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We solve the dynamical mean-field theory equations for the Hubbard model away from the particle-hole-
symmetric case using the density matrix renormalization group method. We focus our study on the region of
strong interactions and finite doping where two solutions coexist. We obtain precise predictions for the bound-
aries of the coexistence region. In addition, we demonstrate the capabilities of this precise method by obtaining
the frequency-dependent optical conductivity spectra.
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Introduction. Solving models for strongly correlated com-
pounds �typically those including d or f electrons� remains a
hard and important open problem of modern condensed mat-
ter physics. In these systems interesting anomalous behavior
usually occurs as a consequence of the competition between
the kinetic and Coulomb energies of electrons, which are of
the same order of magnitude, and analytical methods based
on perturbative considerations are notoriously unreliable.
Therefore, one is led to resort to nonperturbative techniques
and numerical methods to try to deal with these difficulties.

In recent years, a nonperturbative approach to general
strongly correlated electron models, termed dynamical mean-
field theory �DMFT�,1,2 allowed progress in the understand-
ing of several physical problems, including the correlation-
driven Mott metal-insulator transition. The key feature of
DMFT is that it maps the original lattice problem onto a
self-consistent quantum impurity model. This resulting quan-
tum impurity remains, nevertheless, a fully interacting many-
body problem that has to be solved.1 The success of DMFT
in dealing with model Hamiltonians has generated a great
deal of interest in combining it with ab initio band structure
methods with the goal of obtaining a realistic description of
correlated electron compounds.2 The main technical diffi-
culty is the lack of a reliable method to solve the associated
quantum impurity problem. Currently, the most widely
adopted methodology is the quantum Monte Carlo technique,
which generally requires an analytical continuation of the
results to the real frequency axis. Unfortunately, the latter
introduces some uncertainty in the procedure, which be-
comes a severe problem for multiorbital systems. Therefore,
there is strong interest in the development of new methods
that can deal with general quantum impurity models directly
on the real axis. An interesting proposal was recently intro-
duced which was based on the precise diagonalization of the
quantum impurity Hamiltonian with the powerful density
matrix renormalization group �DMRG� method.3–5 This tech-
nique has the virtue of being already widely employed in the
study of low-dimensional strongly correlated systems and is
based on a judicious trimming of the Hilbert space so as to
restrict the numerical calculation to its most relevant
subspace.6 In this manner, despite the exponential growth of
the Hilbert space, hundreds of orbitals can be taken into ac-
count. Moreover, the method is not restricted to the ground

state and finite energy excitations can be computed with
similar accuracy.7 This is in contrast to the related alterna-
tive, the numerical renormalization group �NRG� method,
which aims at a very precise description of the low-
frequency quasiparticle peaks associated with low-energy ex-
citations, as done in its celebrated application to the Kondo
problem.8 The DMRG method, on the other hand, treats high
and low frequencies on an equal footing.

The initial DMRG solution of the DMFT equations was
obtained for the simplest test case of the particle-hole sym-
metric Hubbard model.3–5 In this Rapid Communication we
show that the method can reliably tackle the general finite
doping case. In particular we focus on the most demanding
region of the phase diagram where two solutions coexist near
the correlation-driven Mott metal-insulator transition and ob-
tain the phase boundaries with unprecedented precision. We
also illustrate the capabilities of the methodology by comput-
ing the frequency-dependent optical conductivity, which re-
quires a reliable description of higher-energy features, such
as the Hubbard bands, that lie beyond the scope of the NRG
method. Our results show that even at the smallest dopings
and strong interaction strength, the low-frequency contribu-
tion to the optical conductivity, the Drude part, remains very
well described by a Lorentzian line shape. We also show that
both the vanishing of the Drude weight or the doping can
signal equally well the destruction of the correlated Fermi
liquid metallic state. Our work amounts to a substantial im-
provement with respect to previous studies based on exact
diagonalization �of up to eight sites; however, nowadays
somewhat larger systems are possible with exact diagonal-
ization �ED�� and an ad hoc perturbation scheme,9 and opens
the way for the application of the DMFT+DMRG method to
more general model Hamiltonians. Details of the method will
be given elsewhere.10

The Model. The Hamiltonian of the Hubbard model is
defined by
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where U is the on-site Coulomb interaction, � is the chemi-
cal potential, t is the hopping, and d is the space dimension.
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We take the half bandwidth of the noninteracting model
as the unit of energy; thus, D=2t=1. We particularize
to the case of the infinite-dimensional Bethe lattice, in
which the noninteracting density of states �DOS� is
D���= �2/���1−�2.

The associated impurity problem is the single-impurity
Anderson model �SIAM�, and its hybridization function
needs to be self-consistently determined.1 The SIAM Hamil-
tonian is solved in linear chains11,12 using the DMRG
algorithm3 of up to 101 sites, keeping 128 states per block.

We focus our study on the poorly explored region of the
U-� parameter space where two solutions, insulating and
metallic, can be obtained from the DMFT equations. In Fig.
1 we show the evolution of the DOS for the two solutions as
one moves away from the half-filled particle-hole-symmetric
case. The chemical potential � is increased at fixed U. While
the use of the DMRG method allows the precise diagonal-
ization of the associated SIAM problem with a bath that can
be accurately described using around 100 sites, this impurity
model remains, nevertheless, finite. Therefore, the computed
Green’s functions contain a finite, though large, number of
poles. Thus, as in any exact diagonalization scheme, one
needs to broaden the poles to allow the observation of the
DOS structure on the real axis.

Results. We show in Fig. 1 the results obtained by using a
simple Lorentzian broadening �. We find that choice to be
more appropriate than the “logarithmic” broadening usually
adopted in NRG calculations13,14 which, although capable of
sharply resolving the insulating gap, tends to wash out the
high-energy features of the density of states. The results
show that, in the insulating case, when the chemical potential
is moved within the Mott gap, the lower and upper Hubbard
bands shift rigidly, without any ostensible transfer of spectral

weight taking place �Fig. 1�a��. The apparent substructure in
the Hubbard bands seen in the insulating DOS results from
finite-size effects,15—i.e., a finite number of poles. Our
finite-size analysis �not shown� suggests that in the infinite-
chain limit the Hubbard bands become smooth. This is in
contrast to what is seen in the large-U /D antiferromagnetic
phase.16 In the lightly doped case one observes that, as the
central quasiparticle peak rapidly moves through the region
between the Hubbard bands, there is a transfer of spectral
weight as well as an evolution of the line shapes �Fig. 1�b��.
More precisely, one finds that the quasiparticle peak receives
spectral weight from both Hubbard bands. For larger values
of �, as the system gets heavily doped, one finds that the
quasiparticle peak eventually broadens as it merges with the
closest Hubbard band �Fig. 1�c��. As these features coalesce,
they also draw spectral weight from the other Hubbard band,
which remains at an energy distance of the order of U.1

In order to demonstrate the capabilities of the method we
shall now compute the frequency-dependent optical conduc-
tivity. From the lattice Green’s G��k ,�� function, where �k is
the noninteracting dispersion, we can evaluate the optical
conductivity within DMFT as1,17
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where a is the lattice spacing, d is the spatial dimension,
��� ,��=Im G�� ,�− I0+� /�, and I0+ denotes an infinitesimal
imaginary part. For simplicity we have chosen to use a uni-
tary vertex. The evaluation of ��� ,�� requires a previous
computation of the local self-energy. While in the standard
exact diagonalization solution of the DMFT equations this is
a cumbersome procedure due to the small number of Green’s
function poles, the use of the DMRG method dramatically
changes the situation and reliable ���� on the real axis can
be easily obtained from the self-consistency condition.1 In
Fig. 2 we show the optical conductivity for two coexistent
solutions �for parameters U /D=2.6 and �=0.2� and for the
metallic state for weak interaction �U /D=0.6�. In the metal-
lic case we see that, despite the very small doping, the small
frequency regime of ���� can be very well described by a
simple Lorentzian form that follows from a Drude model18

Re ��� + I0+� =
DW � �

1 + ����2 , �3�

where � is the relaxation time and DW is the Drude weight,
which is a measure of the number of quasiparticle carriers in
the metal.19 In our metallic case the finite value of �−1 comes
from the finite imaginary part used to compute the Green’s
function G. The inset shows that as � goes to zero, �−1 tends
to zero and we recover the �-function behavior that corre-
sponds to a clean Fermi liquid. For large U /D we observe
that, in addition to the small Drude part, the optical conduc-
tivity spectrum has a large midinfrared contribution at fre-
quencies of order U. This regular part corresponds to finite-
frequency optical excitations between the two Hubbard

FIG. 1. �a� Insulating, �b� lightly doped, and �c� heavily doped
metallic densities of states �DOS� of the Hubbard model for U /D
=2.6. In �a�, the small DOS weight seen at �=0 is due to the
relatively large relation between the gap for U /D=2.6 ��0.19� and
the small Lorentzian broadening used ��=0.1�.
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bands and between the latter and the central quasiparticle
peak and is almost absent for small values of the Coulomb
interaction.

The destruction of a normal metallic state is formally de-
fined by the vanishing of the Drude weight, which signals the
localization of all metallic conduction carriers.20 On the
other hand, in the Hubbard model it is well known that,
unless in phases with some type of long-range order or in the
presence of disorder, infinitesimal doping at T=0 is enough
to drive the system across a density driven metal-insulator
transition. Therefore, a demanding test for the present
method would be to verify that both the doping
�= �n−1� /2 �where n is the number of particles per site� and
the Drude weight vanish at the same value of interaction
strength. We emphasize the important technical fact that,
while the value of the doping is simply and accurately com-
puted from the expectation value of the number operator, the
Drude weight is, in contrast, independently obtained via the
comparatively far more laborious procedure described above.
The comparison of the results of panels �a� and �b� of Fig. 3
shows that, in fact, both observables � and DW are found to
vanish at equal interaction values for each choice of the
chemical potential.

Figure 3�a� shows the evolution of the doping for fixed
chemical potential, varying the Coulomb interaction. The
doping increases as � moves to larger values—i.e., away
from the particle-hole case. At fixed �, increasing the corre-
lation U from the noninteracting limit acts to decrease �
continuously to 0, where the metallic solution is no longer
stable and gives rise to the insulating one. The extrapolation
of the lowest doping values towards zero for different chemi-
cal potentials provides an accurate estimate of the critical
line �c2�U� which locates the instability of the metal towards
an insulating solution. The Drude weight is shown in Fig.
3�b�. Its behavior is qualitatively different from that of �,
since DW�U� does not uniformly increase with increasing �.
In the low-U /D region, the DW decreases as the chemical
potential is increased, reflecting the lowering of the kinetic
energy due to the fewer number of carriers. In contrast, for

larger values of the interaction close to the �c2 line, the DW
decreases as � decreases towards particle-hole symmetry, re-
flecting the enhancement of the effective mass as the metal-
insulator transition is approached.

It is also possible to investigate the instability of the in-
sulating state towards the metal. This transition is signaled
by the collapse of the Mott-Hubbard gap as the chemical
potential is brought to a Hubbard band edge. Following the
energy of the lowest unoccupied state �LUS� in the upper
Hubbard band with respect to the Fermi level in the insulator
as � increases, it is possible to determine the transition line
�c1�U� �Fig. 3�c�� as the value of the critical chemical po-
tential for which the energy of the LUS vanishes. As the
bands move in an approximately rigid way for ���c1�U�
the value of the chemical potential varies linearly and agrees
with half the size of the band gap at �=0 �see Fig. 4�. For
���c1�U� a finite number of poles appears at positive and
negative small values of �−�, signaling the metallic state.

The critical lines allow us to accurately draw the phase
diagram of the model away from particle-hole symmetry at
T=0. Previous work has been restricted to either a small
number of sites9 in the effective impurity Hamiltonian or to

FIG. 2. Metallic �solid line� and insulating �dashed line� optical
conductivities for the Hubbard model in the purely metallic �a� and
coexistent �b� regimes. The dotted line is a Lorentzian low-
frequency fit �Drude model�. For small U /D, the data and the
Lorentzian fit agree in almost all the frequency range. The broad
feature in �b� corresponds to the regular part explained in the text. A
small imaginary part �=0.1 has been used. The inset shows the
evolution of � in the Lorentzian fit of the low-frequency conductiv-
ity as a function of � for U /D=0.6.

FIG. 3. �a� Doping � and �b� Drude weight �DW� for the metal-
lic states for various U /D and � /D values. �c� Energy of the lowest
unoccupied state �LUS� in the upper Hubbard band for insulating
solutions.

FIG. 4. Phase diagram: Small solid circles show half the gap
value for �=0. Open circles �solid triangles� are the extrapolated
critical values of the chemical potential �c1 ��c2� where the insu-
lating �metallic� solution no longer exists.
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small but finite temperatures using quantum Monte Carlo
simulations.21 On the other hand, the NRG method is not
very well suited for an accurate investigation of the insulat-
ing state. In Fig. 4 we plot the �c1�U� and �c2�U� lines that
determine three regions in the �-U phase diagram: For �
��c1�U� ����c2�U�� only metallic �insulating� solutions
are found. In the middle there is a region of coexistence of
both kinds of states, where the metallic state is one with the
lowest energy.1 The phase diagram presented here shows an
overall agreement with the one obtained through exact di-
agonalization in the “star geometry”9 where the impurity site
is connected with hopping terms to all the other sites. The
main differences are found for the �c2�U� line because, as
the metal-to-insulator transition is approached, the quasipar-
ticles develop a diverging mass corresponding to a very nar-
row quasiparticle peak. In the language of the associated
SIAM, this narrow resonance implies a large correlation
length which can be fully realized only in long enough sys-
tems. This can only be obtained with the method presented
here, allowing for very accurate results.

Conclusions. In this work we have shown that the DMRG
method, in addition to being largely used to compute spectral
quantities of low-dimensional strongly correlated systems,7,6

allows for a practical implementation of an accurate impurity
solver of the DMFT equations of the Hubbard model in a
general case. We have computed spectral functions including
the DOS and the frequency-dependent optical conductivity.
We have also calculated the behavior of the doping and the

Drude weight as a function of the chemical potential near the
metal-insulator transition and demonstrated the accuracy of
the method by passing the demanding test of the comparison
of their respective predictions for the metal-insulator critical
line. Due to the fact that with this method long enough sys-
tems can be handled, these critical lines can be very accu-
rately obtained. Of course, in the nonfrustrated case the true
ground state of the model is antiferromagnetic at low doping
and the extension of the method to that case is left for future
work.

The implementation of the DMRG method for the Hub-
bard model in the nonsymmetric case is an important step
towards achieving an exact, unbiased, and general impurity
solver to be used in the realistic ab initio strongly correlated
electronic structure calculation program.2 The next step
ahead is to generalize the methodology for the multiorbital
case, where interesting physical problems remain open, such
as the orbital-selective Mott transition with a fully rotation-
ally invariant Hamiltonian.
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