
Supplemental notes for: �Non-gaussian spatial correlations dramatically weaken

localization�

H. Javan Mard,1 E. C. Andrade,2 E. Miranda,3 and V. Dobrosavljevi¢1

1Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306
2Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

3Instituto de Física Gleb Wataghin, Unicamp, R. Sérgio Buarque de Holanda, 777, Campinas, SP 13083-859, Brazil

(Dated: September 22, 2014)

PACS numbers:

I. COMPUTATION OF THE CONDUCTANCE

The dimensionless conductance computed in this work
is de�ned as g = G/

(
2e2/h

)
. The sample conductance

gs, with the e�ects of the contacts already removed, is
given by the Landauer relation [1]

gs =
< Ts >typ

1− < Ts >typ
, (1)

where Ts is the total sample transmittance, and 'typ'
refers to the geometrical average < Ts >typ= exp lnTs
(the overbar denoting an average over realizations). The
transmission function is simply given by [2]

T (ω) =
1

2
Tr
[
G†S (ω) ΓR (ω) GS (ω) ΓL (ω)

]
. (2)

Here, all bold-face quantities are matrices in the lattice
site basis, and ω is set to zero in our case, representing the
Fermi level T = 0. ΓL(R) (ω) are the coupling matrices,
describing the coupling of the system to non-interacting
left (L) and right (R) leads, and are determined by the
leads' self-energies as

ΓL(R) (ω) = i
(
ΣL(R) −Σ†L(R)

)
. (3)

For the sake of simplicity, we assume

ΣL(R) = −iηBL(R), (4)

where the matrix BL(R) is equal to 1 for a site i connected
to the left (right) lead and 0 otherwise. This constant
lead self-energy is equivalent to the assumption of wide
lead bands. GS is the sample Green's function, given by

GS =
[
(ω + µ) 1−H0

S −ΣS −ΣL −ΣR

]−1
, (5)

where µ is the chemical potential. H0
S is the non-

interacting sample Hamiltonian and ΣS is the sample
self-energy, which accounts for the electronic correlations.
As we employ a Hartree-Fock approach, the sample self-
energy is given by

ΣS =
U

2
〈n〉+ µ1. (6)

n is a diagonal matrix in the site basis whose elements
ni correspond to the occupation of the site i. It can be
seen from Eqs. (5), (6) and (4) that the sample Green's
function can be obtained through a single diagonaliza-
tion of an e�ective Hamiltonian, as opposed to a ma-
trix inversion for every frequency value. Even with this
simpli�cation, we are still left with a non-Hermitian ma-
trix. We have implemented this diagonalization step us-
ing standard LAPACK routines. A particular e�cient
implementation can be achieved using the OpenMP ver-
sion of Intel's MKL library, which allowed us to perform
these calculations on a desktop computer. Furthermore,
using Eqs. (3) and (4), we can rewrite Eq. (2) as

T (ω) = 2η2Tr
[
G1L (ω) G†L1 (ω)

]
, (7)

where G1L (ω) is the sample Green's function from the
�rst site (i = 1) (connected to the left lead) to the last
one (i = L) (connected to the right lead).

II. THE LOCALIZATION LENGTH

The localization length ξ is calculated using the expo-
nential behavior of the conductance (e−x) at very large
x = L

ξ (for this, either L or W should be very large).
In other words, it can be computed from the slope of the
conductance as a function of x on a semi-log scale (assum-
ing all states are localized, which we always �nd). Fig. 1
shows that adding interactions considerably increases the
localization length, even though all states remain local-
ized.



2

0 1 2 3 4
W

10
0

10
1

10
2

10
3

 ξ

U=0
U=t

Figure 1: (Color online) Localization length ξ as a function
of W obtained from the collapse of the conductance curves. ξ
is strongly enhanced for U = t, even though all states remain
localized.

III. OPERATIONAL DEFINITION OF THE

CHARACTERISTIC CONDUCTANCE

We now show that the characteristic conductance g∗

can be determined in practice as the value at the point
L = L∗ = (ln 2)ξ , or x = ln 2. Given the beta function
for 1D localization, we can write

ln
L

L0
=

ˆ g

g0

d ln g

β (g)
= F (g)− F (g0) , (8)

where we de�ne the function

F (g) ≡
ˆ g d ln g

β (g)
, (9)

and g0 is a reference conductance at scale L0. From Eq.
(8) we get

F [g (L)] = ln

[
LeF (g0)

L0

]
, (10)

which implicitly gives g (L). De�ning the reference con-
ductance g = g∗ at L = L∗

F [g (L)] = ln

(
LeF (g∗)

L∗

)
. (11)

Using the form proposed in the main text β (g) =
β0 (g/g∗) and the non-interacting beta function of ref. 3,
we �nd

F (g) = −
ˆ g d ln g(

1 + g
g∗

)
ln
(

1 + g∗

g

) = ln

[
B ln

(
1 +

g∗

g

)]
,

(12)
where B is an arbitrary constant. It then follows from
Eq. (11) that

F (g) = ln(
L

L∗
B ln 2). (13)

On the other hand, the scaling function proposed in ref. 3
is

g∗

g
= eL/ξ − 1, (14)

which, when plugged into Eq. (12), leads to

F (g) = ln[B
L

ξ
]. (15)

Finally, comparing Eqs. (13) and (15) gives us the antic-
ipated result L∗ = (ln 2)ξ ≈ 0.69ξ.

IV. SPATIAL CORRELATIONS OF THE

RENORMALIZED DISORDER POTENTIAL

A. Weak disorder

An important question is how to characterize the spa-
tial correlations between the renormalized site energies
vi. For weak disorder, this problem is solvable analyti-
cally. Expanding the average on the right-hand side of
Eq. (2) of the main text to �rst order in the bare disorder,
we �nd the spatial Fourier component [4, 5]

vq =
εq

1− UΠq
+O(ε2q), (16)

where Πq is the usual static Lindhard polarization func-
tion of the clean, non-interacting system, which in the
case of a one-dimensional tight-binding chain is given by

Πq = −ρ (εF )
1

sin (q/2)
ln

[
cos (q/2)

1− sin (q/2)

]
, (17)

where ρ (εF ) is the density of states at the Fermi level.
Using Eqs. (16) and (17) we can generate a renormal-

ized potential vi in this linear response approach (LRA).
The result of this procedure is shown in Fig. 2. As can
be seen from Fig. 2, although the LRA potential exhibits
both disorder screening and spatial correlations, it does
not capture the renormalization of g∗: the scaling func-
tion (and its mathematical equivalent, the beta function)
coincides with the one from the non-interacting calcula-
tion. This result strongly suggests that the g∗ renormal-
ization is a non-perturbative e�ect of disorder and a fully
self-consistent solution is needed in order to capture it.
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Figure 2: (Color online) The scaling function in the linear
response approach compared with the non-interacting one.

B. Gaussian correlations

To go beyond the weak disorder limit, we calculate
the fully self-consistent HF two-point correlation function
〈vivj〉. Here 〈· · · 〉 denotes an average over both pairs and
disorder realizations. This function only depends on the
distance r = ri − rj between the two sites. In Fig. 3 we
show B (r) = 〈vivj〉 /W 2

eff as a function of the distance
r between two sites. Weff is the e�ective disorder width,
which is simply given by the standard deviation of vi.
De�ned in this fashion, B (r = 0) = 1. It displays Friedel-
like oscillations which are enhanced as U increases. For
comparison, we also show B (r) obtained within LRA at
U = t.
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Figure 3: (Color online) Spatial pair correlations between the
renormalized site energies for W = 1.0t and L = 400.
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Figure 4: (Color online) Fourier transform of the two point
correlation function Bij for W = 2t and U = t.

Since a Gaussian distribution is fully determined by
its two-point correlation function, we can use 〈vivj〉 to
generate Gaussian correlated variables. More precisely,
we generated vi deviates obeying a multivariate Gaussian
distribution with zero mean and covariance matrix 〈vivj〉.
To do this, we �rst calculate the Fourier transform of Bij ,
B(q), which is shown in Fig. 4. As expected, its derivative
diverges at q = ±2kF , giving rise to long-ranged Friedel-
like oscillations, as shown in Fig. 3. Once we have B(q),
we generate Gaussian distributed random complex num-
bers vq using the Box-Muller method with zero mean and
a q-dependent variance W 2

effB(q) [6]. Note that each vq
obeys a univariate Gaussian distribution. We can then
obtain their real space values vi after a numerical Fourier
transform.
The result of this procedure is shown in the main text,

where it is shown to be insu�cient to capture both the
renormalization of the crossover scale g∗ and the en-
hancement of the localization length (see Fig. 5). There-
fore, we conclude that this phenomenon is not only non-
perturbative in disorder but also determined by higher
order disorder correlations beyond the Gaussian level.

C. Full characterization of inter-site correlations

In order to characterize the behavior of the inter-site
correlations, we focus on the distribution function of two
given sites i and j. Evidently, this distribution only de-
pends on the distance between sites |i− j| = r, so we

will denote it by P
(2)
r (vi ≡ x, vj ≡ y). If there were no

inter-site correlations, then we would have

P (2)
r (x, y) = P (1) (x)P (1) (y) , (18)

where P (1) (vi ≡ x) is the distribution of renormalized
site energies of a given site. Both distributions were ob-
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tained numerically from our calculations. In Fig. 6 we
show the ratio of the left-hand and the right-hand sides
of Eq. (18) for r = 1. The fact that it is not equal to 1 is a
demonstration of the existence of inter-site correlations.
Further insight can be gained by noting that if Eq. (18)

were true, then P
(2)
r (x, y) would symmetric with respect

to the interchange of its arguments. That this is not the
case is made clear by a glance at a color scale plot of

P
(2)
r (x, y) in the xy plane, as shown in Fig. 7 for r = 1.

In fact, this anisotropy suggests a simple parametrization
of the distributions.
We �rst notice that the P (1) (x) can be very accurately

captured by the following two-parameter function if the
bare disorder is uniform

Q(1)(x) =
1/W̃

1 + exp
[(
|x| − W̃/2

)
/δW̃

] . (19)

Here, W̃ is the e�ective renormalized disorder and δW̃
rounds the tails of the distribution. Fig. 8 shows the raw
numerical data compared to the best �t using Eq. (19).
The agreement is excellent.
We then propose a single-parameter function for the

two-site distribution

Q(2)
r (x, y) = Q(1) (x′)Q(1) (y′) , (20)

where {
x′ = 1

1−c2x−
c

1−c2 y,

y′ = −c
1−c2x+ 1

1−c2 y,
(21)

and c is the anisotropy parameter. The above transfor-
mation represents a stretch along the main diagonal and
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Figure 5: (Color online) Localization length ξ as a function of
W , obtained from the collapse of the conductance curves. We
see that ξ is enhanced if we retain only Gaussian correlations
of the site energies (GSC), but not as strongly as to be able
to reproduce the complete HF results.

Figure 6: (Color online) The ratio of distributions

Pratio(x, y) = P
(2)
1 (x, y) /P (1) (x)P (1) (y) for U = W = t,

and L = 103 with 1, 000 realizations of disorder. Deviations
from 1 are indications of inter-site correlations.

Figure 7: (Color online) The color scale plot of P
(2)
1 (x, y) for

U = W = t, and L = 103 with 1, 000 realizations of disor-
der. The strong anisotropy re�ects the presence of appreciable
inter-site correlations.

a shrinking along the secondary diagonal. An excellent
description of the data is obtained with Eq. (20).
Therefore, we can parametrize the two-site correlations

by the single parameter c. The dependence of c on r
is shown in Fig. 10, where we see a gradual decrease of
correlations with the distance between the two sites. This
reduction is well �tted by a straight line and our results
are consistent with c→ 0 as r →∞.
Since the most important inter-site correlations are for

nearest-neighbor sites, we have generated random site en-

ergies distributed according to P
(2)
1 (x, y), thus neglecting

correlations for r > 1. We then calculated the corre-
sponding conductance, which we call gnn, `nn' here high-
lighting the fact that it contains the e�ects of the exact

correlations up to nearest neighbors.
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Figure 8: (Color online) The histogram of single site energy,
P (vi), is well �tted to a Fermi-Dirac like distribution. The
solid line is the �tted function described by Eq. 19 with two

parameters W̃ = 0.3921±0.0002, and δW̃ = 0.01172±0.0001.
Here U =W = t, and L = 1000.
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Figure 9: The proposed function Q
(2)
r=1 (x, y) (blue lines) com-

pared to the raw data (red dots) for �xed values of y: (a)
y = 0.27 and (b) y = 0.37.

The scaling plot of gnn is shown as the red circles in
Fig. 11. We have �tted the data points to the rescaled
conductance of Eq. (14) (dashed blue line). For compari-
son, we have also plotted the corresponding scaling curves
of the full (slave boson) calculation (dotted red line) and
of the non-interacting case (continuous black line). The
characteristic conductance of gnn is g∗ = 0.72, which is
signi�cantly di�erent from the non-interacting value of 1,
even though it is still larger than the full value of 0.18.
Clearly, inter-site correlations are responsible for the sup-
pression of g∗. Naturally, spatial correlations with r > 1
should to be taken into account to recover the full value
of g∗.
As advertised at the beginning of this section, our re-

sults show that the spatial correlations among the renor-
malized site energies vi are large for r = 1. Novel e�ects
coming from a short-ranged form of inter-site correlations
of the screened disorder potential have been discussed in
the literature before, for instance in the context of the
random dimer model [7], where the presence of extended
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Figure 10: (Color online) The anisotropy parameter c as a
function of the inter-site distance. The dashed line �t is |c| =
α/R, where α = 0.045 ± 0.003. Here U = W = t, and L =
1000.

Figure 11: (Color online) The scaling plot of gnn (see text) as
a function of x = L/ξ for U = t (red circles), �tted to the scal-
ing function of Eq. (14) (dashed blue line), with characteristic
conductance g∗ = 0.72. Also shown are the scaling functions
for the non-interacting case (g∗ = 0, continuous black line)
and for the full slave boson results at U = t (g∗ = 0.18, dot-
ted red line). The localization length ξ was obtained form the
exponential behavior at large system sizes (g ∝ exp(−L/ξ)).

states in 1D is �rmly established [7]. Even though our
model does not show extended states, the renormaliza-
tion of g∗ translates into a delay in the crossover from
extended to the localized states, strongly hinting towards
a link between inter-site correlations and the robustness
of extended states in disordered electronic systems.
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