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Abstract We show how exact diagonalization of small clusters can be used as a fast and reliable impurity
solver by determining the phase diagram and physical properties of the bosonic single-impurity Anderson
model. This is specially important for applications which require the solution of a large number of dif-
ferent single-impurity problems, such as the bosonic dynamical mean field theory of disordered systems.
In particular, we investigate the connection between spontaneous global gauge symmetry breaking and
the occurrence of Bose-Einstein condensation (BEC). We show how BEC is accurately signaled by the
appearance of broken symmetry, even when a fairly modest number of states is retained. The occurrence
of symmetry breaking can be detected both by adding a small conjugate field or, as in generic quantum
critical points, by the divergence of the associated phase susceptibility. Our results show excellent agree-
ment with the considerably more demanding numerical renormalization group (NRG) method. We also
investigate the mean impurity occupancy and its fluctuations, identifying an asymmetry in their critical
behavior across the quantum phase transitions between BEC and ‘Mott’ phases.

1 Introduction

Strongly correlated impurity models have played an im-
portant role in the field of condensed matter physics. The
Anderson [1] and the Kondo [2] single-impurity models
were at the heart of the early investigations into the forma-
tion of localized magnetic moments in metals and their ef-
fects on thermodynamic and transport properties of these
materials. An extensive arsenal of theoretical techniques
have been developed in an effort to better elucidate these
and related questions [3] and a great deal of understand-
ing has been thereby achieved. More recently, important
methods for the study of periodic strongly correlated sys-
tems have been developed, such as the dynamical mean
field theory (DMFT) [4] and its extensions, which rely
heavily on the knowledge base accumulated in the analy-
sis of the aforementioned impurity models. Indeed, solving
a single-impurity problem is the most challenging part of
the DMFT algorithm.

Since the advent of the possibility of loading extremely
cold atoms onto the effective periodic potential formed by
optical lattices [5,6] there has been a growing interest in
the cross fertilization between these atomic systems and
their conventional condensed matter counterparts. For one
thing, cold atoms in optical lattices are expected to be
very well described by the simplified models used in the
condensed matter context, such as the Hubbard model [6].
For solids, by contrast, these models are believed to be at
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best a bare bones description which hopefully retains the
most important physical features. Moreover, the parame-
ters in cold-atom optical lattice systems, such as hopping
amplitudes and scattering lengths can often be very flexi-
bly tuned externally, allowing for the thorough investiga-
tion of large portions of the phase diagrams. Finally, the
quantum statistics can also be switched as bosonic atoms
are readily available.

The fruitful interplay between these condensed mat-
ter and cold-atom systems has prompted researchers
to attempt to use impurity-model-based approaches as
an analytical tool for cold-atom systems. In particular,
the bosonic version of the dynamical mean field the-
ory (BDMFT) has been developed [7–9]. In close anal-
ogy with its fermionic counterpart, this method requires
the solution of a bosonic single-impurity Anderson model
(B-SIAM). This model has been directly studied by
the powerful Wilson numerical renormalization group
(NRG) technique and its phase diagram has been deter-
mined [10,11]. Furthermore, applications of BDMFT have
also been carried out, using as impurity solvers exact di-
agonalization [12,13] and quantum Monte Carlo [9,14]. It
should also be mentioned that impurity-like cold-atom set-
ups have been proposed [15] and may also become avail-
able (for a realization in which different species occupy
the impurity and the bath regions, see [16]), in which case
some version of the single-impurity model may be directly
applicable.

More recently, it has become possible to introduce
quenched disorder into optical lattice systems [17–26],
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which may prove useful for the important problem of the
interplay between disorder and interactions [27]. The ex-
tension of the BDMFT to the disordered case1, however,
requires the solution of a large number of different single-
impurity problems for the description of a single disor-
dered sample, as many as the number of lattice sites (for
a description of the fermionic version, see [30]). This makes
it all but impossible to use such numerically demanding
single-impurity solvers as the NRG. Therefore, the feasi-
bility of using the BDMFT to study disordered systems
requires the development and characterization of fast yet
reliable single-impurity solvers.

One of the goals of this article is to show that the exact
diagonalization of small clusters is a good solution to this
problem, a procedure which has been successfully applied
to the fermionic case [31,32]. We will show that it can be
efficiently and reliably implemented to solve the B-SIAM
by studying its ground state properties. Moreover, with
an eye towards its application in a BDMFT calculation,
we have thoroughly investigated the appearance of Bose-
Einstein condensation (BEC) in this model as a manifesta-
tion of the phenomenon of global gauge symmetry break-
ing. Indeed, the B-SIAM is perhaps the simplest model
in which this phenomenon occurs and its reduced Hilbert
space provides a unique setting in which to numerically
study it. Although this is the standard criterion for the
detection of BEC, it was not used in the NRG analysis
of the model [10,11]. The same BEC identification which
we will show can be done in the B-SIAM will be useful
in the analogous task in a BDMFT calculation. Besides,
the B-SIAM has extended regions in which BEC is present
or absent (the so-called ‘Mott’ phase) even at zero tem-
perature, with quantum phase transitions between them.
We will show how global gauge symmetry breaking can be
used to analyze this quantum phase transition in a manner
analogous to more conventional systems such as magnetic
ones, even though the system sizes used are fairly modest.

We should stress that the question of the best or even
the correct criterion for the occurrence of BEC is not de-
void of a certain controversy. Indeed, while the existence
of a macroscopic eigenvalue of the one-particle density
matrix seems to be uncontested as a necessary and suf-
ficient condition for a BEC [33], some objections have
been raised, particularly by Leggett [34], as to whether
the frequently used (particularly in the condensed mat-
ter literature) criterion of “spontaneously broken gauge
symmetry” is an adequate alternative. Much of Leggett’s
objection seems to be aimed at the physical basis of the
infinitesimal symmetry-breaking field usually employed in
this criterion, rather than at the validity of the mathemat-
ical procedure it is based upon. Since our main interest
here is to show that this criterion is perfectly adequate
for a numerical investigation of the less studied case of an
impurity model, we should be quite safe. Furthermore, it
seems clear that, at least in the case of unfragmented con-
densates, the criterion of a spontaneously broken gauge
symmetry is both a sufficient and a necessary condition

1 For other approaches to the disordered bosonic lattice
problem see, e.g., [28,29].

for Bose-Einstein condensation in bosonic systems (for a
specific discussion and review, see [35]).

We will show in this article that, even in fairly small
clusters with a restricted number of bosonic states, a de-
tailed characterization of the spontaneously broken gauge
symmetry of the BEC phase and an accurate determi-
nation of the full phase diagram is possible, which is in
excellent agreement with the much more demanding nu-
merical renormalization group method. Furthermore, we
will analyze how the impurity occupancy and its fluctua-
tions behave within the phases and through the quantum
phase transitions between them. In particular, we pinpoint
a qualitative difference in the critical behavior of both of
these quantities as one crosses the boundary from BEC to
‘Mott’ as compared to going from ‘Mott’ to BEC.

The paper is divided as follows. Section 2 is devoted
to the definition of the model and a summary of known
results for the non-interacting as well as the interacting
cases. Section 3 expounds on the criterion of global gauge
symmetry breaking as a hallmark of BEC. Details of the
numerical procedure are explained in Section 4. Results
on the symmetry breaking occurring in the model are pre-
sented in Section 5.1, whereas other local impurity prop-
erties are shown in Section 5.2. We draw some final con-
clusions in Section 6. Some results for the non-interacting
limit are relegated to an Appendix.

2 The bosonic single-impurity Anderson
model

We will focus our attention on the bosonic version of the
single-impurity Anderson model Hamiltonian

H = ε0n̂0 +
1
2
Un̂0(n̂0 − 1)

+
∑

k �=0

εkb†kbk +
∑

k �=0

Vk(b†kb0 + b†0bk). (1)

Here, bk are bosonic annihilation operators for the impu-
rity (k = 0) and “bath” orbitals (k �= 0), n̂0 = b†0b0 is the
number operator for the impurity, ε0 is impurity single-
particle energy, and U measures the interaction strength
between bosons inside the impurity orbital. The next two
terms of the Hamiltonian describe, respectively, the bath
single-particle orbital energies εk and the hybridization
between impurity and bath states, which occurs with am-
plitude Vk ∈ R. We will work in the grand-canonical en-
semble at zero temperature and fixed chemical potential
μ. All the single-particle energies in equation (1) are as-
sumed to be measured with respect to μ.

Evidently, the physics of the model is strongly depen-
dent on the spectral properties of the bosonic bath. It
is common practice, particularly in the quantum dissipa-
tion literature, to assume a “soft-gap” spectral function
for the bath [36]. A power-law dependence is usually con-
sidered [10,11,36], such that if

Δ (ω − iδ) ≡
∑

k

V 2
k

ω − iδ − εk
, (2)
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then

ImΔ (ω − iδ) = π
∑

k

V 2
k δ (ω − εk) (3)

= 2παω1−s
c ωsΘ (ω)Θ (ωc − ω) , (4)

where ωc is a frequency cutoff, α plays the role of a dimen-
sionless coupling constant and Θ (x) is the Heaviside step
function. The so-called ohmic case corresponds to s = 1,
whereas s < 1 (> 1) corresponds to the sub-ohmic (super-
ohmic) regime.

It is useful to consider first the non-interacting limit,
U = 0. In this case, the problem can be immediately di-
agonalized (see Appendix A). The spectrum En can be
obtained, e.g., from the impurity site Green’s function,
and it consists of the roots of the equation

En − ε0 =
∑

k

V 2
k

En − εk
= Δ (En). (5)

In the case of a power-law bath spectral function there is
a critical coupling constant α0

c = sε0/2ωc (for s > 0), such
that there appears a vanishing root E0 = 0 for α = α0

c but
not for α < α0

c , as shown in the Appendix. At this point,
the lowest state of the system is macroscopically occupied,
signaling the phenomenon of Bose-Einstein condensation.
Further increase of α renders the system ill-defined (in the
grand-canonical ensemble assumed here), since the lowest
state falls below the chemical potential (E0 < 0).

At finite U , the BEC only occurs for 0 < s < 1 [10,11].
In this case, for coupling constant values α < αc (ε0, U),
there is a phase in which the BEC is absent. This phase
is adiabatically connected to its α = 0 counterpart, in
which the impurity is decoupled from the bath and which
is characterized by an integer occupation of the impu-
rity site. This is very reminiscent of the Mott insulating
phases of the Bose-Hubbard model, hence the name “Mott
phase”. It should be emphasized, however, that if α �= 0
the impurity occupation deviates from integer values and,
in contrast to the Mott insulating case, it does not ex-
hibit plateaus of constant 〈n̂0〉 as a function of ε0 (see
Sect. 5.2 below). Therefore, this terminology is used in a
loose sense. The BEC phase is absent for s > 1 [10,11].

In the NRG study of references [10,11], the transition
from the BEC to the Mott phase was identified from the
vanishing of a gap in the spectrum of low-lying excitations.
Indeed, much like in the U = 0 limit, the splitting-off of
an isolated pole from the continuum signals the BEC. We
will here, however, explore the criterion of the spontaneous
breaking of the (global) gauge symmetry as an alterna-
tive signature of this quantum phase transition, in perfect
analogy with the case of extended bosonic systems.

3 Spontaneous symmetry breaking

We now discuss how to look for the BEC phase transition
using the criterion of spontaneously broken gauge symme-
try. The original Hamiltonian (1) is invariant under the

following global gauge transformation

bk → eiαbk, (6)

which simply reflects the conservation of total particle
number N̂ =

∑
k b†kbk. In order to investigate the sponta-

neous breaking of this symmetry, one usually introduces
a small symmetry breaking field conjugate to the order
parameter. In the BEC case, the latter can be taken to be
〈b0〉. We thus modify the Hamiltonian of equation (1) as
follows (ϕ ∈ R)

H → H + ϕ
(
b†0 + b0

)
. (7)

The spontaneous symmetry breaking is signaled by a non-
zero value of the following limit

lim
ϕ→0

lim
N→∞

1
N

|〈b0〉|2 �= 0 (8)

(and it is a necessary and sufficient condition for the ex-
istence of BEC [35]). In equation (8), N =

〈
N̂

〉
.

This can be illustrated in the somewhat artificial non-
interacting limit. In this case,

H = ε0b
†
0b0+ϕ(b†0+b0)+

∑

k

εkb†kbk+
∑

k

Vk

(
b†kb0 + b†0bk

)
.

(9)
Using the results of the Appendix, it can be shown that
the ground state expectation values are

〈b0〉 =
ϕ

κ
, (10)

〈bk〉 = −Vk

εk

ϕ

κ
, (11)

where

κ =
∑

k

V 2
k

εk
− ε0. (12)

We note that the BEC is signaled by the vanishing of
the lowest single-particle energy E0 (when measured with
respect to the chemical potential). From equation (5), it
is clear that when E0 → 0,

κ → 0, (13)

and the order parameter 〈b0〉 as a function of ϕ has a
diverging slope as a ϕ → 0, such that it tends to a constant
in the BEC. Besides, the total number of bosons is given
by (Appendix)

N =

(
1 +

∑

k

V 2
k

ε2
k

)
ϕ2

κ2
. (14)

The limit of equation (8) in this case is given by

lim
ϕ→0

lim
N→∞

1
N

|〈b0〉|2 =

(
1 +

∑

k

V 2
k

ε2
k

)−1

< 1. (15)
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4 Numerical method

We now describe the numerical procedure used in the cal-
culations that follow. The Hamiltonian of equation (1) will
now be defined with a finite number Ns of bath states

H = ε0n̂0 +
1
2
Un̂0(n̂0 − 1) + ϕ

Ns∑

n=0

(
b†n + bn

)

+
Ns∑

n=1

εnb†nbn +
Ns∑

n=1

Vn(b†nb0 + b†0bn). (16)

Note that we have already included the symmetry break-
ing field ϕ and it now acts on both impurity and bath
states. Since the condensation occurs in a single-particle
state which is a quantum mixture of all k-orbitals (see
Eqs. (A.23) and (A.24) for the non-interacting case), it is
immaterial whether we couple ϕ to all of them or only to
b0. Indeed, we have checked that applying ϕ only to the
impurity site does not change the results that follow in
any significant way.

The discretized Hamiltonian (16) has no conserved
quantities since even the total number of bosons is no
longer fixed. Since the boson spectrum is unlimited the
Hilbert space has infinite dimension. We worked in a cut-
off Hilbert space in which there is a maximum number of
bosons

Ns∑

n=0

b†nbn ≤ Nmax. (17)

We therefore numerically diagonalized the
Hamiltonian (16) for fixed Ns and Nmax.

The parameters {εn, Vn} uniquely determine the bath
spectral function ImΔ(ω), whose support we will assume
is the interval [0, ωc], see equation (3). Discretizing the
latter set into Ns smaller intervals defined by [an−1, an] ,
where n = 1, 2, . . . , Ns, and assuming that εn ∈ [an−1, an]
it follows that

V 2
n =

� an

an−1

ImΔ(x)
π

dx (n = 1, 2, . . . , Ns) , (18)

V 2
n εn =

� an

an−1

xImΔ(x)
π

dx (n = 1, 2, . . . , Ns) . (19)

Although the use of a purely logarithmic mesh would
have been enough, we have chosen to use a mixed linear-
logarithmic set

an =
n

Ns

ωc

Λ(Ns−n)
, (n = 0, 1, 2, . . . , Ns) . (20)

It is close to the usual logarithmic discretization of the
numerical renormalization group at low energies but does
a better job at describing the high-energy part of the
bath spectrum. The linear discretization is recovered in
the limit Λ → 1. In the calculations that follow, we have
used Λ = 2.

Figure 1. (Color online) The superfluid order parameter 〈b0〉
as a function of the symmetry breaking field ϕ for three dif-
ferent values of ε0/U : the dashed black line (ε0/U = 0) corre-
sponds to the Mott phase, the red circles (ε0/U = −0.25) to
the BEC phase and the full blue line (ε0/U = −0.21) to the
boundary between the two phases. The slope at ϕ = 0 is finite
within the Mott phase and infinite at the phase boundary. We
have used Ns = 10, Nmax = 5, U = 0.5ωc, αωc/U = 0.0625
and s = 0.4.

5 Results

We will now show our results for the bosonic single-
impurity Anderson model with a power-law spectral func-
tion as in equation (3), with s = 0.4. This model exhibits
two phases: a Bose-Einstein condensed phase (BEC) and
a Mott phase, as shown in [10,11].

5.1 Symmetry breaking and the phase diagram

We have computed the value of the order parameter 〈b0〉 as
a function of the symmetry breaking field ϕ for a coupling
to the bosonic bath of αωc/U = 0.0625 and interaction
strength U = 0.5ωc. According to the NRG results [10,11],
for these values of α and U the system may find itself in
either the Mott or the BEC phases, depending of the value
of ε0. As shown in Figure 1, for ε0/U = 0, 〈b0〉 smoothly
extrapolates to zero, with a finite slope, as ϕ → 0. This
is characteristic of a non-condensed phase with no bro-
ken global gauge symmetry, the Mott phase of the model.
At ε0/U = −0.21, however, even though 〈b0〉 still van-
ishes in this limit, it does so with a very large slope,
effectively infinite within our numerical accuracy. This sig-
nals the boundary with the BEC phase and points to a
second order phase transition, consistent with the NRG
results [10,11]. Inside the BEC phase (ε0/U = −0.25),
the superfluid parameter has a step discontinuity (again
within our numerical accuracy) across the ϕ = 0 line. The
similarity with the behavior of a ferromagnet in a uni-
form external field is striking, highlighting the common
underlying symmetry breaking mechanism in both cases.

By looking for the points of infinite slope of the 〈b0〉
versus ϕ curves one can then map out the phase diagram
of the model. We have done so in the ε0 versus α plane for
U = 0.5ωc. In practice, we have set the phase boundary
as the point at which the slope reaches 104. The same
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Figure 2. (Color online) Phase diagram of the bosonic single-
impurity Anderson model for s = 0.4 and U/ωc = 0.5 (other
parameters as in Fig. 1). The blue line with symbols is the
phase diagram calculated with the NRG method [10,11] and
the full orange line was determined using the criterion of global
gauge symmetry breaking and exact diagonalization. See text
for more details.

phase diagram had been previously obtained with the
much more powerful NRG method using the ‘gap closure’
criterion (see Sect. 2) [10,11]. The NRG parameters used
were Λ = 2 (for a purely logarithmic discretization), 10
to 20 bosonic states for each added site/iteration and 100
to 200 states kept from each iteration to the next. In our
exact diagonalization method, we have used Ns = 10–20
and Nmax = 2–6. In Figure 2, a comparison between the
results obtained with the two methods is shown. Despite
the simplicity of the present procedure and small number
of states retained, the agreement is remarkable. We have
also verified that the susceptibility criterion we used tracks
very closely the opening of the gap discussed in Section 2.
The assignment of average occupations n0 = 〈n̂0〉 to the
phases, as shown in Figure 2, will be discussed later in
Section 5.2.

Another interesting quantity is the phase
susceptibility,

χϕ = lim
ϕ→0

∂|〈b0〉|
∂ϕ

. (21)

As discussed in Section 3, this quantity is finite in the ab-
sence of BEC and diverges at the critical point at which
BEC first appears, see equations (10), (12) and (13). The
analogous quantity in the case of a ferromagnet is the mag-
netic susceptibility, which is also finite in the paramagnetic
phase and diverges at the (second-order) phase transition.
Thus, we expect χϕ to be finite in the Mott phase and to
diverge at the Mott-BEC boundary. That the transition
is indeed second-order was confirmed in references [10,11].
This behavior is apparently consistent with the gross fea-
tures of Figure 1, but it is important to determine how it
is affected by our Hilbert space truncation.

In Figure 3a, we show the inverse phase susceptibility
as a function of 1/Nmax. It can be seen that χϕ extrapo-
lates as expected in the limit of Nmax → ∞: in the Mott
phase (ε0/U = 0) it tends to a finite value, whereas it
diverges at the Mott-BEC boundary (their position in the
phase diagram is shown in Fig. 3b). Note the scale of the
figure and how the susceptibility values are significantly
different already for the largest modest Nmax used (=6).

Figure 3. (Color online) (a) Phase susceptibility as a func-
tion of 1/Nmax for two values of ε0: for ε0/U = 0, the system
is in the Mott phase and χϕ extrapolates to a constant when
Nmax → ∞; the value ε0/U = 0.21 marks the boundary be-
tween Mott and BEC phases and correspondingly gives to a
divergent χϕ in the limit of infinite Nmax. Other parameters
are the same as in Figure 1. (b) Position in the phase diagram
of the parameters in (a).

The dependence on Ns is extremely weak, since it modifies
only slightly the single-particle orbital in which the bosons
condense, whereas Nmax limits the maximum number of
bosons allowed to condense.

The great differences in susceptibility values allow us
to determine the phase diagram with fairly good accuracy
also by fixing ϕ at a small value, say ∼10−6, and Nmax

to a moderately large, yet numerically feasible value of 5,
and scanning ε0 and α. As an example of this procedure,
we show in Figure 4a the order parameter as a function of
ε0 for fixed α (this corresponds to the brown vertical line
of Fig. 3b). The BEC phase is clearly demarcated from
the Mott phase by a finite value of the order parameter.
Note, however, that the actual numerical value of 〈b0〉 is
strongly dependent on the truncation parameter Nmax.
Indeed, this is clearly demonstrated in Figure 4b, which
shows a similar scan of ε0 for different values of Nmax.
For small values of Nmax the order parameter shows pro-
nounced peaks close to the phase boundaries but dips
to smaller values deep inside the BEC phase. Only for
sufficiently large Nmax does one recover the single hump
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Figure 4. (Color online) Behavior of the order parameter 〈b0〉
for a fixed small symmetry breaking field (ϕ ∼ 10−6) in the
different phases. (a) 〈b0〉 is finite inside the BEC phase but
negligibly small within the Mott phase; (b) the actual value
of 〈b0〉 is strongly dependent on the the truncation parameter
Nmax within the BEC phase. Other parameters are the same
as in Figure 1.

behavior of 〈b0〉, with a maximum value deep inside the
BEC phase. Note that the criterion of a phase susceptibil-
ity of 104 used in Figure 2 is equivalent to a value of the
order parameter of 2.5 × 10−2 in Figure 4a. This depen-
dence on Nmax is not unexpected since, as it will be shown
later, the fluctuations in the occupancy are larger in the
BEC phase. Thus, the truncation at a finite value of the
total number of bosons introduces important errors and
correspondingly larger values of Nmax are required for a
good description in this region. This allows us to estimate
the error in the determination of the phase boundary as
Δε0c ∼ 0.05U0.

Furthermore, for the value of α used in Figure 4, the
system is always in a BEC phase for −ε0/U � 0.3. These
large values of −ε0 give rise to large occupancies of the
impurity orbital. As a result, the description in this region
is very poor for the values of Nmax we employed, as can
be seen in Figure 4b.

5.2 Other observables

As a test of the accuracy of our procedure, we have cal-
culated other local observables of the impurity orbital.
Whenever available, we have compared them with the

Figure 5. (Color online) Occupancy of the impurity orbital
as a function of ε0 for different values of α. The symbols are
the NRG results of references [10,11] and the full lines corre-
spond to our results. The agreement is remarkable. The curves
smoothly tend to the step-like behavior of the limit of a de-
coupled impurity (α = 0). Other parameters are the same as
in Figure 1.

NRG results [10,11]. In Figure 5, the impurity occupancy
(n0 = 〈b†0b0〉) is shown for different values of the coupling
to the bosonic bath as a function of ε0. Our results are the
full lines and the NRG results [10] correspond to the sym-
bols. The regions without any symbol indicate the BEC
phases. The agreement is excellent and one can hardly
distinguish the two sets of results. As the coupling α to
the bosonic bath decreases, the occupancy tends smoothly
to the step-like behavior of the decoupled impurity, also
shown in Figure 5 (blue line). It is this ‘adiabatic’ continu-
ity between the Mott phases at α = 0 and α �= 0 which al-
lows us to ascribe a definite occupancy to the Mott ‘lobes’
of the phase diagram (see Fig. 2), even though the occu-
pancy is never exactly an integer for α > 0, as can be seen
in Figure 5. The excellent agreement shows that our trun-
cated Hilbert space calculation is more than enough for a
good description of at least some of the physical properties
of the impurity model.

For completeness, in Figure 6 we show our results for
both the impurity occupancy (symbols) and the order pa-
rameter squared (full line without symbols) as functions of
ε0/U , both in the presence of a small symmetry-breaking
field. We have rescaled |〈b0〉|2 by a factor of ten for greater
clarity. It is clear that the small symmetry-breaking field,
although essential to delineate the phases, affects very lit-
tle the impurity occupancy (compare with Fig. 5). In this
figure, the absence of symbols in the BEC region is meant
to mimic the convention for this phase used in the NRG
calculation [10] (see Fig. 5 for comparison).

Another striking feature highlighted in Figure 6 is the
discrepant behavior of the impurity occupancy at the two
borders of the BEC phase. Whereas at the low −ε0 bor-
der n0 exhibits a discontinuity in its first derivative, the
behavior at the high −ε0 border is perfectly smooth. This
behavior is generic to all the other BEC phases, as can
be seen in Figure 5. We conclude that although n0 shows
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Figure 6. (Color online) Impurity occupancy and order pa-
rameter squared as functions of the impurity single-particle
energy ε0. The small symmetry breaking field hardly affects
the occupancy. Other parameters are the same as in Figure 1.

signs of critical behavior at the low −ε0 border of the BEC
phases, it is not critical at the other one.

Finally, in Figure 7a, we show the impurity occupancy

fluctuation Δn0 =
√
〈n̂2

0〉 − 〈n̂0〉2 in the (ε0, α) plane with
a color scale. The borders between the phases are also
shown as the blue lines with symbols. Three vertical cuts
across this plot are shown in Figure 7b, with the BEC re-
gion indicated by the closed symbols and the ‘Mott’ phase
by the open ones. The occupancy fluctuation is gener-
ally larger in the BEC regions as compared to the ‘Mott’
phases, as expected. Indeed, this is compatible with the
requirement of larger values of Nmax for a better descrip-
tion deep within the BEC phases (see Fig. 4b).

However, a more thorough inspection shows that
whereas Δn0 increases rapidly upon entering the BEC
phase through its low −ε0 border, it goes through a max-
imum while still inside the BEC phase. Upon further in-
creasing −ε0, Δn0 decreases until it finally crosses the
high −ε0 border of the BEC phase, where it shows no
sign of critical behavior, in close similarity with the behav-
ior of n0 shown in Figure 6. We stress that, even though
the high −ε0 transition does not manifest itself in these
quantities, it does not mean that the system does not ex-
perience a true phase transition in that region. Finally,
the occupancy fluctuation does not vanish and is always
a monotonically decreasing function of −ε0 in the ‘Mott’
phases for n0 �= 0.

6 Discussion and conclusions

In this article, we have fully characterized the diverse
physical properties of the B-SIAM by using the relatively
undemanding method of exact diagonalization of small
clusters. Besides, we have shown how the physically mo-
tivated criterion of a spontaneously broken gauge symme-
try can be used to accurately identify the BEC or ‘Mott’
phases of the B-SIAM, even with a fairly small trun-
cated Hilbert space. This serves as a proof of principle of
the criterion in this particular case. Clearly, the detailed

Figure 7. (Color online) Impurity occupancy fluctuation
Δn0: (a) in the (ε, α) plane. The full blue line with symbols
marks the phase boundaries; (b) as a function of ε0 for three
values of α. Open symbols correspond to the ‘Mott’ phase and
closed ones to the BEC. Other parameters are the same as in
Figure 1.

quantum critical behavior requires the use of many more
states, in which case the NRG method is probably indis-
pensable. However, the exact diagonalization method is
accurate enough for the determination of phase diagrams
and physical properties, as we have shown. This is partic-
ularly important for applications such as the disordered
version of BDMFT. In these cases, the use of the more
accurate NRG method is prohibitive.

We have also uncovered an unnoticed asymmetry in
the critical behavior of local quantities as one goes from
‘Mott’ to BEC and BEC to ‘Mott’. In the former case,
both the mean occupancy and its fluctuations exhibit a
discontinuity in the first derivative with respect to the
impurity energy, whereas the latter transition seems to
be completely smooth. This is probably a feature of the
single-impurity model only, however, since the incompress-
ible nature of the Mott phase in the lattice case requires
both borders to show non-analytic behavior. The single-
impurity model, on the other hand, is not incompressible
in the ‘Mott’ phase.

This work was supported by CNPq through grants
304311/2010-3 (EM) and 140184/2007-4 (JHW) and by
FAPESP through grant 07/57630-5 (EM).
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Appendix A: General properties
of the non-interacting limit

A.1 Diagonalization of the non-interacting model

We will first briefly describe the diagonalization of the
non-interacting Hamiltonian, equation (1) with U set to
zero. The absence of interactions makes this process inde-
pendent of the statistics, since it amounts to finding the
basis of single-particle states that makes the Hamiltonian
diagonal. A more detailed calculation, in the language of
fermions, can be found in reference [37]. We define annihi-
lation operators cj for the diagonal single-particle states
through

b0 =
∑

j γjcj , (A.1)

bk =
∑

j νkjcj , (A.2)

so that the non-interacting Hamiltonian can be written in
this basis as

H =
∑

j

Ejc
†
jcj . (A.3)

The coefficients γj and νkj have yet to be determined.
By taking the commutator of bk and cj with the
Hamiltonian in the forms (1) and (A.18), respectively, and
using (A.1) and (A.2), we find the eigenvalue system of
equations for the unknown coefficients

(Ej − ε0) γj =
∑

k

Vkνkj , (A.4)

(Ej − εk) νkj = Vkγj . (A.5)

Inserting equation (A.5) into equation (A.4) we obtain an
implicit equation for the eigenvalues Ej

Ej − ε0 =
∑

k

V 2
k

Ej − εk
. (A.6)

The normalization condition

γ2
j +

∑

k

ν2
kj = 1, (A.7)

together with (A.5), leads to

γ−2
j = 1 +

∑

k

V 2
k(

Ej − εk

)2 , (A.8)

and finally equation (A.5) can be used to find an expres-
sion for the νkj coefficients, which we will omit.

A.2 Critical coupling for a power-law spectral density

The BEC in the non-interacting model occurs when the
lowest eigenvalue (measured with respect to the chemi-
cal potential) vanishes. From equation (A.6), this happens
when

ε0 =
∑

k

V 2
k

εk
. (A.9)

We would like to analyze this equation in the continuum
limit. In this case, we can use the function defined in equa-
tion (2), which satisfies the Kramers-Kronig relation

ReΔ (ω − iδ) =
�

dx

π

ImΔ (x − iδ)
ω − x

, (A.10)

in which the integral is a principal part. Thus, one may
replace the right-hand side of equation (A.9) by

∑

k

V 2
k

εk
= −ReΔ (0 − iδ) =

�
dx

π

ImΔ (x − iδ)
x

.

For the power-law spectral function of equation (3), we
are left with an expression for the critical coupling α0

c

ε0 = 2α0
cω

1−s
c

� ωc

0

xs−1dx =
2
s
α0

cωc (s > 0) .

Note that the equation is not well defined for s ≤ 0. We
finally find that

α0
c =

sε0

2ωc
(s > 0) .

A.3 The non-interacting Hamiltonian in the presence
of a symmetry-breaking field

We now consider the non-interacting Hamiltonian in the
presence of a symmetry-breaking field, equation (9). We
first define ‘displaced’ operators a0 and ak

b0 = a0 + λ, (A.11)
bk = ak + ηk, (A.12)

where the parameters λ, ηk can be taken to be real without
loss of generality. Inserting these into (9) we end up with

H = ε0a
†
0a0 +

(
ϕ + λε0 +

∑

k

ηkVk

)(
a†
0 + a0

)

+
∑

k

εka†
kak +

∑

k

(εkηk + λVk)
(
a†

k + ak

)

+
∑

k

Vk

(
a†

ka0 + a†
0ak

)

+ε0λ
2 + 2λϕ +

∑

k

εkη2
k + 2λ

∑

k

Vkηk.

The terms linear in the new ‘displaced’ operators can be
eliminated if we choose λ and ηk to satisfy

ϕ + λε0 +
∑

k

ηkVk = 0, (A.13)

εkηk + λVk = 0. (A.14)

Plugging ηk from equation (A.14) into (A.13) we find

ηk = −λ
Vk

εk
, (A.15)

λ =
ϕ

∑
k

V 2
k

εk
− ε0

≡ ϕ

κ
. (A.16)
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For this choice, we are left with

H = ε0a
†
0a0 +

∑

k

εka†ak +
∑

k

Vk(a†
ka0 + a†

0ak) +
ϕ2

κ
.

(A.17)
As shown before, the Hamiltonian (A.17) can be brought
to diagonal form by means of the canonical transformation
of equations (A.1) and (A.2), with γj given by (A.8) and
νkj given by (A.5). Thus,

H =
∑

j

Ejc
†
jcj +

ϕ2

κ
. (A.18)

where,

b0 = λ +
∑

j

γjcj , (A.19)

bk = ηk +
∑

j

νkjcj . (A.20)

Since the ground state |Φ0〉 is annihilated by the cj oper-
ators it follows that

∑

j

γjcj |Φ0〉 = (b0 − λ)|Φ0〉 = 0, (A.21)

∑

j

νkjcj |Φ0〉 = (bk − ηk)|Φ0〉 = 0. (A.22)

Therefore, the expectation values of the b operators in the
ground state do not vanish

〈b0〉 = λ, (A.23)
〈bk〉 = ηk. (A.24)

Furthermore, the total number of particles is given by

N = 〈b†0b0〉 +
∑

k

〈b†kbk〉 = λ2 +
∑

k

η2
k. (A.25)

Using equations (A.15) and (A.16)

N =

(
1 +

∑

k

V 2
k

ε2
k

)
ϕ2

κ2
. (A.26)
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