar o caso FM: J<0
- Baixas temperaturas: T < J
- Fase ordenada.
- Spin S qualquer.

Considerações de simetria: SPINTOTAL COMUTA CON A E, PORTANTO, É CONSER-ちょうろう VADOr. → [ST,H]= > = PROVEM . O OPERADOR DE ROTAÇÃO GLOBAL DE SPINS:  $U = orp[-i\partial \hat{n} \cdot \vec{S}_T] \implies \overline{Urr} \quad \vec{U} = H \implies Urr = H \quad urr =$ (U, H] 20 ISSO VALE TAMBÉR SE JOD.

SEGUE QUE, PODEMOS DIAGONALIZAR H, ST, ST& SIMULTANEAMENTE. SETORES DE STZ BEM DEFINIDO: 1) •  $| ? ? ? ? ? ... > : 5_{T_{z}} = NS (N.D.) Size [-S; S+1,..., S]$ 2) 1111...  $5\tau_{g}=(N-1)S+S-1=NS-1(D.)$ 3) - (PPPPPP) : STZ=NS-2 (P.) 199799....> La Say = 8-2  $J) H | T | \cdots | S = J \geq \left[ \frac{1}{2} (S_{i}^{\dagger} S_{j}^{\dagger} + S_{i}^{\dagger} S_{j}^{\dagger}) + S_{ig} S_{jg}^{\dagger} \right] | T | T | \cdots > =$  $\vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2} (\vec{S}_1 \cdot \vec{S}_2 + \vec{S}_1 \cdot \vec{S}_2) + \vec{S}_{12} \cdot \vec{S}_{22} = \vec{J} \cdot \vec{S} \cdot \vec{N} \cdot \vec{D} = \vec{J} \cdot \vec{N} \cdot \vec{S}_{22} \cdot \vec{S}_{$ 



ESSE EST. FUNDAMENTAL É DEGENERADO COM ESTADOS SATURADOC COM OS SPINS APONTANDO NUMA DIREÇÃO À QUALOJEC. PORÉM, HAI UMA QUEBRA ESPONTÂNEA DE SIME-TRIA A BAIXAS TEMPERATURAS E OS DUTROS SETONES NÃO SÃO MAIS "VISITADOS" (QUEBRA DE ERGODICIDADE)

Setor de um spin-flip  $H|P_{1}P_{1}1...> = 5 \sum_{ij} \left[ \frac{1}{2} \left( S_{i}^{*} S_{j}^{*} + S_{i}^{*} S_{j}^{*} \right) + S_{i}^{*} S_{j}^{*} \right]|P_{1}P_{1}P_{1}...>$  $= 5 \left[ c_{2} + c_{1} \left( \left[ 1 1 1 1 \cdots + 1 1 1 1 1 7 1 7 \cdots \right] \right) \right]$ A ATUAÇÃO DA PARFE (StS +SST) É EQUIVALENTE A MOVER O SPIN-FLIP PARA OS SÍTIOS VIZINHOS, OS AUTO-ESTADOS NESSE SETDE SÃO "ONDAS PLANAS' DE SPIN-FLIPS:  $\vec{k} \sim \vec{\sum} e^{i\vec{k}\cdot\vec{k}i} | 1 | 9 | 1 \dots >$  $\vec{k} \sim \vec{\sum} e^{i\vec{k}\cdot\vec{k}i} | 1 | 9 | 1 \dots >$  $\vec{k} \sim \vec{k} \sim \vec{k} \cdot \vec{k}$ => ONDA DE SPIN "ENERGIA E(72)

SETORES DE MAIS DE UM SPIN-FLIP: NAD TRIVIAIS. FISICAMENTE APERECEM INTERA-COES ENTRE DS SPIN-FLIPS (COLISSES, ESTADOS 216ADOS). Transformação de Holstein-Primakoff DEFINIMOS DESVIOS DA SATURAÇÃO: |M> |8>  $\delta = 5 - M \Rightarrow M = 5 - 6 | 5> a - 18 = 5 - 5 = 0>$   $M \in [-s_1, ..., s] | 5 - 1> (8 = 5 - (5 - 1) = 1)$   $\delta \in [0, ..., 25] :$ <math>|-s> = -6 | 5 = 5 - (-5) = 25>

 $S^{+}|M> = \sqrt{(S-M)(S+N+1)} |M+1>}$   $S^{+}|8> = \sqrt{8[2S+1-87]} |S-1>= \sqrt{2s} \sqrt{1-\frac{(S-1)}{2s}} |S-1>$   $S^{-}|8> = \sqrt{2s} \sqrt{1-\frac{c}{2s}} \sqrt{8+1} |8+1>$   $S_{2}|8> = (S-8)|87$ 

ESSA ATUAÇÃO SUGERE QUE DEFINAMOS Bosons ci, ai a: 18: >= JSi 18:-1> at 18:>= VSi+1 18:+1> a: a: 16:>= 8: 16:> CON 1550, MA' UNA REPRESENTAÇÃO FIEL DOS OPERADORES DE SPIN, SE ASSOCIARNOS:  $S_i = \sqrt{2S} \sqrt{1 - \frac{a_i a_i}{2C}} a_i = \sqrt{2S - a_i a_i} a_i$  $S_i = (S_i^+) = J_2 S_a t_1 - a_i a_i = a_i J_2 S_a t_i$ Siz= S-aiai TRANSFORMAÇÃO PE HOLSTEIN-PRIMAKOFF

E' NECESSARIO, PARA QUE A REPRESENTAÇão SEJA FIEL, QUE: aiai 625 Vi LEVANDO EN H: 2 Siz Siz = 2 [s²-s(aiai+ajai)+ajai]

 $= NS^{2}P - ZPS \stackrel{?}{_{i}} \stackrel{a_{i}}{_{i}} + \stackrel{?}{_{i}} \stackrel{a_{i}}{_{i}} \stackrel{a_{i}}{$ 

+ 25  $\left(1 - \frac{M_{0}}{2s}\right)^{1/2} a_{0}^{2} a_{1}^{2} \left(1 - \frac{M_{0}}{2s}\right)^{1/2}$ 

NOTEM A ORGANIZAÇÃO EN UNA SÉRIE EN L (SEM-- CLÁSICA).

EXPANDINDO ATE ORDEN OUA DRAFTICA APENAS:  $H = SNS^2 D - 25SD \stackrel{>}{_{\sim}} a_i^{\dagger}a_i^{\dagger} + JS \stackrel{>}{_{\sim}} (q_i^{\dagger}a_j^{\dagger} + h \cdot c \cdot) + O(S^{\circ})$ H PODE SER DIAGONALIZADO POR TR. FOURIER  $a_{\overline{k}}^{\dagger} = \overline{z} \stackrel{e^{i\overline{k}\cdot\overline{k}i}}{\sqrt{N}} a_{i}^{\dagger}, ETC.$ Eo  $H = JNPS - 2JSD \sum_{k} a_{k}^{\dagger} a_{k} + JS \sum_{k} \chi_{k} a_{k}^{\dagger} a_{k}$ = JNPS<sup>2</sup> - JSZ (2D - 82) at az]  $Y_{k} = 2 (Cork_{k} + Cork_{k} + Cork_{k}) (a=1)$ E(k)=20-2 Zoolei : DISPERSÃO DAS DOUDAS DE INIZZE E(R) N-JSZIK: -JSR TICA SE TRIZE

### Sistema em equilíbrio à temperatura T

$$\begin{aligned} \langle a_{k}^{\dagger} a_{k} \rangle &= \frac{1}{e^{\beta e(k)} - 1} \quad (PLANCK) \\ \text{POTENCIAL QUITHICO E' NULD} \\ \langle S_{T_{z}} \rangle &= \langle z (S - M_{z}) \rangle = NS - z (a_{z}^{\dagger} a_{z}) \\ &= NS - z (a_{z}^{\dagger} a_{z}) = NS - z \frac{1}{e^{\beta e(k)} - 1} \\ &= NS - N \int \frac{d^{2}k}{(2\pi)^{2}} \frac{1}{e^{\beta e(m)} - 1} \\ \text{SE TCC[J]: } &= (k^{2}) = JS k^{2} \\ \langle S_{T_{z}} \rangle - NS = -N \int \frac{\Gamma_{o} k^{(on)} \partial k}{(2\pi)^{2}} \frac{1}{e^{\beta SSk^{2} - 1}} = (X - \sqrt{\beta SS} k) \end{aligned}$$





SE T 22 |J|, EM 3D: $U(T) = E_{0} + A T^{5/2} \Rightarrow C(T) = \frac{10}{3T} = T^{3/2}$ 





QUE DIVERGE SE  $D \leq 2$ .

NÃO HÁ QJEBRA ESPONTÂNEA DA SIMETRIA DE ROTAÇÃO GLOBAL DE SPIN EN DE DE DE 2

TEOREMA DE MERMIN-WAGNER-HOHENBERG

### Dispersão de magnons num FM

PRL 108, 197205 (2012)

PHYSICAL REVIEW LETTERS

week ending 11 MAY 2012



#### Magnon Lifetimes on the Fe(110) Surface: The Role of Spin-Orbit Coupling

Kh. Zakeri,<sup>\*</sup> Y. Zhang, T.-H. Chuang, and J. Kirschner Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany (Received 16 January 2012; published 9 May 2012)

FIG. 1 (color online). (a) Magnon dispersion relation measured on a 2 ML Fe on W(110) at room temperature and for two different magnetization directions. The inset shows a magnified part of the graph for a smaller energy and wave-vector window. (b) The energy splitting defined as  $\Delta E(q) = E_{M\parallel[\bar{1}10]}(q) - E_{M\parallel[1\bar{1}0]}(q)$  obtained from (a). The symbols represent the experimental results, while the solid lines represent the fits based on the extended Heisenberg spin Hamiltonian.

# Dispersão de magnons num FM

Magnon spectrum and related finite-temperature magnetic properties: A first-principle approach S. V. Halilov, A. Y. Perlovgif, P. M. Oppeneer and H. Eschrig Europhys. Lett, **39**, 91-96 (1997)



Figure 1: Magnon dispersions of bcc Fe for high-symmetry directions. Experimental data, for pure Fe at 10 K: [20], and for Fe (12 Si) at room temperature: [22]. Calculated dispersions are depicted by solid circles and line. The right-hand panel shows the calculated magnon total density of states (in states/(meVcell)). Note the Kohn-like anomalies ("cusps") in the theoretical spectrum.

### Magnons em um AFM

Spin waves and electronic interactions in La<sub>2</sub>CuO<sub>4</sub>, R. Coldea *et al.*, Phys. Rev. Lett. **86**, 5377 (2001)



#### Magnons em um AFM

Spin waves and electronic interactions in La<sub>2</sub>CuO<sub>4</sub>, R. Coldea *et al.*, Phys. Rev. Lett. **86**, 5377 (2001)







# Algumas redes frustradas





Pirocloro











# Frustração

| Table 1   Some experimental materials studied in the search for QSLs |             |     |                     |     |                       |
|----------------------------------------------------------------------|-------------|-----|---------------------|-----|-----------------------|
| Material                                                             | Lattice     | S   | Θ <sub>cw</sub> (K) | R*  | Status or explanation |
| κ-(BEDT-TTF) <sub>2</sub> Cu <sub>2</sub> (CN) <sub>3</sub>          | Triangular† | 1/2 | -375‡               | 1.8 | Possible QSL          |
| $EtMe_3Sb[Pd(dmit)_2]_2$                                             | Triangular† | 1/2 | -(375-325)‡         | ?   | Possible QSL          |
| $Cu_3V_2O_7(OH)_2$ •2H <sub>2</sub> O (volborthite)                  | Kagomé†     | 1/2 | -115                | 6   | Magnetic              |
| $ZnCu_3(OH)_6Cl_2$ (herbertsmithite)                                 | Kagomé      | 1/2 | -241                | ?   | Possible QSL          |
| $BaCu_3V_2O_8(OH)_2$ (vesignieite)                                   | Kagomé†     | 1/2 | -77                 | 4   | Possible QSL          |
| Na <sub>4</sub> Ir <sub>3</sub> O <sub>8</sub>                       | Hyperkagomé | 1/2 | -650                | 70  | Possible QSL          |
| Cs <sub>2</sub> CuCl <sub>4</sub>                                    | Triangular† | 1/2 | -4                  | 0   | Dimensional reduction |
| FeSc <sub>2</sub> S <sub>4</sub>                                     | Diamond     | 2   | -45                 | 230 | Quantum criticality   |

BEDT-TTF, bis(ethylenedithio)-tetrathiafulvalene; dmit, 1,3-dithiole-2-thione-4,5-ditholate; Et, ethyl; Me, methyl. \**R* is the Wilson ratio, which is defined in equation (1) in the main text. For EtMe<sub>3</sub>Sb[Pd(dmit)<sub>2</sub>]<sub>2</sub> and ZnCu<sub>3</sub>(OH)<sub>6</sub>Cl<sub>2</sub>, experimental data for the intrinsic low-temperature specific heat are not available, hence *R* is not determined. †Some degree of spatial anisotropy is present, implying that  $J' \neq J$  in Fig. 1a. ‡A theoretical Curie-Weiss temperature ( $\Theta_{cw}$ ) calculated from the high-temperature expansion for an  $S = \frac{1}{2}$  triangular lattice;  $\Theta_{cw} = 3J/2k_B$ , using the *J* fitted to experiment.

#### L. Balents, Nature 464, 199 (2010)

## Calor específico linear em T



Calor específico linear em T é típico de férmions. Em algumas teorias, as excitações elementares são férmions neutros ("spinons")

# Condutividade térmica linear em T?

Essas mesmas excitações fermiônicas neutras ("spinons") deveriam dar origem a  $\kappa(T) \sim T$ . Mas o resultado experimental é exponencial (gap?)



Figure 3 | Comparison between the data and the theory based on the gapless QSL with a spinon Fermi surface.  $\kappa/T$  data (sample A) in zero field (blue) plotted together with expected dependence of equation (1). The green line is for the clean limit ( $1/\tau = 0$ ) and brown for a dirty case with the mean free path as short as 10*a*, where *a*( $\simeq 0.8$  nm) is the lattice parameter of the triangular lattice.

M. Yamashita et al., Nature Phys. 5, 44 (2009)