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We study the transport in a Luttinger liquid coupled to a magnetic chain containing a Bloch domain wall. We
compute the leading correction to the adiabatic limit of a long domain wall, which causes no scattering. We
show that the problem is reminiscent of an impurity in a Luttinger liquid, but with a different dependence on
the interaction parameters due to spin-flip scattering. For repulsive interactions, we find that the domain-wall
resistance diverges with decreasing temperature. This may be relevant for the design of one-dimensional
systems with large magnetoresistance at low temperatures.
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The large magnetoresistance associated with the nuclgéeractions. In a uniformly magnetized system, the spin polar-
ation of domain walls in magnetic wires and nanocontaéts ization gives rise to different interaction constagtsandg,
has potential applications in the design of high-density magbetween electrons with the same spin andbetween elec-
netic memories and sensors. The negative magnetoresistartcens with opposite spins, due to the absence of(23U
observed in these systems was originally explained by theymmetry'® In a system containing a domain wall, the local
mistracking of carrier spins when the local magnetizationmagnetization acts as an effective magnetic field on the con-
rotates in a distance comparable to the Fermi waveléhgthduction electrons. The first-order approach is to assume that
Strictly speaking, none of the available experiments hashe interaction constants are different for the spin densities in
reached the extreme one-dimensiofid)) limit. It would be  the direction fixed by the spin background
interesting to look for effects specific to 1D systems. These
systems fall into the universality class of Luttinger Liquids g9 , 9 ,
(LL),° which are distinguished by the absence of stable qua- Hint:f dx) 5 PAT S PUTALPAPy [
siparticle excitations and unique transport properties, such as
a power-law temperature dependence of the conductangghere
through a nonmagnetic impurit§=*2At T=0, a vanishingly
small barrier is able to produce perfect reflection if the car- 1+ o-e&x)
riers interact repulsively. P ()= (X) — Y,

The effect of nonmagnetic impurities suggests a similar
phenomenon in the case of a magnetic inhomogeneity. In this

article we show that a magnetic domain wall behaves as gnd &(x) =cosdx)z+ sin6()y. This expression should be

spin-flip impurity in a LL. We analyze the backscattering exact in the limit of long domain walls. For low polarizations

term of the domain wall in the limit of weak scattering. It is (Jx—0), we recover spin degeneracy and all the interaction

: : . L2 constants must be equal(=9,=9,).
governed by an anomalous dimension given primarily by It is now convenie%tﬂﬁpe%#or%; spin gauge transforma-

71 . .
(Kot K 7)/2, whereK, andKs are the LL interaction pa- tion that aligns the spin of the conduction electrons with the

rameters. There is also a correction due to the asymmetry ., magnetizatiod. This amounts to rotating the spin-

between up- and down-spin electrons introduced by the exdensity operatos(x) by the angled(x) around thex axis
change field. In the case of local repulsive interactions, thi hich is accomplished by the operator '

should lead to an anomalously large and temperature-

dependent magnetoresistance in one-dimensional systems. .
We consider interacting electrons coupled to a magnetic U=exp[l—J dx 00x) (T + iyt

domain wall as described by the Hamiltonian 2 DARRAS

: where .(x) is the field operator for conduction electrons.
szz €CloCro— Ik > S+ Hint, (1) The rotation ofH throughU vyields
T ]

wherec,, destroys a conduction electron with momentkm
and spin projectionr, e,=k?/2m for quadratic dispersion,
Jk is the Kondo coupling constant between conduction elec-
trons and localized spin§;, ands;= %Eaﬁcfaaaﬁcjﬁ is the  Here, e,,= e,— 0JcS/2 expresses the fact that the effective
conduction electron-spin density at git&Ve assume atatic, magnetic field of the local moments breaks the spin degen-
pinned magnetic domain WaIIAdescribed jn the continuumeracy of the electron gadd;, is obtained fromH;,, by
limit by setting S(x) = Scosé(X)z+ Ssiné(x)y. For a Bloch  changingps ., —p;, . The transformation also makes ex-
domain wall, we take cog(x)=—tanh{/\), with \ being the  plicit the scattering term due to the presence of the domain
wall width. The termH;,,; accounts for electron-electron in- wall

H=UTHU=2Y, €, Cl Crot Hint Huy- )
ko
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i backscattering term, which scatters electrons from right to

Hy=— mj dx dx0 Yloydxp+H.c+OMN2), (3)  left moving statesand vice versaand is important for the
departure from perfect conductani®e??It can be written in

where we intend to carry out the calculations to leading ordeterms of charge and spin fields as

in 1/\. This corresponds to the first correction to the adia- K

batic limit of a very long domain wall, which produces no FA

scattering. Yo P HY =——— " i (27040 s 27 4(0)], (6

We now focus on the long-wavelength limit of the con-

duction electrons. In this limit, we can linearize the disper-where kF_(kFT+kFl)/2 and Aq=[dxe '¥3,6(x) is real

sion around the Fermi points. Since each of the two spifor symmetric walls. We note that thekg mode of the do-

branches has a different Fermi wave vedtay,, we must ~main wall cancels the oscillation of the backscattering term.

have two Fermi velocitiesr,=vg(1+0{), with v the  Moreover, the scattering amplitude increases with growing

mean Fermi velocity and the velocity mismatch and thinner walls.
The free HamiltoniarH | as given by Eq(5) is not in
Up)—Ug| diagonal form. However, it is still quadratic in the bosonic
- vertug) fields and can be diagonalized by means of a canonical trans-

formation to new fieldg); ; and ¢ ;. We define the bosonic

The linearized dispersion for spior reads e, =vr (K  fiald vectors

FKkg,), where the minugplus) sign applies to rightleft)

moving electrons. The field operatgt, then naturally sepa- 0 e
rates into right and left parts 0= . ¢= ,
. i 65 d)S
Yo (X) =X FXy () +e KFXy_ (X). so thatH,, can be rewritten as
Bosonization enables one to build an effective theory by 1
mapping the fermionic operators into associated bosonic HLLZEJ dx{d,0Ad, 0+ 3, HpBI P},
fields? In terms of these fields, the field operators are given
by where we have introduced the matrices
(%)= X~ 0,01 4, (0T}, () A (K gvl) (U°/K° @2)
AX)= exp —i (X)) =T (X)]}, = ' =
vr. Ve2Ta i ¢ vy veKg vy vslKg
wherea™ ! is a momentum cutoff ang, and ¢, are dual Our aim is to diagonalizé& and B simultaneously. In or-

fields satisfying[ ¢,(x),dy0,(x")]=16(x—x"). We further  der for the LL to be stable, the corresponding eigenvalues
define the charge and spin bOSOﬂQ’SZ(QSTiQSL)/\/E_ (the velocities of the natural excitationmust be positive;
Upon bosonizing the free part of the Hamiltonig), we get  this limits the validity of our solution to the interval
the LL Hamiltoniar?

§2U2 Vels

<KKe<——. @)
Hu= 2 de[ Ko(050,)°+ <x¢) OcVs I&F
Outside this interval, the polarization is large enough to
make one of the velocities vanish and the spinonlike excita-
+J AX{{v19x0c0x s+ Lva0xeixbst, (5) tion becomes gapped. We start the diagonalization by rotat-
ing A andB through an angler, as expressed by the matrix

where
cos sin
_ +94T_94¢+921_92¢ R= _<P ¢ .
V1=Ug 2’”_4, y —SIng COSop
We choose the angle in such a way that, applying next the
_ 941 —94;— 92 +02 rescaling
Uz_ U |:+ y
27l
. . Ve 0
where g,, and g4, are the interaction constants between A= ,
electrons in different branches and in the same branch, re- 0 \/;

spectively. For not very largg, we will take gi;—gi|*{  we shall haveA "'R'ARA ~1= AR'BRA. This condition re-
(i=2,4) (Ref. 13 so thatv ; , are approximately independent quires

of £. Itis clear from Eq (5) that the spin background intro-

duces scattering between charge and spin excitations, which 0K oL@ — {v,Sin 20+ v K Sire

are no longer the normal modes of system. K= , (83
The bosonized form of the scattering terig can be Ecoszqa—gvzsin 20+ EsinzqJ

obtained easily by using the relatiéd). We retain only the Ke Ks
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+ i i ’ ’ ; ’ ’
= USKSCO§@ §U15|n 2(P+UCKCS|n2(P’ (8b) ZO:J H D¢VD6VGX%JdXdT[|aT¢V(9X0V

v [
—2codop+ (v,Sin 20+ ——sirte
Ks Ke

w401,
~ 2{v,€08 2p+ (v K —vKg)sin 2¢

Ku Ve Us (80) whereH(¢,,,0,) is the Hamiltonian density in E¢9). Then

sin 2¢ we integrate out the degrees of freedomxer0O and find the
Ke Ks

effective action
The restriction(7) assures thak and u are both real. We

then determinep in the interval[ — 7/4,7/4] for arbitrary ¢ . 1 ’ )
by imposing that the three expressids$ are solved simul- S5 [ o, 00]= B > ol dg,(wn) b, (—wp)
taneously. Being equal, the two transformed matrices can be nn

2{v,C0Ss 2p+

made diagonal by performing a second rotat®rAs a re- 1
sult, the Hamiltoniar(5) assumes the form + g > ol 05,(0n) 85,(— @),
v,n
U; ’ ’ i i foaL
Ho = 2 ?f dx{(0,0.)2+ (g )2}, (9) vyherewn are bosc.)mc.Matsubara frequenues.Arenormallza
v=c,s tion group analysis gives the flow of the coupling constant

whereu ¢ are the eigenvalues of the final matrix. The origi- at low energies () (Refs. 10-12

nal bosonic field vectors are written in terms of the new ones

as 9 _1-p
FTARL )Y,
0=T°0" ¢=T%¢’, . : , ,
where D is the dimension of the backscattering operator,
whereT?=RA 1S and T?=RAS=[(T% 1. given by
In order to analyze the effect of the backscattering term
(6), we work out an effective action for the free Hamiltonian D=L[(T5)%+ (T9)2+(TL)%+(TE)?]. (10)

that depends only on the fields at the oriffiin terms of the
new bosonic fields, we have

H® = ysin[ 27 T4,6.(0)+ T5,64(0)1]

We would like to expres® in terms of the LL param-
eters. Remarkably, it does not depend on the m&rand

reduces to
xsin\2a[ T{14(0) + T4 (0) ], . . .
where y={keAy_/mma. Thus, the effective action must D=5| kcose+ —sing+ ;COSGDJFMSin(P :
depend on both conjugate fields. We start with the free par-
tition function in imaginary time For small{, we get

1) (KK o= v1)[KKo(KeKsvotv1)vi+2(KEKZ0,—v1)v 05— (K Kgv o+ v1)vE] L2 a

1
D=—<K + —+
21°° Ks 4KCK§UCUS(UC+US)2

For nonmagnetic impuritiesD;,,= (K.+Kg)/2, which is  term that flips the electron spin in the tunneling process. This

different from theZ—0 limit of our result. This should be term has been analyzed in the context of a magnetic impurity

attributed to the spin-flip scattering explicit in the foi(3), in a LL,'* where the hopping is found to be irrelevant for

in contrast with the charge-only scattering by a nonmagneticepulsive interactions. As a result, the fixed point is a spin-

impurity. charge insulator aT =0. The straight line in Fig. 1 repre-
The possible phases can be obtained similarly to Refssents the marginal linB=1 in the limit {—0.

10-12. We first focus on thé—0 case. FoD>1 or K The correction for finite/ vanishes wheikK .Ks=v1/v,.

+K; '>2, the scattering is irrelevant and the fixed point is aActually, this cancellation happens to all orders/ibecause

LL with perfect transmission of charge and spin. Bpx1  the Eqgs.(8) are always satisfied fop=0, k=K., and u

or K.+ K <2, which is favored for increasingly repulsive =K =v,/v,K.. Consequently, the conditionK.Kg

interactions(decreasingK,), the scattering is relevant and =v;/v, defines a line in parameter space where the dimen-

the system flows to the strong-coupling limit. This limit cor- sion of the scattering term ig invariant. In particular, the

responds to two semi-infinite LL's with spins polarized in noninteracting poinK,=Ks=1 (andv,=v,=vg) is always

opposite directions and coupled through a small hoppingnarginal. ForK Ks#v4/v,, the dimension varies witlg.

140402-3



RAPID COMMUNICATIONS

R. G. PEREIRA AND E. MIRANDA PHYSICAL REVIEW B69, 140402R) (2004
25 oscillations in the electron gdsSimilarly to what happens
: 1 with charge-density oscillations created by nonmagnetic
okt { i impurities? the scattering by these spin-density oscillations
L spin-charge | ] diverges at loww in one dimension. As a result, the electrons
158 nsulator // | are totally reflected by the wall.

Finally, let us estimate the exponent in the particular case
of the Hubbard modéf Due to the absence of $2) sym-
metry, we cannot tak& =1 as usual. Instead, the param-
etersK. andKg depend implicitly org. To lowest order irt,
Ke~1+[2In( Y] L. Note that this correction has a lower
order dependence anthan the explicit on¢order?) in Eq.

(11). Furthermore, a finite polarization makkg>1 and so
pushes the model into the insulating region of the phase dia-
gram. For smallU, K.~1—aU/27ve+0(¢), whereU is

the on-site repulsion and is the lattice spacing. Them)

FIG. 1. Phase diagram for a Luttinger liquid coupled to a mag-~1—aU/4mve—[4In(¢" Y] L. As an experimental test of
netic domain wall. The backscattering tekt) is marginal on the  this theory, one should look for the dependence of the resis-
straight line in the |Im|t§~>0, and on the dashed one fOf—' 0.4 tance exponent on the po|arizatidjmf the under|ying Sys-
(with all velocities equal The dotted line corresponds to the lower tem of carriers.
bound of stability of the Luttinger liquid according to E). In conclusion, we have shown that the domain-wall scat-

N . .. tering in a Luttinger liquid is the magnetic analog of the
The dashed line in Fig. 1 shows how the marginal line 'SKang-Fisher prob?em. \(]:]ust as a nonmggnetic impu%ity, a do-

modified for/=0.4 andv=vs=v,=v,= V. main wall breaks the translation symmetry of the electron
The dimensiorD manifests itself in the exponent of the oaq The g mode of the wall gives rise to a spin-flip back-
frequgncyédepﬁn?]entbdolr(nmn-wgll resflrstﬁnce. 'lrlhe r|e3|s;cc|V|t cattering term which is relevant for repulsive interactions.
associated with the backscattering off the wall at low e~ yhjs case, the magnetoresistance diverges as a power law
quencies ip(w)>w : leeW|sez,(E;[@%flnlte-temperature in the limit of zero temperature. By applying magnetic fields
resistance turns out to bp(T)«<T"" . Therefore, the one can insert or remove a single domain wall and then
domain-wall scattering in a LL gives rise to a temperaturé-giich between a spin-charge insulator and a Luttinger liquid
dependent resistance. FD>1, the resistance vanishes as a,yith perfect conductance. This should be relevant in view of

power law whenT—0; for D<1, it diverges in the limit e quest for systems exhibiting large magnetoresistance.
T—0. The LL behavior is cut off at a temperatuiie’

~ve/L, below which the transport is dominated by the This work was supported by Fapesp through Grants No.
Fermi-liquid leads? This can be understood as follows. The 01/12160-5(R.G.P) and 01/00719-8E.M.), and by CNPq
domain wall is known to induce long-ranged spin-densitythrough Grant No. 301222/97{&.M.).
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