
Physica B 186-188 (1993) 362-364 
North-Holland PHYSICAls/ 

Are Kondo insulators gapless? 
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We outline a novel Majorana treatment of the Kondo lattice that suggests Kondo insulators are gapless, with a band of 
neutral quasiparticles, an electronic thermal conductivity in the absence of a thermopower and an NMR relaxation rate 
that grows as T 3. 

Kondo insulators are arguably the oldest known 
form of a heavy fermion compound. Since the original 
discovery of SmB 6 [1,2], several heavy fermion in- 
sulators (HFI) have come to light [3-5], each one 
characterized by a local moment behavior at high 
temperatures, and a low carrier density ground-state 
with activated conductivity and gaps in the range 
10-1 meV [6]. These compounds are a dramatic vindi- 
cation of the role of adiabaticity in determining heavy 
fermion ground states. Though the f-electrons mani- 
fest themselves as local moments at high tempera- 
tures, at low temperatures they behave as valence 
electrons, quenching into a ground-state that is 
adiabatically related to a corresponding non interact- 
ing system. In particular, as emphasized by Allen and 
Martin, these systems satisfy the Luttinger sum rule 
[7,8] and in cases where the total conduction and 
f-count per unit cell is an even number, this can give 
rise to a highly renormalized bandgap insulator. 

How strong can the interactions in the HFIs be 
before the adiabaticity argument begins to fail, and 
the ground state becomes gapless? There are a num- 
ber of reasons to suspect that heavy fermion insulators 
lie at the very edge of validity of adiabaticity, and may 
already possess some form of gapless excitations with- 
in a hybridization pseudogap. 

• A fully gapped insulator is expected to ex- 
perience a first-order Mott transition to the metal as a 
function of doping or magnetic field. Experimentally, 
even the cleanest samples show a crossover to the 
metallic state with no Mott transitions [9,10]. 

• In the narrowest-gap heavy fermion insulator, 
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CeNiSn, a T 3 NMR relaxation is observed, consistent 
with the presence of low-lying spin excitations [11]. 

• The adiabatic argument presupposes that the 
Kondo effect can scale completely to the strong cou- 
pling fixed point. But if a perfect gap forms in the spin 
excitation spectrum, then the Kondo scaling cannot 
proceed to completion. These arguments suggest that 
strong coupling can only be realized asymptotically by 
the formation of a pseudogap in the excitation 
spectrum. 

To examine these questions in more detail, we have 
developed an alternate approach to the Kondo lattice 
model that avoids certain difficulties associated with 
the Gutzwiller projection [12]. We use a special an- 
t icommuting representation of spin 1/2 operators. Re- 
call that the Pauli matrices are anticommuting vari- 
ables { ~ ,  Orb} = 26,~ and can consequently be treated 
as real ( 'Majorana')  Fermi fields ( t r*= ~r). Their 
Fermi statistics alone guarantees that the spin operator 
S = - ( i / 4 ) t r ×  ¢r satisfies both the SU(2) algebra 
[S", S b] = ie ab,.S c and the condition S 2 = 3•4. This fea- 
ture can be generalized to many sites, introducing 
three-component anticommuting real vectors ~/i at 
each site i, 

a {~,, ~ }  : ~,i~ °b, (r/~ = r /~ ) ,  (1) 

from which the spin operator at each site is con- 
structed 

i 
Sj = - ~ r/i x ~/j . (2) 

There is no constraint associated with this representa- 
tion: the spin algebra and the condition S = 1/2 hold 
at each site between all states. In k-space, the Ma- 
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jorana Bloch waves behave as conventional complex 
fermions with one half the Brillouin zone (r/*~ = "0-k). 

Let  us sketch how this formalism applies to the 
Kondo lattice. The exchange interaction between con- 
duction band and local moment at site j is written in a 
tight-binding representation as 

JG[~, .  ,~,]%, 

using the result i ~ .  (71 x ~1) = [~"  o'] 2 - 3 to simplify 
the interaction. We write the partition function as a 
path integral 

Z = f e -;°%e(') d, 
P 

where 

~ (z )  = ~ * G 0 ~  + ~ + nk0, l Ik+ Hc + 2 Hint[j]- 
k k E ½ B Z  J 

(3) 

We factorize the interaction in terms of a fluctuating 
1- two-component spinor Vj = (V ;, V ~): 

Hi,,[j] = ~#~(o" ))j)Vj + V~(~r. Vlj)~pj + 2[VjI2/J. (4) 

Mean-field solutions where Vj = (V/V~)z j  and zj is a 
unit spinor have a particularly rich structure. By inte- 
grating out the localized spin degrees of freedom, in 
addition to the resonant conduction electron self-ener- 
gy obtained in the large-N approach, the conduction 
self-energy acquires an anisotropic component repre- 
sented by the effective action 

So = - 5'.. { G(~oo)[aA~o). ,,l~,(o~o) 
~n • J 

-[G(,oA[aA,oo). o ' ] i o 2 ~ ( -  oJ,, ) + c.c.]} 

(5) 

where A(k%) 2 . = V /41o9 n determines the strength of 
the resonant scattering, and the triad of orthogonal 
unit vectors /~ = ztorz, 2 + iS = zX[i~2~r]z defines the 
orientation. Most notably, 

Sj(~%) = A(i~%)bj,  (6) 

zlj(oJ,,) = Z(i~o,,)(2j + iyj) 

are resonant Weiss and triplet pairing fields. This is a 
realization of odd-frequency triplet pairing first consid- 
ered by Berezinskii [13,14]. 

A critical feature of this mean-field theory is the 
appearance of a gapless neutral Fermi surface. If we 
decompose the conduction electrons into their four 
real components x~(k) (/~ = 0, 1, 2, 3), 

1 0 
~bj : ~ { X j  + i x j ' t r } z o ,  (7) 

then at each site only the last three components of the 
field admix resonantly with the localized moment. The 
remaining component forms a gapless Fermi surface. 
For a bipartite lattice, a stable mean-field solution is 
obtained with a staggered order parameter,  where for 
example /~ = const, and 2 + i)3 = eiORJ[ff 0 + i~0 ] (Q = 
0r, ~r, ~r)). For the case of a half-filled conduction 
band, the spectrum consists of six admixed Majorana 
branches with a hybridization gap and a gapless 
branch corresponding to the conduction electrons that 
do not mix with the local moments: 

ek ~ / ( e k ~ 2 + V  2 ( i =  1 , 3 ) ,  (8) 
E k ' = 2 - - + ~ \ 2 !  

Eko  ~ ~ . 

The Fermi surface e'k = 0 spans precisely one half of 
the Brillouin zone, corresponding to one 'half' fermion 
state per unit cell. These results lead to a linear 
specific heat 3' = ~-y,(1 +/z2/V2), where 3', is the linear 
specific heat coefficient in the absence of local mo- 
ments (e.g. the Lanthanum analog) (fig. 1). 

The Majorana character of the Fermi surface en- 
sures that its quasiparticles are neutral and only con- 
duct heat. As in a superfluid, part of the charge of a 
quasiparticle is transferred to the condensate, leaving 
behind a quasiparticle component to the charge. Away 
from the FS, quasiparticle charge and spin matrix 
elements grow linearly with the energy e: 

E(k) Sfi 
F k × 

Fig. 1. Excitation spectrum of a Kondo insulator from the 
current approach. Insert: conduction electron density of 
states for up and down electrons. 



364 P. Coleman et al. / Are Kondo insulators gapless? 

2S(e) = ( ~ , ) J  = (el(ix3*~g0k + = ~ 
(9) 

Since paramagnetic  spin and charge response functions 
of the quasiparticle fluid are proportional to the 
square of these matrix elements,  the corresponding 
local response functions will grow quadratically with 
energy: 

o 12(,, ? x%, ch(,o)/,o ~ ( ~ /  ~-BJ (lo) 

This unusual  energy dependence of matrix elements 
thus permits this state to mimic a quasiparticle fluid 
with energy- independent  matrix elements and a l inear  

density of states. There are two key consequences of 
this result: (i) a T 3 NMR relaxation rate coexists with 
a l inear specific heat and (ii) the system will display a 
significant thermal conductivity in the absence of a 
thermopower.  

We have not  discussed the collective properties 
associated with the order parameter  z. For a half-filled 
conduct ion band,  continuous part icle-hole symmetry 
of the order parameter  z ensures there are no topo- 
logically stable vortices, preventing the establishment 
of a supercurrent  and stabilizing the insulator. How- 
ever, this reasoning suggests that doping will stabilize 
vortices of the spinor field, leading to odd-frequency 
triplet pairing and a continuous evolution into an 
odd-frequency superconductor.  The possibility of a 
link between heavy fermion superconductivity and 
heavy fermion insulators is rather appealing and clear- 
ly deserves further study. 
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