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THE SU(3)-SYMMETRIC POINTS

We first write out in detail the 8 generators of the
SU(3) group in the defining (quark) representation in
terms of the spin-1 operators. The Cartesian vector
and symmetric rank-2 tensor operators, Sµ and Tµν =
SµSν + SνSµ (µ, ν = x, y, z), form a complete basis set
of 9 elements spanning the space of 3× 3 Hermitian ma-
trices. The generators we seek are the complete set of 8
traceless Hermitian matrices. A convenient choice is

Λ1 = Sx, (1)
Λ2 = Sy, (2)
Λ3 = Sz, (3)
Λ4 = SxSy + SySx, (4)
Λ5 = SxSz + SzSx, (5)
Λ6 = SySz + SzSy, (6)
Λ7 = S2

x − S2
y , (7)

Λ8 =
1√
3

(
2S2

z − S2
x − S2

y

)
. (8)

In terms of these generators, the linear Heisenberg
term is obvious, whereas the bilinear term can be written
as

(S · S′)2
=

4

3
− 1

2

3∑
a=1

ΛaΛ′a +
1

2

8∑
a=4

ΛaΛ′a. (9)

The generic Hamiltonian for two adjacent sites in terms
of θ (tan θ = D/J) is

H (θ) = cos θS · S′ + sin θ (S · S′)2 (10)

=
4

3
sin θ +

(
cos θ − 1

2
sin θ

) 3∑
a=1

ΛaΛ′a (11)

+
1

2
sin θ

8∑
a=4

ΛaΛ′a. (12)

The point θ = π
4 then becomes

H
(
θ =

π

4

)
∝ S · S′ + (S · S′)2 (13)

=
4

3
+

1

2

8∑
a=1

ΛaΛ′a, (14)

whose SU(3) invariance is manifest. The other SU(3)-

invariant point at θ = −π2 is

H
(
θ = −π

2

)
= − (S · S′)2 (15)

= −4

3
+

1

2

3∑
a=1

ΛaΛ′a −
1

2

8∑
a=4

ΛaΛ′a.(16)

In order to make the SU(3) invariance manifest in this
case, we must first realize that the antiquark representa-
tion, the complex conjugate of the quark one, is obtained
by applying the following operation to the generator ma-
trices

(Λa)ij → − (Λa)
∗
ij . (17)

We get (assuming the usual basis of eigenvectors of Sz)

Λ1 → −Sx, (18)
Λ2 → Sy, (19)
Λ3 → −Sz, (20)
Λ4 → SxSy + SySx, (21)
Λ5 → −SxSz − SzSx, (22)
Λ6 → SySz + SzSy, (23)
Λ7 → −S2

x + S2
y , (24)

Λ8 → −
1√
3

(
2S2

z − S2
x − S2

y

)
. (25)

An equivalent representation to Eqs. (18)-(25) is obtained
if we make a rotation of π around the y-axis: Sx →
−Sx, Sz → −Sz. After these transformations, we find,
denoting the antiquark representation by a tilde,

Λ̃a = Λa (a = 1, 2, 3) , (26)
Λ̃a = −Λa (a = 4, 5, 6, 7, 8) . (27)

From Eqs. (16) and (26)-(27), we see that the θ = −π2
point couples sites belonging to the quark and the anti-
quark representations

H
(
θ = −π

2

)
= −4

3
+

1

2

8∑
a=1

ΛaΛ̃′a. (28)

Note that the FM points θ = − 3π
4 and θ = π

2 also display
global SU(3) invariance since

H
(
θ =

π

2

)
= −H

(
θ = −π

2

)
, (29)

H

(
θ =

3π

4

)
= −H

(
θ =

π

4

)
. (30)
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NUMERICAL RESULTS

We have implemented the full SDRG procedure de-
scribed in the main text numerically in order to check
our findings. We have first focused on initial Hamilto-
nians in which all bonds have the same θi = θ0 with
− 3π

4 < θ0 <
π
2 , while J is uniformly distributed in the

interval 0 ≤ J ≤ 1. The results were obtained for chain
lengths of L0 ∼ 106 spins, averaged over 20 realizations
of disorder. We have verified that, although initially
the θ distribution broadens, asymptotically all θi tend
to unique values.

In Fig. 1, we show, for some representative cases, the
average value of tan θ as the mean distance L between
undecimated spin clusters is increased. The latter is
given by L = L0

N , where N is the number of undeci-
mated spin clusters. For −π2 < θ0 < π

4 (three blue
lowest curves), the flow is towards (FP1), with θ = 0.
When − 3π

4 < θ0 < −π2 (red, topmost curve), the flow
tends to (FP2), with tan θ = 2, D < 0. The green (2nd
and 3rd from the top) curves correspond to the inter-
val π

4 < θ0 <
π
2 , for which the systems flows to (FP3),

tan θ = 2, D ≶ 0 with equal probability. For the specific
case of θ0 = π

4 (black curve with down triangles), we plot-
ted instead the inverse of 〈cot θ〉 on the right-hand verti-
cal axis. This corresponds to flows at the unstable (FP8),
for which asymptotically half the bonds have θ = −π2 and
half θ = π

4 , such that 〈cot θ〉 → 1/2. These plots confirm
the delineation of the fixed points and basins of attrac-
tion described in the main text.
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Figure 1. (Color online) Some representative SDRG flows:
mean value of 〈tan θ〉 as a function of the average distance L
between undecimated spin clusters, for different values of the
angle θ0 of the initial distribution. The sign in parentheses is
the sign of J ’s in the initial distribution. For tan θ0 = 1, we
plot 1

〈cot θ〉 on the right-hand vertical axis instead.

Although the flow in the region (−π2 < θ0 <
π
4 ) is char-

acterized by the disappearance of the biquadratic cou-

plings, there is a clear difference in the transient SDRG
flow between the cases arctan 1

3 < θ0 < π
4 and −π2 <

θ0 < arctan 1
3 . The latter only involves singlet-forming

decimations [see Eq. (2) and Fig. 2 of the main text]. As
a result, 〈tan θ〉 flows monotonically to 0 (tan θ0 = 0.2
and −1 in Fig. 1). When arctan 1

3 < θ0 <
π
4 , however,

both types of decimations rules occur [Eqs. (2) and (3)
of the main text], necessarily generating negative angles,
in such a way that 〈tan θ〉 may change sign in the course
of the flow (tan θ0 = 0.7 in Fig. 1).
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Figure 2. (Color online) Numerical determination of the ψ
exponent: (a) mean distance L between undecimated spin
clusters as a function of Γ = ln Ω0

Ω
, where Ω is the renormal-

ization group energy scale. The full lines are fits to Eq. (31);
(b) reciprocal of the activated dynamical scaling exponent ψ
as a function of initial angle θ0.

In order to numerically determine the value of ψ in
each of the RSPs of the phase diagram, we tracked the
dependence of the cutoff energy scale Γ ≡ ln Ω0

Ω (where
Ω0 is the largest initial ∆i) on the average distance be-
tween undecimated spin clusters L. In Fig. 2(a) we show
the results for several initial angles θ0. We have fitted
our data to the form

log10 L = a+
1

ψ
log10 (1 + bΓ) , (31)
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where a, b and 1
ψ are fitting parameters. As seen in

Fig. 2(a), it fits remarkably well the numerical data. For
bΓ � 1, we recover the more familiar activated dynam-
ical scaling form L ∼ Γ

1
ψ . The numerically determined

values of ψ can be seen in Fig. 2(b) as a function of θ0.
There is good agreement with the predicted exponents of
the mesonic (ψM = 1

2 ) and baryonic (ψB = 1
3 ) RSPs and

a sharp jump at the border between them (θ0 = π
4 ) can

be clearly seen. The error bars were estimated from the
uncertainty in the range over which Eq. 31 is valid.

BEHAVIOR AT WEAK DISORDER

The spontaneously dimerized phase (− 3π
4 < θ < −π4 )

is unstable against weak disorder due to the formation of
weakly coupled domain walls [1, 2]. Weak disorder can
also be shown to be a relevant perturbation at the SU(3)-
symmetric point θ = π

4 [3]. In general, we expect disorder
to be perturbatively relevant in the entire gapless phase
π
4 ≤ θ ≤

π
2 .

Infinitesimally weak disorder is an irrelevant perturba-
tion in the gapped Haldane phase (−π4 < θ < π

4 ). The
behavior was determined in detail at θi = 0 [2, 4–7].
Gradually increasing the disorder at this point eventu-
ally leads to the closure of the Haldane gap (although
the topological order parameter initially retains a finite
value [8]) and to the emergence of a quantum Griffiths
region [9] with conventional power-law scaling Ω ∼ L−z.
In this region, the spin correlations are short ranged,
the magnetic susceptibility χ ∼ T 1/z−1, and the specific
heat c ∼ T 1/z. The dynamical exponent z is disorder-
dependent and diverges at a critical point [4–7, 9, 10].
Above this critical disorder value, the system enters a
universal RSP governed by an IRFP with ψ = 1

2 . This
generic behavior is expected to hold throughout the re-
gion −π4 < θ < π

4 , with the exception of the AKLT point.
At the AKLT point (θ = arctan 1

3 ), the ground state
is exactly known [11]. Provided the local angle θi is ev-
erywhere equal to arctan 1

3 , the ground state will be dis-
order independent [12]. We note that this is reflected in
the SDRG procedure by the closure of the gap of a spin
pair ∆i = 3Ji

∣∣tan θi − 1
3

∣∣, which makes it ill-defined in
the vicinity of the AKLT point. The Haldane gap, how-
ever, will vanish in the strong-disorder limit when the

distribution of coupling constants is not bounded from
below.

Although tailored to be accurate only in the strong dis-
order regime, the SDRG flow has been shown to break
down whenever weak disorder is irrelevant [2, 4–7, 9, 13].
This is signaled by the fact that the coupling constant dis-
tributions do not broaden as the energy scale is reduced.
We only detect this break-down in the topological phase
−π4 < θ < π

4 [14]. In fact, our numerics indicate that
weak disorder may possibly be relevant even inside the
Haldane phase near the edges ±π4 . Since the dimerized
(− 3π

4 < θ < −π4 ) and the gapless (π4 < θ < π
2 ) phases

are expected to be destabilized by any amount of disorder
and we have not found any other fixed point numerically,
we conjecture that no other phase transition happens at
intermediate disorder strength. We thus obtain the weak
disorder region of the phase diagram sketched in Fig. 1
of the main text.
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