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A. The gap equation in AG theory

Within the U (1) slave boson theory for the t − J model of the cuprates, the superconducting transition in the over-doped
regime is described by the usual BCS equation for a d-wave superconductor in which it is the spinons (the auxiliary f -fermions)
which pair to form the condensate [1]. In other words, the transition is signaled by a non-zero value of the d-wave pairing
order parameter ∆i j =

〈
fi↑ f j↓− fi↓ f j↑

〉
. We remind the reader that at the transition the other auxiliary fields (ri, λi, χi j) are well

formed. The effects of non-magnetic impurities on Tc can then be treated by using the AG theory [2]. Within that theory, the
linearized gap equation is written as [3]

∆0 =
2J̃kTc

d ∑
iωn

ˆ
d2k
(2π)2 G f (k,−iωn)G f (−k, iωn)Λ(k, iωn)Γd (k) , (1)

where ∆0 is the superconducting gap amplitude, ωn = (2n+1)πTc, and Λ(k, iωn) is the vertex correction function, which
satisfies

Λ(k, iωn) = ∆0Γd (k)+n
ˆ

d2k′

(2π)2

∣∣〈k|T f ∣∣k′〉∣∣2 G f (k′,−iωn
)

G f (−k′, iωn
)

Λ
(
k′, iωn

)
. (2)

In the last equation, 〈k|T f |k′〉 is the single-impurity scattering T -matrix for the spinons. The disorder-averaged spinon Green’s
function in Eqs. (1) and (2) is [2]

G f (k, iωn) =
1

iωn

(
1+ 1

2τk|ωn|

)
− h̃(k)−ν0

, (3)

where h̃(k) =−
(

tx+ J̃χ

)
Γs (k) is the renormalized dispersion, ν0 = λ0−µ0 is the negative value of the renormalized chemical

potential, which controls the doping level, and

1
τk
≡ 2πn

ˆ
d2k′

(2π)2

∣∣〈k|T f ∣∣k′〉∣∣2 δ

[
h̃(k)− h̃

(
k′
)]

, (4)

is the quasiparticle scattering rate.
Following the arguments in [2, 3], Eq. (2) can be solved to first order to give

Λ(k, iωn) = ∆0

Γd (k)+
1

2τd
k |ωn|

(
1+ 1

2τk|ωn|

)
 , (5)

where

1
τd

k
≡ 2πn

ˆ
d2k′

(2π)2

∣∣〈k|T f ∣∣k′〉∣∣2 δ

(
h̃(k)− h̃(k′)

)
Γd(k′), (6)

is a different scattering rate. We will show later that [see Eq. (33)], when calculated at the approximately circular Fermi surface
k = kF k̂, the quasiparticle scattering time is essentially isotropic τk ≈ τ , whereas

1
τd

k
=

1
τd Γd (k) . (7)
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We can thus write

Λ(k, iωn) = ∆0Γd (k)

1+
1

2τd |ωn|
(

1+ 1
2τ|ωn|

)
 . (8)

Eq. (2) can now be solved to all orders by noting that

Λ(k, iωn) = ∆0Γd (k)

1+
1

2τd |ωn|
(

1+ 1
2τ|ωn|

) +

 1

2τd |ωn|
(

1+ 1
2τ|ωn|

)
2

+ . . .


= ∆0Γd (k)

1− 1

2τd |ωn|
(

1+ 1
2τ|ωn|

)
−1

= ∆0Γd (k)
|ωn|+ 1

2τ

|ωn|+ 1
2τ
− 1

2τd

. (9)

Plugging this result into Eq. (1), we find that Tc is determined by:

1 =
2J̃kTc

d ∑
iωn

ˆ
d2k
(2π)2 G f (k,−iωn)G f (−k, iωn)

|ωn|+ 1
2τ

|ωn|+ 1
2τ
− 1

2τd

Γ
2
d (k) . (10)

The momentum integral is, as usual, dominated by the region close to the renormalized Fermi surface, which we assume to be
approximately circular in the over-doped region. We thus get, using polar coordinates in the (kx,ky)-plane,

1 =
J̃kTc

d ∑
iωn

ˆ
dθ

2π

1
|ωn|+ 1

2τ
− 1

2τd

Γ
2
d
(
kF k̂
)
. (11)

Using now Γd
(
kF k̂
)
= 2(coskx− cosky)≈ k2

x − k2
y ≈ k2

F cos(2θ) we get

1 =
J̃kTcm∗k2

F
d ∑

n≥0

1
ωn +

1
2τ
− 1

2τd

. (12)

As usual, the integral is formally divergent, but by comparing with the equally divergent expression for the clean transition
temperature Tc0, we can get the ratio of clean (Tc0) to dirty (Tc) transition temperatures [2]

ln
Tc0

Tc
= ψ

(
1
2
+

α

2

)
−ψ

(
1
2

)
, (13)

where α = 1
2πTc

(
1
τ
− 1

τd

)
≡ 1

2πTcτpb
. The leading behavior is

Tc = Tc0−
π

8τpb
. (14)

The relevant scattering rates τ and τd will be calculated in the next Section.

B. T -matrix for the spinons and the pair-breaking scattering rate

As seen in Section A, the suppression of the superconducting transition temperature Tc by disorder requires the determination
of the scattering T -matrix of the f fermions. We will find it to first order in the disorder. In other words, the fields (ri,λi) will be
calculated to O (εi). We define the renormalized site energy for the f electrons as vi ≡ εi− µ0 +λi, whose clean value limit is
ν0 = λ0−µ0. Clean and disordered f -fermion Green’s functions are given by, respectively,
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G f−1
0 =

[
iωn1+ r2

0tΓΓΓs− v01+ J̃χΓΓΓs

]
, (15)

G f−1 =
[
iωn1−v+ trΓΓΓsr+ J̃χΓΓΓs

]
, (16)

where we have used boldface to denote matrices in the lattice site basis, whose elements are 1i j = δi j, ri j = riδi j, vi j = viδi j, and
(ΓΓΓs)i j is equal to 1 if sites i and j are nearest neighbors and zero otherwise. We remind the reader that we are neglecting spatial
fluctuations of the χi j field. The spinon T -matrix is defined through

G f = G f
0 +G f

0T f G f
0 = G f

0

(
1+T f G f

0

)
, (17)

from which we obtain

G f−1 =
(

1+T f G f
0

)−1
G f−1

0 , (18)

and, to first order in the disorder,

G f−1 ≈
(

1−T f G f
0

)
G f−1

0 = G f−1
0 −T f . (19)

Thus, again to first order,

T f = G f−1
0 −G f−1

= (v− v01)− trΓΓΓsr+ r2
0tΓΓΓs

= δv− tr0 (δrΓΓΓs +ΓΓΓsδr) , (20)

where δr≡ (r− r01) and δv≡ (v− v01). Defining δvi ≡ εi +λi−λ0 and δ ri = ri− r0, we have, in components,

T f
i j = δviδi j− r0 (δ ri +δ r j) ti j. (21)

All we need now is to find δ ri and δvi to first order in εi. This was already obtained in reference [4] (see, in particular, the
Supplemental Material). After setting in those equations the gap and its fluctuations to zero ∆∆∆ = δ∆∆∆ = 0 (normal state) and
δ χχχ = 0 (as being negligible), we obtain in k-space

Π
a (k)δv(k)+ r0

[
1+Π

b (k)
]

δ r (k) = 0, (22)

[
λ0−

λ0

2d
Γs (k)

]
δ r (k)+ r0δv(k) = r0ε (k) , (23)

where

Π
a (k) =

1
V ∑

q

f
[
h̃(q+k)

]
− f

[
h̃(q)

]
h̃(q+k)− h̃(q)

, (24)

Π
b (k) =

1
V ∑

q

f
[
h̃(q+k)

]
− f

[
h̃(q)

]
h̃(q+k)− h̃(q)

[h(q+k)+h(q)] , (25)

where d is the lattice dimension (d = 2, for our purposes), f (x) is the Fermi-Dirac function, Γs (k) = 2(coskx + cosky), and
h(k) =−tΓs (k) is the bare energy dispersion. Solving Eqs. (22)-(23) for δ r (k) and δv(k)

δv(k) = −x
Π(k)ε (k)

λ0− λ0
2d Γs (k)− xΠ(k)

, (26)

δ r (k) = r0
ε (k)

λ0− λ0
2d Γs (k)− xΠ(k)

, (27)
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where we used x = r2
0 and defined

Π(k)≡ 1+Πb (k)
Πa (k)

. (28)

Therefore

〈k|T f ∣∣k′〉 = δv
(
k′−k

)
+ r0

[
h(k)+h

(
k′
)]

δ r
(
k′−k

)
(29)

= x

[
h(k)+h(k′)−Π(k′−k)

λ0− λ0
2d Γs (k′−k)− xΠ(k′−k)

]
ε
(
k′−k

)
. (30)

The result in Eq. (30) is general. For the Tc calculation within the AG theory, we only need it for a single impurity [see
Eq. (2)]. We therefore set εi = tδi,0 or ε (k) = t. We must now plug Eq. (30) into Eqs. (4) and (6). Since the superconducting
pairing is mostly affected by the scattering near Fermi surface, we can set k = kF k̂ in Eq. (30). For computations, kF is taken
as the magnitude of the Fermi momentum averaged over the approximately circular Fermi surface. We can thus make the
following simplifications: h(k)+h(k′) = 2EF , Πb (k) = 2EF Πa (k), Π(k) = [Πa (k)]−1 +2EF , and Πa (k−k′) = −ρ∗gL (y),

where y = |k−k′|
2kF

=
∣∣sin

(
ϕ

2

)∣∣ , ϕ = θ −θ ′ is the angle between k and k′, EF is the bare Fermi energy (obtained by solving the
mean-field equations with the constraint of an electron filling of 1− x), the function gL (y) is defined as [5]

g(y)≡

{
1 y≤ 1,
1−
√

1− y−2 y > 1,
(31)

and ρ∗ = m∗
2π

is the renormalized (spinon) density of states. Finally, defining

g(y)≡ t2{
ρ∗λ0k2

F y2gL (y)+ x [1−2ρ∗EF gL (y)]
}2 , (32)

we obtain

1
τd (θ)

= x2 nm∗

2π

ˆ 2π

0
dθ
′g
[∣∣∣∣sin

(
θ −θ ′

2

)∣∣∣∣]cos
(
2θ
′)

= x2 nm∗

2π

ˆ 2π

0
dug

[∣∣∣sin
(u

2

)∣∣∣]cos [2(θ −u)]

= cos2θ

[
x2 nm∗

2π

ˆ 2π

0
dug

[∣∣∣sin
(u

2

)∣∣∣]cos2u
]

(33)

≡ cos2θ
1
τd = Γd (k)

1
τd

.

In the last step we dropped the term in sin2θ since this term vanishes after integration in Eq.(1). Analogously,

1
τ
= x2 nm∗

2π

ˆ 2π

0
dθg

[∣∣∣∣sin
(

θ

2

)∣∣∣∣] , (34)

and

1
τpb

= x2 nm∗

2π

ˆ 2π

0
dθg

[∣∣∣∣sin
(

θ

2

)∣∣∣∣](1− cos2θ) . (35)

C. T -matrix for the physical electrons and the normal state transport scattering rate

In order to describe transport in the normal state, we must analyze the physical electron scattering T -matrix. The calculation
is analogous to the one in Section B. The bare and renormalized Green’s functions for the physical electrons are given by

Ge−1
0 = r−2

0

[
iωn1+ r2

0tΓΓΓs− v01+ J̃χΓΓΓs

]
, (36)

Ge−1 = r−1
[
iωn1−v+ trΓΓΓsr+ J̃χΓΓΓs

]
r−1. (37)
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Proceeding to first order in the disorder as before yields

Te = Ge−1
0 −Ge−1

= r−2
0 δv−2v0r−3

0 δr+ J̃χ
(
r−2

0 ΓΓΓs− r−1
ΓΓΓsr−1)

= x−1
[
δv−2v0r−1

0 δr+ J̃χr−1
0 (δrΓΓΓs +ΓΓΓsδr)

]
. (38)

〈k|T e ∣∣k′〉 = −

Π(k′−k)+ 2v0
x + J̃χ

tx [h(k)+h(k′)]

λ0− λ0
2d Γs (k′−k)− xΠ(k′−k)

ε
(
k′−k

)
. (39)

This scattering T -matrix can now be used to calculate the transport scattering rate that enters the expression for the conductivity
in the normal state

1
τ tr

k
≡ 2πxn

ˆ
d2k′

(2π)2

∣∣〈k|T e ∣∣k′〉∣∣2 δ

[
h̃(k)− h̃

(
k′
)]

(1− cosϕ) , (40)

where, as before, ϕ is the angle between k and k′ and the x factor in front of the integral comes from the quasiparticle weight of
the physical electron Green’s function. We now focus again on wave vectors close to the approximately circular Fermi surface
and implement the same approximations used in the previous Section. We first note that the numerators of the fractions is
Eqs. (30) and (39), though seemingly different, are actually the same, since

2v0

x
+

J̃χ

tx

[
h(k)+h

(
k′
)]

=−2
tx+ J̃χ

tx
EF +2

J̃χ

tx
EF =−2EF , (41)

where the negative of the renormalized chemical potential v0 =− m
m∗EF =− tx+J̃χ

t EF . Like the quasiparticle scattering rate, the
transport scattering rate does not depend on the wave vector direction within the assumed approximations and we get

1
τ tr =

xnm∗

2π

ˆ 2π

0
dθg

[∣∣∣∣sin
(

θ

2

)∣∣∣∣](1− cosθ) . (42)
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