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I. ELECTRONIC WAVEFUNCTIONS IN THE

OCTAGONAL TILING

Based on the results for one-dimensional
quasicrystals,1 we expect the resulting wavefunctions
in quasiperiodic tight-binding models to be di�erent
both from the exponentially localized wavefunctions
found in Anderson insulators as well from Bloch states
found in a crystal. Such wavefunctions are the so-called
critical wavefunctions. In real space, this means very
large �uctuations of the wavefunction amplitude from
site to site but with similar amplitudes on sites of
similar local environment (the amplitude distribution
is thus determined by the deterministic scale invariant
geometry).
To probe the real space pro�le of the wavefunctions,

we compute the inverse participation ratio

P−1ν =
∑

i

|ψcν (i)|4 , (S1)

where ψcν is an eigenstate of Hc (de�ned in Eq. [1] of
the main text) with energy Ecν . The scaling of P

−1
ν with

the system size is related to the spatial structure of the
electronic states. If we write P−1ν ∝ N−βa , then β = 1 for
extended and β = 0 for exponentially localized states. In
a quasicrystal, because of the critical nature of the wave-
functions, we expect that 0 ≤ β ≤ 1. It is important to
point out that the converse it is not true. For instance,
β ≈ 1 does not necessarily imply an extended state. To
establish such result, we need to study the scaling of the
higher moments of the wavefunction distribution because
the exponents that describe the scaling of these moments
with Na are not just multiples of each other � a property
of multifractality.2�4 As mentioned above, this resulting
multifractal character of wavefunctions is a consequence
of the invariance of quasicrystals under scale transforma-
tions, a feature called in�ation-de�ation symmetry.5

In Fig. S1 we calculate P−1ν at di�erent positions in
the band (but away form the band center) and obtain
β ≈ 0.90, which is close but smaller than one and con-
sistent with a preponderance of multifractal eigenstates.
Remarkably, this is similar to the value of β reported for
the Penrose tiling.6

Another useful quantity that probes the nature of the

101 102 103 104

Na

10−4

10−3

10−2

10−1

P
−

1
ν

Ec
ν = −0.5t, β ≈ 0.90

Ec
ν = −1.8t, β ≈ 0.90

Ec
ν = −2.0t, β ≈ 0.90

Ec
ν = −2.2t, β ≈ 0.93

Ec
ν = −3.5t, β ≈ 0.92

Figure S1: Octagonal tiling. Inverse participation ratio P−1
ν

as a function of the approximant size Na for di�erent values
of the eigenenergies Ecν on a log-log scale. We considered four
approximant sizes Na = 41, 239, 1393, 8119. The solid lines
are power-law �ts: P−1

ν ∝ N−βa .

wavefunction is the local density of states (LDOS)

ρci (ω) =
∑

ν

|ψcν (i)|2 δ (ω − Ecν), (S2)

where the overline denotes average over boundary con-
ditions. The distribution of the logarithm of ρci (ω) is
presented in Fig. S2. As we can see, the curves are all
qualitatively the same, indicating that the spatial �uc-
tuations of ρci are, to a good extent, energy-independent
and well described by a log-normal distribution (see the
inset). Speci�cally, the width of the distribution does not
vary much with the energy, except for ω = −2.0t where
there is a slightly larger tendency to have ρci (ω) smaller
than its typical value.
Generally, a log-normal distribution of LDOS is ex-

pected to occur in an Anderson insulator,7 but it is also
known that a log-normal also nicely describes the distri-
bution of LDOS of disordered metals.8 Therefore, a care-
ful �nite-size scaling study is required to establish the
precise nature of the wavefunction based on P (ρ).8 We
leave this more detailed investigation for a future work.
To conclude the discussion on the octagonal tiling,
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Figure S2: Octagonal tiling. Distribution of δlog (ρc) =
log (ρc) − 〈log (ρc)〉 at three di�erent values of the energy ω.
Inset: The full curve correspond to P (δlog (ρc)) at ω = −2.0t
and the dashed curve is a Gaussian �t to it. Here we consid-
ered the Na = 8119 approximant with Nφ = 64.

we brie�y mention our implementation of averaging over
twisted boundary conditions (TBC).9,10 This step was in-
strumental in obtaining reliable results since it provides
a controlled way to eliminate �nite-size e�ects associ-
ated with spectral discreteness (we will come back to the
role of �nite-size e�ects later). The average over TBC
is completely equivalent to a periodic repetition of the
Na-site approximant in both directions using Nφ copies,
hence the e�ective total linear system size is increased to√
NaNφ.

II. SLAVE BOSONS MEAN-FIELD EQUATIONS

AND THE KONDO LIMIT

Minimizing the slave boson (SB) mean-�eld free en-
ergy, Eq. [2] in the main text, with respect to ε̃` and Z`
we obtain the corresponding self-consistency equations

2

π

ˆ +∞

−∞
f (ω) Im

[
G̃f` (ω)

]
dω + Z` − 1 = 0, (S3)

2

π

ˆ +∞

−∞
f (ω) Im

[
G̃f` (ω) ∆f` (ω)

]
dω +

ε̃f` − Ef = 0. (S4)

In general, we solve these mean-�eld equations numer-
ically at T = 0. They are algebraic non-linear equa-
tions on the parameters Z` and ε̃f`, which we solve us-
ing a globally convergent implementation of the Newton-
Raphson algorithm.11 The integral over frequencies is
performed using the Romberg method.11

If we now move to the Kondo limit, where both
Z`, ε̃f` → 0, we are able to solve Eqs. (S3) and (S4)
analytically. In this limit, we ignore the frequency depen-
dence of the hybridization function, ∆f` (ω) ' ∆′f` (0) +

i∆′′f` (0), and assume that the integrals are dominated by

their values at the Fermi level. From Eq. (S3) we obtain

ε̃f + Z`∆
′
f` (0) ' 0. (S5)

which re�ects the well-known fact that in the Kondo limit
the position of the Kondo peak, ε̃f +Z`∆

′
f` (0), moves to

the Fermi level.
From Eq. (S4) we can now calculate the Kondo tem-

perature (recall our de�nition T `K ≡ Z`∆′′f` (0))

T `K = Dexp

[
−π

2

∆′f` (0) + |Ef |
∆′′f` (0)

]
, (S6)

where D is an high-energy cuto� of the integral of the
order of the bandwidth. We recover the usual Kondo ex-
pression, T `K = Dexp [−1/Jρc` (0)], in the case of particle-
hole symmetry, ∆′f` (0) = 0, with ∆′′f` (0) = πV 2ρc` (0)

and J = 2V 2/ |Ef |.

III. ASYMPTOTIC EXPRESSION FOR P (TK)

Each site of the tiling has a di�erent local c-electron
cavity function ∆c` (ω), re�ecting the fact that the e�ec-
tive potential that one electron sees as it goes through the
lattice changes from site to site. If we go one step fur-
ther, we may consider its real part at the Fermi level,
∆′c` (0), as a renormalized on-site site energy for the
c-electrons. According to the arguments presented in
Ref. 12 for the case of weakly disordered Kondo sys-
tems, a power-law distribution for the Kondo temper-
ature can be easily obtained provided that the �uctua-
tions of ∆′c` (0), δ∆′c ≡ ∆′c (0)− 〈∆′c (0)〉, follow a Gaus-
sian distribution (see the inset of Fig. 3 of the main
text). In disordered systems, the �uctuations of the
local c-electron cavity function at a given site i result
from Friedel oscillations of the electronic wavefunctions
induced by other impurities which may lie at a relatively
long distance from i. Furthermore, at weak disorder,
δ∆′c` takes the form of a linear superposition of contri-
butions from single impurity scatterers, and thus of a
sum of independent random numbers, for which we ex-
pect the central limit theorem to hold. From our nu-
merical results, we then reason that a similar mechanism
takes place in quasicrystals. This somewhat surprising
resemblance between a quasicrystal and weakly disor-
dered systems, rather than systems at the metal-insulator
transition, is also present in di�erent physical quantities,
e.g. the level-spacing distribution.5,6,13 It indicates that
a quasicrystal in higher dimensions may show a more
conventional behavior in local quantities despite its mul-
tifractal eigenstates.
It is now a straightforward exercise to obtain the

asymptotic expression P (TK) ∼ Tα−1K following Ref. 12.
We start by relating the f−level hybridization function
∆f` with the local c-electron cavity function ∆c` at the
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impurity site `

∆′f` (ω) =
V 2 (ω −∆′c` (ω))

(ω −∆′c` (ω))
2

+ (∆′′c` (ω))
2 , (S7)

∆′′f` (ω) =
V 2∆′′c` (ω)

(ω −∆′c` (ω))
2

+ (∆′′c` (ω))
2 , (S8)

where, as usual, single (double) primes denote the real
(imaginary) part. The next step is to take the Kondo
limit making use of Eq. (S6). As the last assumption, we
disregard �uctuation in the imaginary part of ∆c` (0), so
we replace ∆′′c` (0) by its average value 〈∆′′c (0)〉. Using
Eqs. (S7) and (S8) we then obtain

T `K = T 0
Kexp

[
−π (∆′c` (0))

2

J 〈∆′′c (0)〉

]
, (S9)

where T 0
K ≡ Dexp [−π 〈∆′′c (0)〉 /J ]. Inverting Eq. (S9)

we may write

δ∆′c` ' ln1/2
[
T 0
K

T `K

]λ
, (S10)

with λ = J 〈∆′′c (0)〉 /π and we also considered the fact
that for T `K � T 0

K we may drop the the term 〈∆′c` (0)〉.
Since we assume that P (δ∆′c) is a simple Gaussian with
variance σc, a direct change of variables gives, up to a
negligible logarithmic correction,

P (TK) ∝ Tα−1K , (S11)

with

α =
J 〈∆′′c (0)〉

2πσ2
c

∼ J 〈ρc (0)〉 . (S12)

So we see that α varies linearly with J with a slope pro-
portional to 〈ρc (0)〉.
To check the plausibility of our assumptions, we pro-

duced a scatter plot of the numerically calculated T `K
versus the exponent of the Kondo limit formulas for T `K
in Eqs. (S6) and (S9), Fig. S3. There, we see that all the
points (one for each site in the quasicrystal approximant)
follow a straight line, specially as T `K decreases, clearly
indicating a strong correlation between the full numerics
and the asymptotic expressions for the T `K. Additional
scatter around this straight line simply re�ects depar-
tures from Eqs. (S6) and (S9), i.e. a situation where the
value T `K depends not only on ∆f` at the Fermi level,
but on the entire spectral function. Moreover, as T `K
decreases the curves obtained from Eqs. (S6) and (S9)
become more and more similar showing that the �uctu-
ations in ∆′c` (0) are indeed the dominant ones.
The power-law distribution of Kondo temperatures de-

scribes only the low-TK tail of the full distribution P (TK)
and we then expect that our asymptotic expressions in
Eqs. (S11) and (S12) to work better and better as α
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Figure S3: Octagonal tiling. Scatter plot of the numeri-
cally calculated −ln

(
T `K

)
as a function of the exponent θ2`

with θ2` = π
(
∆′f` (0) + |Ef |

)
/2∆′′f` (0) (Eq. (S6)) or θ2` =

π (∆′c` (0))
2
/J 〈∆′′c (0)〉 (Eq. (S9)). Each point correspond

to a given site in the approximant and the straight line has
a unity slope. Here, we considered the Na = 1393 approx-
imant, J = 0.77t, and µ = −2.2t. Inset: Power-law expo-
nent α for µ = −2.2t as a function of the Kondo coupling
J . The squares correspond to the exponent extracted from
the numerical data as in Fig. 3 of the main text. The circles
correspond to the exponent extracted from a distribution of
TK generated according to Eq. (S6). The dashed line is the
asymptotic expression for α in Eq. (S12). The error bars for
α are smaller than the symbol sizes.

(or J) diminishes. To check this, we compare the expo-
nent α from our numerical data with: (i) the exponent
extracted from a distribution of TK generated according
to Eq. (S6); and (ii) the asymptotic expression for α in
Eq. (S12). In the inset of Fig. S3 we show that all three
values of α nicely match for J . 1t.

IV. SINGULAR KONDO TEMPERATURE

DISTRIBUTION AND NFL BEHAVIOR

As we discussed in the main text, the region in which
α < 1 corresponds to NFL behavior at low-T . To es-
tablish this link, we combine our T = 0 solution of the
mean �eld equations (S3) and (S4) with the well-known
scaling relations for the Kondo impurity problem.14 Es-
sentially, we use the fact that the Kondo problem has a
single energy scale, the Kondo temperature TK, and that
the observables can be written as universal functions of
T/TK.

For instance, for the local-moment susceptibility we
have

χ (T, TK) ∝ 1

TK
f

(
T

TK

)
, (S13)
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Figure S4: Octagonal tiling. Distribution of the local Kondo
temperatures P (TK) as a function of TK on a log-log scale
for several values of the Kondo coupling J . J increases from
the top to the bottom curve. We see that for TK . T typ

K this
distribution acquires a power-law form P (TK) ∼ Tα−1

K . The
power-law exponent α continuously varies with the coupling
J and for α < 1 we have a singular distribution (notice that
for TK & T typ

K , P (TK) is also power-law like, with a power
that does not depend on J . This is not the power-law regime
we refer to in this work). Here we considered Na = 1393,
µ = −2.2t, and Nφ = 576.

with the asymptotic forms of f (x) given by14

f (x) =

{
a− bx2 x� 1
(c/x) (1− 1/lnx) x� 1

, (S14)

where a, b, and c are universal numbers. The average
value of the susceptibility is then given by

〈χ (T )〉 =

ˆ
dTKP (TK)χ (T, TK)

= χr +

ˆ Tmax
K

0

dTKT
α−1
K

1

TK
f

(
T

TK

)

︸ ︷︷ ︸
∝Tα−1

.(S15)

Here, Tmax
K ∼ T typ

K is a cuto� below which the power-law
for of P (TK) holds and we see that 〈χ (T )〉 contains a
regular part χr and a potentially singular contribution
χs ∝ Tα−1. For α < 1 and at low-T , we may then
disregard χr to obtain the anticipated NFL power-law
divergence 〈χ (T )〉 ∝ Tα−1. The impurity speci�c heat
divided by the temperature has a similar behavior and,
accordingly, we get 〈C/T 〉 ∝ Tα−1.
Given that the SB mean-�eld approach can be ap-

plied at �nite-T (albeit resulting in an unphysical �nite-
temperature transition) it is then natural to ask ourselves
whether it is legitimate to calculate P (TK) at T = 0, and
follow the procedure described above, rather than solv-
ing the SB equations at �nite-T to explicitly calculate
χ (T ) and γ (T ). From our experience, the general con-
clusion is that the leading low-T power-law behavior of χ

or C/T is not a�ected by these additional e�ects. Higher-
T behavior will of course be a�ected but as long as we
are interested in leading low-T asymptotics (the value of
the power), the current procedure is well-de�ned, simply
because the distributions P (TK) are very broad. Similar
questions have been raised in the more general context of
Quantum Gri�ths Phases and the In�nite-Randomness
Fixed Point Behavior.15 There again one arrives at a sim-
ilar conclusion: the T = 0 distribution of energy domi-
nates even �nite-T behavior.16�18

In the same spirit, we may extend the above discus-
sion to also calculate observables other than thermody-
namical. An interesting quantity to look at is the the
nuclear spin-lattice relaxation rate divided by tempera-
ture 1/ (T1T ). In our Gri�ths scenario, we expect that
1/ (T1T ) ∼ Tα−2 ∼ χ/T .18�20 Nevertheless, the exper-
iment �nds that 1/ (T1T ) ∼ χ.21 We point out, how-
ever, that this discrepancy is not, at this point, partic-
ularly conclusive, since the curves for 1/ (T1T ) in Ref.
21 were obtained only for T > 1K, whereas the NFL
behavior is more pronounced for T < 1K. It would
be nice to see how 1/ (T1T ) behaves at low tempera-
tures, where it will most certainly provide more conclu-
sive hints as for the nature of quasicrystalline electronic
environment. Another interesting quantity to investigate
is the resistivity.19,20 However, unlike thermodynamic re-
sponses, for which we expect the single impurity behav-
ior to survive in the dense lattice limit (as is the case
of Au51Al34Yb15), we know that for transport the situa-
tion will be di�erent as coherence between the impurities
emerges and thus we cannot, at this point, compare our
predictions to the experiments. Furthermore, we expect
this to be a non-trivial problem, because even in the ab-
sence of correlations, transport in quasicrystals is known
to display an unusual �super-di�usive� behavior.5,6,22

V. SIZE DEPENDENCE OF P (TK)

In this work, we consider di�erent values of Na in or-
der to establish what happens for a true quasicrystal
(Na →∞). As we mention in the main text, for all ap-
proximants sizes Na we �nd a minimum Kondo tempera-
ture in the sample, Tmin

K . For the smaller approximants,
the six local environments of the octagonal tiling (Fig.
1(b) of the main text) appear in a modest number of dif-
ferent arrangements. In other words, their extended en-
vironment, including next-nearest and further neighbors
is limited. This leads not only to an appreciable Tmin

K
but also to few distinct values of TK. As we increase
the approximant size, these local environments appear in
further unique con�gurations leading to more and more
values of TK in the sample. Therefore, we expect the
statistics of TK to improve with Na, which can be clearly
seen in Fig. S5, where, for instance, the peak around
T typ
K ∼ 10−3t (which hardly varies with Na) becomes

ever more well de�ned as the system size increases. The
most important, however, is the ubiquitous presence of
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Figure S5: Octagonal tiling. Distribution of Kondo tempera-
tures P (Tmax

K ) as a function of TK for µ = −2.0t and J = 2.0t
and three di�erent approximant sizes Na. The dashed lines
are a power-law �ts with Tmax

K = 10−4t with the correspond-
ing exponents α shown in the caption. Inset: Minimum value
of the Kondo temperature Tmin

K a function of the inverse
approximant size. The dashed line is a power-law �t with
Tmin
K ∝ N−0.69

a .

the power-law tail at low-TK in Fig. S5 for all three
approximant sizes with the same exponent (within error
bars). Moreover, it is also clear from Fig. S5 that Tmin

K
is suppressed with increasing Na. Indeed, in the inset
of Fig. S5 we �nd a power-law dependence of Tmin

K on
Na: T

min
K ∝ N−0.69a . Such power-law �nite-size scaling

(with a nontrivial power) is precisely what one expects
in a critical state (in a conventional metal, for instance,
one would expect power-law �nite-size scaling�as it is
gapless�but with integer powers).
Within our model, FL behavior is restored below Tmin

K
as all local moments are then screened. Since the power-
law distribution of Kondo temperature P (TK) ∝ Tα−1K

emerges for TK < T typ
K , we could expect, in princi-

ple, the NFL range to be constrained to the interval
Tmin
K < T < T typ

K . However, as Fig. S5 shows, Tmin
K

vanishes as Na increases while T typ
K remains �nite. We

thus conclude that the NFL range actually extends down
to T = 0 in a real quasicrystal. Therefore, our results
suggest that it is not their local structure, but the lack
of long-distance periodicity which induces robust NFL
behavior in quasicrystals.

VI. NUMERICAL CALCULATION OF THE

POWER-LAW EXPONENT α

Here we address how we calculate the power-law expo-
nent α governing the low-TK part of the distribution of
Kondo temperatures. The straightforward way is to plot
P (TK) on a log-log scale and then extract (α− 1) as the
slope of the resulting straight line. While well de�ned,
this procedure extracts α not from the data itself, but
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Figure S6: Octagonal tiling. Distribution of Kondo tempera-
tures P (TK) as a function of TK for µ = −2.0t and J = 2.0t.
The dashed line shows a power-law �t with α = −0.24 and
Tmax
K = 10−4t. Inset: The circles shows the value of α, as

calculated from Eq. (S16), whereas the full line show the
Kolmogorov-Smirnov (KS) test as a function of Tmax

K . Here
we considered the Na = 1393 approximant.

from a given histogram. We complement the latter pro-
cedure calculating α directly from the data as explained
in Ref. 23.
Given a data set containing n observations TK ≤ Tmax

K ,
where Tmax

K is the largest value of the energy scale for
which the power-law distribution holds, the value of α
that is most likely to have generated our data is given by

α =
n∑n

i=1 ln
[
Tmax
K /T iK

] , (S16)

with an error

σα = α/
√
n. (S17)

In practice, however, the greatest source of error comes
from not choosing an optimal value for Tmax

K , which we
dub Tmax?

K . We then implement two procedures to es-
timate Tmax?

K .23 In the �rst one, we plot α × Tmax
K and

de�ne Tmax?
K as the point around which α is stable as

we vary Tmax
K . The second procedure follows the spirit

of a chi-square test. The idea is to investigate how well
our data is �tted by a power-law distribution. Since we
are now dealing with distributions, we implement the so-
called Kolmogorov-Smirnov (KS) test.11 The KS statis-
tics DKS is de�ned as the maximum value of the absolute
di�erence between the two cumulative distribution func-
tions. We then attempt to minimize DKS as a function
of Tmax

K .
In Fig. S6 we illustrate the discussion above. In the

main panel we show P (TK) on a log-log plot accompanied
by a power-law �t to its low-TK tail. In the �t displayed
here, we considered Tmax

K = 10−4t and obtained α =
0.24. In the inset we then show our two proposed tests
to estimate Tmax?

K . We see that the the DKS statistics
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the local Kondo temperatures P (TK) as a function of TK on
a log-log scale for three values of the Kondo coupling J . J
increases from the top to the bottom curve. At low TK this
distribution acquires a power-law form P (TK) ∼ Tα−1

K . The
power-law exponent α continuously varies with the coupling
J and for α < 1 we have a singular distribution. Here we
considered µ = −3.0t, Na = 576, and Nφ = 512.

has a minimum around Tmax
K = 10−4t and that in this

region α is essentially �at as a function of Tmax
K , with a

value of α = 0.22± 0.03.

VII. DIFFERENT TILINGS

So far we have investigated the single-impurity Kondo
e�ect in the octagonal tiling, a 2D quasicrystal, while
the original motivation came from experiments on a 3D
heavy fermion quasicrystal Au51Al34Yb15,

21,24. In the
following we show that this di�erence in spatial dimen-
sionality does not change the qualitative behavior of

Kondo impurities. First we note that the importance
of spatial dimensionality in determining the statistics
of wavefunction amplitudes (e.g. the local density of
states statistics) is well known in disordered systems.25

For this problem, 2D and 3D are signi�cantly di�erent
because 2D is the lower critical dimension for Anderson
localization.26 Second, however, it is known that some
models for low-dimensional (even 1D) quasicrystals can
support extended or pseudo-extended electronic states,
and even a sharp Anderson-like transition and a mobility
edge.27 In this sense, 2D is most likely not the lower crit-
ical dimension for wavefunction localization in quasicrys-
tals. Hence, there should not be a signi�cant qualita-
tive di�erence between electronic quasicrystalline states
in 2D and 3D.6 Therefore we expect that our 2D results
capture the key e�ects of the quasicrystalline wavefunc-
tions on the Kondo e�ect in general, and that our conclu-
sions should remain valid in 3D thus providing a robust
and general scenario for the emergence of NFL behavior
in quasicrystals.

To support the claim that our results are general and
applicable to di�erent tilings (even to 3D quasicrystals),
we have studied the Kondo problem in the 3D icosahe-
dral tiling.28 This tiling possesses 7 distinct local environ-
ments with coordination number z = 4, · · · , 9, and , 12.
The average coordination number is 6 and the bandwidth
is comparable to that of the simple cubic lattice. Sam-
ple results are presented in Fig. S7. As in the octagonal
tiling, we obtain a power-law distribution of Kondo tem-
peratures, P (TK) ∼ Tα−1K , and the corresponding NFL
behavior for α < 1. As discussed in the main text, the
essential ingredient for this behavior is the unanticipated
Gaussian form of the local c-electron cavity function �uc-
tuations at the Fermi level, δ∆′c, and not any special lat-
tice symmetry or dimension.

In conclusion, the striking similarity of our results for
the octagonal and icosahedral tilings shows that NFL
behavior from dilute Kondo impurities in quasicrystals
is robust and serves as a starting point to understand
quasicrystalline Kondo lattices, in order to connect to the
recently observed NFL behavior in the 3D heavy fermion
quasicrystal Au51Al34Yb15.

21,24
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