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Abstract 

We consider the possibility that instabilities of the Abrikoso~ Suhl resorance lead to new fixed-point behavior 
of the Kondo effect in a lattice environment. In one" scenario, a pairing component to the resonant scattering develops 
in the Kondo lattice, leading to an odd-frequency superconductor. We discuss experiments that can discriminate 
between this picture and d-wave pairing, and its relationship to the non-Fermi-liquid fixed point of the overscreened 
Kondo model. 

Harry Suhl's birthday provides us with a welcome 
opportunity to pause and look back at early work on 
the Kondo effect in which he played a vital role. The 
Kondo or "s--d" model for magnetic ions in a metallic 
host dates back to work by Zener [1]. In 1956, Kasuya 
[2] first cast the model into its modern second quantized 
form 

H = H , +  J ~ r j ' S g  [u j - tP* ,  
J 

"t 
Here H~ = ~S:kg'k,g'~, describes the conduction band 
and the exchange interaction is written in a tight binding 
~%rm. in the early sixties Kondo  [3], building on Ander- 
son's superexchange concept [4], studied the properties 
of the model with antiferromagnetic rather than the 
ferromagnetic interactions envisaged by Zener. The fa- 
mous logarithmic correction to the electron scattering 
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rate that he derived. 

- ---- niTtJ 2 + 2tJplln , 
T 

{2) 

where p is the conduction electron density of states 
and n~ the impurity concentration, beauti~'vlly explained 
the resistance minimum of dilute magnetic alloys 
and definitively confirmed the indirect antiferromag- 
netic exchange between magnetic ions and conduction 
electrons. 

Suhl was one of :he first to appreciate the many body 
implications of this logarithmic term. in the first of two 
papers pubiished in i965 [5] he remarked ~a divergence 
of this sort calls into question the stability, of the Fezmi 
surface". No~vadays, we view the Kondo model in the 
language of scaling theory, and the logarithmic terms 
that prompted Suhl's remark are taken as an indication 
that the oriqina! conduction sea with unquenched local 
moments is an unstable fixed point. Perturbation theory 
tells us that spin fluctuations are "'anti-screening", 
causing a flow of the superexchange to strong coupling 
as a function of energy, according to the perturbative 

0921-4526/94,$07.00 {') 1994 Elsevier Science B,V. All righls reserved 
SSDI 0921-4526{93}E0214-2 



198 P. Coleman et al. / Ph.vsiea B 199&200 (1994) 197 201 

beta function 

?Jp 
= #(Jp) ,  ~ln A 

/~(x)= - 2 x  a + 2 x  3 +  "" (~,~1). (3) 

Suhrs early work on the impurity model showed that the 
logarithmic growth of the electron scattering amplitude 
leads ultimately to the development of an elastic reason- 
ant scattering center at the Fermi energy. The "Ab- 
rikosov-Suhi" resonance that he predicted [5-7] is now 
understood to be a renormalized Friedel-Anderson res- 
o l l a n c e .  

Suhl's remark acquires a renewed significance in the 
light of the discovery of heavy fermion compounds. 
A priori, the presence of the Kondo logarithms in weak 
coupling tells us nothiny about how more general Kondo 
models flow to strong coupling: this depends on the 
topology of the scaling flows. Experimentally, most 
heavy fermion compounds do indeed show features that 
demonstrate that, to some degree or another, their be- 
havior is dominated by a flow to a Fermi-liquid fixed 
point. However, almost all of them show magnetic or 
superconducting instabilities at temperatures that are 
substantial fractions of the Kondo temperature: despite 
the itinerant aspects to these phase transitions, they are 
in essence spin orderim, t processes, and require descrip- 
tions where the correlation of the local moments with the 
conduction electron, is an integral part of the ordering 
process. 

These considerations motivate us to consider possible 
instabilities of the Abrikosov-Suhl IAS) resonance in 
more general Kondo models where the appearance of 
new relevant variables in the Hamiltonian direrts the 
screening process into new basins of attraction. A simple 
example of this phenomenon is the impurity model with 
an additional screening channel coupled to the local 
moment, 

H = ~ Hhand{T) + J[¢'/'1 + ";-0"2] "Sd. (4) 
3'= 1 , 2  

Here :~ labels the screening channel. A separatrix at ;. = I 
divides the Hamiltonian flows into two distinct Fermi- 
liquid basins of attraction where the AS resonance re- 
sides in one channel, but is absent from the other [8, 9]. 
At ,,. = 1, the AS resonance becomes unstable, and the 
model scales to a non-Fermi-liquid {NFLI quantum criti- 
cal point, developing a unique localized real fermion 
mode with a fractional entropy [10] IFig. IlaD. There has 
been much recent interest in this fixed point in connec- 
tion with the possibility ofa quadrupolar Kondo effect in 
heavy fermion systems [11]. 
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Fig. 1. (a) Scaling behavior of the two-channel Kondo model: tb) 
illustration of a hypothetical new fixed point in the scaling 
trajectories of the Kondo lattice model. 

Does the lattice play a similarly relevant role in the 
Kondo scaling process? In the lattice, crossing a separat- 
rix between two basins of attraction would imply a real 
phase transition IFig. llbll associated directly with the 
Kondo effect. One interesting possibility is an instability 
in the Abrikosov Suhl resonance that leads it to develop 
an anomalous scattering component in the triplet chan- 
nel. producing an odd-frequency pairing component in 
the electron self-energies: 

I I'2 ) 
.ll,,) = irr2d, 2~i] Id, = [all + id2]'er). 15) 

This t3pe of "odd-frequency'" triplet pairing was en- 
visaged by Bcrezinskii [12,13]. Calculations that we 
now outline [t4] indicate that such a state is stable, 
sharing features in common with the fixed point of the 
overscreened Kondo model, notably the development of 
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neum,l  fermionic modes at the Fermi energy that de- 
couple from the spin and charge degrees of freedom. The 
state that is formed retains certain features reminiscent of 
a superconductor containing a line of gap zeros, making 
it a conceivable alternative to the d-wave theory of  heavy 
fermion superconductivity. 

A key step in our work is to bypass the difficulties of 
gauge theory approaches to the Kondo lattice model, 
replacing the commonly used Abrikosov pseudo-fermion 
representation of spins with a more ancient, Majorana 
representation that avoids the constraints. This method, 
in a different guise, was used by Spencer and Doniach 
115] in their early work on the Kondo model under the 
name of"Drone  fermions", but has since been neglected. 
The essence of the method is to generlize the fermionic 
properties of Pauli matrices to a lattice. Recall that Pauli 
matrices anticommute {~r,, a~} = 26,~ which implies they 
are real or "Majorana" (a ~ = o) fermions. Their Fermi 
statistics guarantee that the "spin" operator S = - {i!4~ 
n ~ x ~ r  is  a faithful representation of a spin - I / 2 .  W e  

generalize this property to the lattice by introducing 
a three-component Majorana fermion q~ at each site i, 
which satisfies the algebra ~ " = = 1,2, 3). ,~1~, ~1~] 6~,6 ~ (a ,  h 
The corresponding spin operators are then 

i 
S~ = - 7 qJ x ~/i. 16) 

In terms of Majorana fermions, the Kondo exchange 
interaction can be written as 

generates a nontrivial correlation between the spin o~ ' c  
local moments and the conduction electron pair degrees 
of freedom: 

( r , (x lS~(x))  = gJg~(x) (~,fl = t,2,31, i~) 

Here ~(x) is the conduction electron "isospin": z corn~'~> 
nents describe the number density, r3 = ½{p{x)~1 ,  
and transverse components describe the pair ~g 
r + (x) = ~,~ (x) ~] (xk The quantity 9' "- V~/J 2 defines ~ne 
magnitude of the order parameter and d't is an o r ~ o -  
gonal matrix whose orientation is set by the components 
of V. 

On a bipartite lattice, the lowest energy stable m~m 
field solution is produced by a staggered pairing tick of 
the form 

| / '  
Vj=eiIQ "r,2j _ ~ ,  i l l}  

where Q = (n, n, rt) and ~ is a unit spinor. The mean ~.td 
Hamiltonian describes a mixing between local mom~: '~s 
and conduction electrons, where the hybridizatio~'~ is 
a spinor: 

+ NIVt2J  ~i2) 

9 
- - - F '  . HituE.j] = a J ['7~ (V) 

where 

' , . )  _- .t 
f; = f ; .  - 51-,,. ,t ,j ,p, 18) 

is a charge e spinor formed between the conduction 
electron and local moment. This form suggests the pos- 
sibility that electrons and local moments will condense to 
develop a vacuum expectation value 

[here the staggered phase has been gauge transformed ~o 
the conduction electrons by the replacement 
~k + kk = c~ _ 0"). When a conduction electron hybridizes 
with the zero energy Majorana modes, it develops a sdf- 
energy component proportional to 1/~,z Since the Ma- 
jorana fermion is neutral, the scattered fermion can 
emerge as either electron or hole {see below), thereby 
developing an odd-frequency pairing term in the conduc- 
lion eleclron self-energy. 

Diagrammatically. this process is represented ~s 

|/2 

n 
> e . . . . . . . . .  ® > 2{,, 1. 

<4,1 |::, I~)1 
[9) 

| ' 2  
z r 

Defects of a charge e spinor correspond to n changes in 
the order parameter phase and carry the same flux quan- 
tum as a charge 2e scalar. Spinor order of this type 

where a dotted line indicates the intermediate resonance 
and we have used a Namhu notation to denote anomal- 
ous pairing components. For example, if :~ = ~'~3! then 
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the down electrons experience this resonant pairing, with 
self-energy 

V 2 
Z l (to) = - - ~ ,  (14) 

to 

where _~ = ½[1 + z~] is a projection operator that pro- 
jects out a Majorana component of the down conduction 
sea: the remaining half does not couple to the odd- 
frequency triplet pairing field and forms a novel band of 
decoupled gapless excitations. If we decompose the con- 
duction electron spinor into constituent "Majorana" 
components, 

1 o 

the zeroth component, tp ° = - (i,,'x/2) [I,0k I -- ~k*-- k ~], is de- 
coupled from the local moments. The other three compo- 
nents of the conduction bands develop a gap dg ,,, 1,'2/0 
(where D is the bandwidth) that decouples them from the 
gapless mode, rendering it both neutral and spinless. The 
gapless excitations consequently have vanishing 
spin/charge coherence factors at the Fermi energy which 
vanish linearly with energy: 

T 3 

(16) 

: . . , . -  i oo, i _ , . , I i  "V I 
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Fig. 2. CUT and NMR I/Ti calculated for a variety of chemical 
potential values illustrating the failure to develop a Korringa 
relaxation in the presence of severe gaplessness. 

fluctuations vanish is produced by adding an additional 
term to the Kondo interaction that couples the conduc- 
tion electron isospin to the local moment as follows: 

where tl is the chemical potential and tok the quasiparticle 
energy. Linear coherence factors lead to power laws in 
the nuclear magnetic relaxation 

1 
- - o E  T 3 
Ti 

H = H~ + J ~ ( ~ j  + 2rj}-Si .  (17) 
J 

The new term polarizes the composite order parameter, 
stabilizing a phase with . ~  = !. Decompos;7,g the con- 
duction electron into four Majorana components as in 
Eq. (15), then 

that coexist with a linear specific heat capacity. Unlike 
a d-wave superconductor with lines of zeroes, this T a 
NMR relaxation rate will persist even when the linear 
specific heat is large. In a dirty d-wave superconductor, 
we expect a Korringa relaxation in the superconducting 
state once it develops a linear specific heat. Figure 2 con- 
trasts the linear specific heat and NMR relaxation rate 
for the simple mean field theory outlined here, demon- 
strating these features. 

As in all mean field theories, issues of stability and 
fluctuations are of paramount importance. Uniform odd- 
frequency states appear in general to be unstable [14]. 
Here the staggered phase stabilizes the state, producing 
a finite Meissner stiffness. Since there are t o  awkward 
gauge modes, fluctuations about the odd-co state are 
similar to zero-point fluctuations in a Heisenberg 
magnet. The corresponding "lsing limit" where these 

trj + ~s = - i~j x gtj, ~r s - r i = 2iqt°~s. [18} 

Thus, in the special case ;. = I, the zeroth Majorana 
component explicitly decoup[es from the local moments, 
as in the mean field theory. 

One fascinating feature of the isospin Kondo model, is 
its precise equivalence to the two-channel Kondo model 
in the one impurity limit. In the one-impurity version of 
this model the conduction sea is one-dimensional and 
near the Fermi surface, spin-charge decoupling means 
that the isospin and spin of the conduction electron 
behave as two independent spin %grees of freedom, 
precisely emulating the two sere, .,rag channels of the 
two-channel Kondo model[ 16]. This isomorphism is lost 
for multi-site or lattice models. In fact, NFL properties 
are far more stable in the isospin model, which manifestly 
preserves the decoupling of the neutral Majorana mode 
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in the lattice at ), = I. Furthermore,  the gap in the other 
three Majorana bands will preserve the decoupling of the 
neutral mode in a finite region about 2 = I. Careful 
quantitative calculations of the zero-point fluctuations 
are required to establish if the domain of attraction of the 
odd-~9 state extends all the way to the 2 = 0 Kondo  
lattice (dimensionality plays an important role here). 
Clearly though, these simple considerations establish an 
important  link between the existence of a lattice analog 
of the two-channel Kondo  fixed point and the develop- 
ment of odd-frequency pairing. 
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