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Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal
Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic
quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low
temperatures T, leading to a power-law distribution of Kondo temperatures PðTKÞ ∼ Tα−1

K , with a
nonuniversal exponent α, in a remarkable similarity to the Kondo-disorder scenario found in disordered
heavy-fermion metals. For α < 1, the resulting singular PðTKÞ induces non-Fermi-liquid behavior with
diverging thermodynamic responses as T → 0.
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Introduction.—Fermi-liquid (FL) theory forms the basis
of our understanding of interacting fermions. It works in a
broad range of systems, from weakly correlated metals [1]
to strongly interacting heavy fermions [2]. Over the past
decades, however, the properties of numerous metals have
been experimentally found to deviate from FL predictions
[3,4], and much effort has been devoted to the under-
standing of such non-Fermi-liquid (NFL) behavior. One
interesting avenue is provided by quantum critical points
(QCPs): NFL physics may occur in the associated quantum
critical regime which is reached upon tuning the system via
a nonthermal control parameter such as pressure, doping, or
magnetic field [5,6].
Remarkably, recent experiments have provided compel-

ling evidence of NFL behavior without fine-tuning in
the heavy-fermion quasicrystal Au51Al34Yb15 [7,8].
Furthermore, Ref. [7] also reports that no NFL behavior
emerges when one considers a crystalline approximant
instead of the quasicrystal, suggesting that this NFL regime
is associated with the particular electronic states present
in the quasicrystal but not in the approximant [9–14].
Conventional QCP approaches have been employed to
explain the fascinating behavior in this alloy [15,16], but
they consider the effects of a quasicrystalline environment
of the conduction electrons only minimally.
In this work we intend to close this gap by presenting

a detailed calculation of the fate of isolated localized
magnetic moments when placed in both two- and three-
dimensional quasicrystals. Our results for dilute impurities
show that a considerable fraction of impurity moments is
not quenched down to very low temperatures, leading to a
power-law distribution of Kondo temperatures, PðTKÞ ∝
Tα−1
K , with a nonuniversal exponent α. This results in NFL

behavior in both χ and C=T as T → 0: χ ∼ C=T ∼ Tα−1

[17], a scenario very reminiscent of the Kondo effect in
disordered metals [18–23]. Moreover, we show that the
strong energy dependence of the electronic density of states
(DOS) characteristic of a quasicrystal leads to a situation
such that small changes in the model parameters (band
filling, Kondo coupling, etc.) may drive the system in and
out of the NFL region.
Quasicrystalline wave functions.—A quasicrystal exhib-

its a small set of local environments, which reappear again
and again, albeit not in a periodic fashion. Their pattern is
not random either, since the structure factor shows sharp
Bragg peaks, although their symmetry is noncrystallo-
graphic [24]. The n-fold symmetries (with values of
n ¼ 5; 8; 10;…) seen in the diffraction pattern of quasi-
crystals arise due to the fact that the local environments
occur with n equiprobable orientations.
The structure factor of quasicrystals is densely filled in

reciprocal space with diffraction spots [24] of widely
differing intensities. The brighter peaks are expected to
lead to strong scattering of conduction electrons, giving rise
to spikes in the DOS [25,26]. The scattering due to the
remaining peaks, while weaker, results in wave functions
which show fluctuations at all length scales. The Fibonacci
chain, a one-dimensional quasicrystal, provides an example
of such wave functions [9], often referred to as critical
[9–13], in analogy with those found at the Anderson metal-
insulator transition [27,28].
Tiling model.—For simplicity, we consider models on

quasiperiodic tilings. We first report results obtained for a
2D tiling, where it is easier to handle large system sizes
numerically. In the Supplemental Material [29], we show
calculations for a 3D tiling [40] with very similar results,
confirming that our scenario is independent of both tiling
details and dimensionality.

PRL 115, 036403 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JULY 2015

0031-9007=15=115(3)=036403(6) 036403-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.036403
http://dx.doi.org/10.1103/PhysRevLett.115.036403
http://dx.doi.org/10.1103/PhysRevLett.115.036403
http://dx.doi.org/10.1103/PhysRevLett.115.036403


The 2D tiling we consider is the octagonal tiling
(Ammann-Beenker) [41], Fig. 1(a). This tiling is composed
of two types of decorated tiles: squares and 45° rhombuses,
which combine to create six distinct local environments
with coordination number z ¼ 3;…; 8, Fig. 1(b).
As a minimal model to describe the electronic properties

of quasicrystals, we consider a nearest-neighbor tight-
binding Hamiltonian in standard notation

Hc ¼ −t
X

hiji;σ
ðc†iσcjσ þ c†jσciσÞ: ð1Þ

In the following, energies are measured in units of t. In our
calculation, we consider periodic approximants of the
octagonal tiling of sizes Na ¼ 7, 41, 239, 1393, and
8119, obtained by the standard method of projecting down
from a higher dimensional cubic lattice, as in previous
works [41–44]. To reduce finite-size effects we use twisted
boundary conditions, i.e., ψð~rþ Lx̂þ LŷÞ ¼ eiϕxeiϕyψð~rÞ
for a sample of linear size L. Our final answer is obtained
averaging over Nϕ twist angles [45].
In Fig. 1(c) we show the well-known total DOS for the

octagonal tiling hρcðωÞi ¼
PNa

i¼1 ρ
c
i ðωÞ=Na, with the local

DOS at site i given by ρci ðωÞ ¼
P

νjψc
νðiÞj2δðω − Ec

νÞ,
where ψc

ν is an eigenstate of Hc in (1) with energy Ec
ν

and the overline denotes the average over boundary
conditions. hρcðωÞi has a strong energy dependence with
several spikes and a pronounced dip at ω ≈�2.0t. The
large peak at ω ¼ 0 is due to families of strictly localized
states, a consequence of the local topology of the octagonal
tiling [12,46]. The spatial structure of ρci ðωÞ is discussed
in Ref. [29], where we show that it is well described by a
log-normal distribution.
Local moments and large-N solution.—We now move to

the main topic of this Letter: the investigation of the
single-impurity Kondo effect in a metallic quasicrystal.
Specifically, we consider the U → ∞ Anderson impurity
model

H ¼ Hc þ Ef

X

σ

nfσ þ V
X

σ

ðf†lσclσ þ c†lσflσÞ: ð2Þ

This model describes a band of noninteracting electrons
(c band) which hybridize with a localized f orbital located
at site l. The operator f†lσðflσÞ creates (destroys) an
electron with spin σ at the impurity site l and the
U → ∞ limit imposes the constraint nfσ ¼ f†lσflσ ≤ 1.
Ef is the f-level energy, measured with respect to the
chemical potential μ, and the hybridization V couples the
impurity site to the conduction band. To obtain quantitative
results, we now turn to a large-N limit of Eq. (2) that allows
us to access arbitrary values of the model parameters
[47–49]. It introduces two variational parameters Zl
(quasiparticle weights) and ~εfl (renormalized f-energy
levels), which are site dependent in the case of a quasi-
crystal. These parameters are determined by minimization
of the saddle-point free energy (see [29] for further details)

Fl
MF ¼ 2

π

Z þ∞

−∞
fðωÞIm½ln ð ~Gf

lðωÞÞ�dω

þ ð~εfl − EfÞðZl − 1Þ; ð3Þ

where fðωÞ is the Fermi-Dirac distribution function.
The quasiparticle f-level Green’s function is given by
~Gf
lðωÞ ¼ ½ω − ~εf − ZlΔflðωÞ�−1, with the f-electron

hybridization function given by ΔflðωÞ ¼ V2Gc
llðωÞ,

where Gc
llðωÞ ¼

P
νjψc

νðlÞj2=ðω − Ec
νÞ is the c-electron

Green’s function. We define TK as the (half-)width of the
resonance at the Fermi level Tl

K ≡ ZlIm½Δflð0Þ� [50] and
introduce the Kondo coupling J ≡ 2V2=jEfj. The f-level
occupation is simply given by nfl ¼ 1 − Zl.
Because each site in the quasicrystal “sees” a different

environment, encoded in ΔflðωÞ, we numerically solve
Eq. (3), at T ¼ 0, individually placing Kondo impurities
at all Na sites of the approximant. Therefore, for every
single impurity problem we obtain a different value of TK,
which we use to construct the distribution of the Kondo
temperatures PðTKÞ.
Power-law distribution of Kondo temperatures.—For

Kondo impurities placed in a disordered metal [18–23] it
is well established that the distribution of Kondo temper-
atures possesses a power-law tail at low TK: PðTKÞ ∝ Tα−1

K ,
with a nonuniversal exponent α [51]. For α < 1, PðTKÞ
becomes singular, and NFL behavior emerges in the
system [17,29].
Surprisingly, we observe the same phenomenology for

quasicrystals, with sample results shown in Fig. 2. Here we
show the corresponding PðTKÞ for the octagonal tiling at
μ ¼ −2.2t as a function of TK=T

typ
K (we defined the typical

value of TK as T typ
K ≡ exp½hlnðTKÞi�). For approximants

with Na ≥ 239 a clear power-law tail emerges for TK <
T typ
K with an exponent which depends on the Kondo

coupling J [29]. The dependence of T typ
K on J is shown

FIG. 1 (color online). Quasicrystal geometrical and electronic
properties. (a) Square approximant for the perfect octagonal tiling
with Na ¼ 239 sites. (b) The six local site environments with
z ¼ 3;…; 8 nearest neighbors. (c) The total DOS as a function
of the energy for the Na ¼ 8119 approximant averaged over
Nϕ ¼ 64 twist angles.
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in the inset of Fig. 2, where we see that we obtain the
expected exponential relation [2].
Given the strong energy variations of hρcðωÞi, Fig. 1(c),

it is then natural to ask whether the form PðTKÞ ∝ Tα−1
K is

observed at different locations of the Fermi level μ. We
checked that this is indeed the case: in Fig. 3 we show how
the exponent α varies with J for several values of μ
(to extract the value of α we followed Ref. [52]). The
dashed straight lines correspond to the expected behavior at
low J (Kondo limit) where we have α ∝ J [29,51].
While the curves α vs J are all qualitatively the same,

there are important features associated with the position of
μ, and thus the value of hρcð0Þi. Specifically for μ ¼ −2.0t
we enter the NFL region for relatively high values of the
Kondo coupling, J ≃ 2.35t, and with an average f-level
occupation hnfi≃ 0.89 not so close to unity (for all the
other values of μ considered hnfi≃ 1). Moreover, for
J ¼ 2.2t the thermodynamic properties diverge as a power
law with an exponent 1 − α≃ 0.4, but if we then vary μ by
10% we get α ≫ 1 and the system displays FL behavior.
To understand how a power-law distribution of

Kondo temperatures emerges in this problem, we closely
follow the arguments of Ref. [51]. In the Kondo limit,
hnfi → 1 and J → 0, it is easy to show that Tl

K ¼
T0
K exp ½−θ2l�, where θ2l ¼ πΔ0

clð0Þ2=JhΔ00
clð0Þi and T0

K ¼
D exp ½−πhΔ00

clð0Þi=J� [29]. HereD is an energy cutoff and
ΔclðωÞ≡ ω − 1=Gc

llðωÞ is the local c-electron cavity
function [53] with a single (double) prime denoting its

real (imaginary) part. For Δ0
clð0Þ distributed according to a

Gaussian (see the inset of Fig. 3), it then follows immedi-
ately that, up to logarithmic corrections, PðTKÞ ∝ Tα−1

K ,
with α ¼ JhΔ00

cð0Þi=2πσ2c, where σc is the variance of
P½Δ0

cð0Þ� [29]. Physically, Δ0
clð0Þ can be interpreted as a

renormalized on-site site energy for the c electrons. The
simple Gaussian form of P½Δ0

cð0Þ�, as in the usual dis-
ordered problem [51], suggests an effective self-averaging,
in the sense that for local quantities like Δ0

cð0Þ there seems
to be no important distinction between disorder and
quasiperiodic order. Nevertheless, we know that this
surprising result cannot hold for all observables, since,
e.g., transport in quasicrystals is known to display “super-
diffusive” behavior [11–13].
Finite-size effects and NFL behavior at finite

temperatures.—To check the robustness of our scenario
against finite-size effects, we performed simulations on
approximants of different sizes Na. For all approximants,
we find a minimumKondo temperature in the sample, Tmin

K .
Below Tmin

K , FL behavior is then restored within our model
(all local moments are screened). From Fig. 2, we learn
that the power-law distribution of Kondo temperature
PðTKÞ ∝ Tα−1

K emerges for TK < T typ
K . Taken together,

these two observations imply, in principle, that the NFL
range is restricted to the interval Tmin

K < T < T typ
K .

However, our calculations show that Tmin
K vanishes as Na

increases while T typ
K remains finite. We thus conclude that

FIG. 3 (color online). Power-law exponent α as a function of
the Kondo coupling J for five different positions of Fermi level μ.
The dashed lines are linear fits deep into the Kondo regime where
we expect α ∝ J to hold (see text). The horizontal dashed line
corresponds to α ¼ 1 and marks the entrance into the NFL region.
At this point we have an average f-level occupation
hnfi ¼ 1 − hZi ¼ 0.970, 0.995, 0.890, 0.995, and 0.960 for
μ ¼ −0.5t, −1.8t, −2.0t, −2.2t, and μ ¼ −3.5t, respectively.
Here we considered Na ¼ 1393 and Nϕ ¼ 576. Inset: distribu-
tion of the real part of the local c-electron cavity function
fluctuations at the Fermi level δΔ0

c ¼ Δ0
cð0Þ − hΔ0

cð0Þi for three
different values of μ (the color scheme is the same as in the main
panel). Here we considered Na ¼ 8119 and Nϕ ¼ 64.

FIG. 2 (color online). Distribution of the local Kondo temper-
atures PðTKÞ on a log-log scale for several values of the Kondo
coupling J; note that the curve corresponding to J ¼ 0.77t
was scaled down. TK on the horizontal axis has been normalized
by T typ

K ; the unrenormalized distributions are shown in Ref. [29].
For TK ≲ T typ

K the distributions acquire a power-law form
PðTKÞ ∼ Tα−1

K , with the exponent α continuously varying with
J. For α < 1 the distribution is singular. [Notice that for
TK ≳ T typ

K , PðTKÞ is also power-law like, with an exponent that
does not depend on J. This is not the power-law regime we
refer to in this work.] Inset: T typ

K as a function of 1=J on a
semilog scale. Here we considered Na ¼ 1393, μ ¼ −2.2t, and
Nϕ ¼ 576.
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the NFL range actually extends down to T ¼ 0 in an
infinite quasicrystal [29].
To access the finite-temperature behavior of the system

and to observe the anticipated NFL behavior, we consider a
simple interpolative formula for the local-moment suscep-
tibility, χðT; TKÞ ¼ 1=ðT þ TKÞ, which captures the lead-
ing behavior at both low and high-T [2,29]. We then
calculate the magnetic susceptibility of dilute moments as
an average of single-impurity contributions, hχðTÞi ¼
N−1

a
PNa

l¼1 χðT; Tl
KÞ, with sample results in Fig. 4 [54].

In the region T ≫ T typ
K , hχðTÞi shows the expected

free-spin form for all values of the Kondo coupling. For
T ≪ T typ

K , and for Na → ∞, we observe two distinct
behaviors depending on the value of α. For α > 1 we
recover the FL behavior at low-T with hχðTÞi ∼ 1=T typ

K ,
whereas for α < 1 we obtain hχðTÞi ∝ Tα−1. Moreover, in
the crossover region, T ∼ T typ

K , we have the surprisingly
robust result hχðTÞi ∼ − logðTÞ, regardless of the value of
α. This is due to the fact that PðTKÞ is essentially flat
around T typ

K (Fig. 2). For the smaller approximants, how-
ever, Tmin

K is finite and hence FL behavior must be restored
at T < Tmin

K for all J. This is explicitly shown in the inset of
Fig. 4 where Tmin

K ≃ 10−2T typ
K for Na ¼ 7.

Electronic Griffiths phase and Au51Al34Yb15.—The
Kondo-disorder(like) scenario discussed here nicely
accounts for power-law divergences in the thermodynamic
quantities when dilute Yb local moments are placed
in a metallic quasicrystal. However, the quasicrystal
Au51Al34Yb15 forms a dense Kondo lattice, and one

may wonder to what extent our scenario is relevant in this
context. Based on analogies with disordered Kondo sys-
tems (where both the dilute-impurity case and the lattice
case produce PðTKÞ ∝ Tα−1

K [19,51,55,56]), we then expect
power-law distributions of Kondo temperatures and the
corresponding NFL phenomenology for χ and C=T also for
the lattice problem. In that case, the NFL region is known
as an electronic quantum Griffiths phase and it has by now
been observed in several disordered strongly correlated
systems [57,58].
The quasicrystal heavy fermion Au51Al34Yb15 shows

NFL behavior with χ ∼ T−0.51, C=T ∼ − logðTÞ [7] or
χ ∼ T−0.55, C=T ∼ T−0.66 [8]. Our results, however, predict
the same NFL exponent for both χ and C=T, and this
difference hampers a definite identification of quantum
Griffiths effects [59]. On the other hand, the (Griffiths)
power-law divergences are exact only at asymptotically low
temperatures, where the regular contribution to the thermo-
dynamic responses may be completely disregarded, and in
general the results depend not only on the full form of the
PðTKÞ curve but also on the particular shape of the scaling
functions for the physical observables [29,54], which may
account for differences in the exponent. One such example
is the transient − logðTÞ divergence in hχðTÞi, which is
present for all values of the exponent α in the region
T ∼ T typ

K , Fig. 4.
Interestingly, it was also reported that the temperature

dependence of χ and C=T of the quasicrystal Au51Al34Yb15
differs from that of its crystalline approximant.
Reference [7] observes no NFL behavior for the approx-
imant, whereas Ref. [8] does observe NFL behavior but
with different powers as compared to the quasicrystal. To
briefly address this intriguing result, we first notice that the
size of the approximant unit cell considered in [7,8] is small
and thus it is reasonable to assume that the experimental
situation is similar to the one illustrated in the inset of
Fig. 4, where the NFL behavior is bound to be observed
only in a relatively narrow range Tmin

K ≲ T ≲ T typ
K .

Moreover, due to the strong energy dependence of
hρcðωÞi, Fig. 1(c), especially for μ close to a dip (which
seems to be case for Au51Al34Yb15 [60]), tiny variations in
parameters, such as the band filling or Kondo coupling,
may drive the system to or from a NFL behavior. Therefore,
care should be taken when drawing any conclusions from
this distinct behavior.
Conclusions.—Motivated by the recently observed NFL

behavior in the heavy-fermion quasicrystal Au51Al34Yb15,
we investigated the single-impurity Kondo effect in the
octagonal (2D) and icosahedral (3D) tilings. We found a
power-law distribution of Kondo temperatures PðTKÞ ∝
Tα−1
K and corresponding NFL behavior, in a surprising

similarity to disordered metals. Therefore, a quasicrystal-
line conduction band provides a natural route to the
emergence of a robust NFL behavior without the tuning
of external parameters as doping, pressure, or external field.

FIG. 4 (color online). Averaged value of the impurity suscep-
tibility hχðTÞi times the typical value of the Kondo temperature
T typ
K as a function of the temperature T normalized by T typ

K for four
values of the Kondo coupling J on a semilog scale. For
completeness, we show both the free spin and the χ ∝
− logðTÞ ðα ¼ 1Þ curves. Here we considered μ ¼ −2.0t,
Na ¼ 1393, and Nϕ ¼ 576. Inset: T typ

K hχðTÞi as a function of
T=T typ

K at μ ¼ 2.2t and J ¼ 1.05t for two different approximant
sizes: Na ¼ 7 and Na ¼ 1393.
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For the Kondo quasicrystalline lattice problem, we expect,
based on the analogy to disordered systems [17], a similar
NFL behavior to be observed. In addition, it would be
interesting to investigate the feedback effect of the local
moments, in particular moments with TK < T, on the
transport properties of the quasicrystalline conduction
electrons and the effects of intersite spin correlations [61].
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