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In this work, we have investigated the low temperature magnetic phase diagram of the tetragonal

NdRhIn5 and Nd2RhIn8 single crystals by means of temperature and field dependent heat capacity and

magnetic susceptibility measurements. These compounds order antiferromagnetically with a Néel

temperature (TN) of 11 and 10.7 K for NdRhIn5 and Nd2RhIn8, respectively. The constructed magnetic

phase of both compounds are anisotropic and show, as expected, a decrease of TN as a function of the

magnetic field for c crystallographic direction. However when the magnetic field is applied along of

the c-axis, which is the magnetic easy axis, first-order-like field induced transitions are observed within

the antiferromagnetic state. We compare the phase diagrams obtained for NdRhIn5 and Nd2RhIn8 with

those for their cubic relative NdIn3.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

NdmRhnIn3m+2n (n¼0, 1; m¼1, 2) are tetragonal compounds
variants of the Cu3Au-structure [1–6]. Their structure can be viewed
as m layers of RIn3 units sequentially stacked along the c-axis with n

layers of MIn2. It is well known that Ce-based heavy fermion
compounds exhibit an unusual coexistence of antiferromagnetic
(AF) and superconductivity (SC) at ambient pressure or high pressures
[7,8], in which both AF and SC are believed to arise from 4f electrons.
A magnetic mediation of the pairing mechanism has been argued for
these novel compounds [7]. However, there are still many unsolved
questions in this unique group of materials to be further clarified. It
has been suggested that the reduced spatial dimensionality and
magnetic anisotropy resulting from the quasi-2D structure of these
compounds may control the nature of their heavy-fermion ground
states [1,6]. Therefore, studies in non-Kondo isostructural magnetic
materials of the same RmMnIn3m+2n series may be useful in under-
standing the role of spatial dimensionality, magnetic anisotropy, and
crystal field effects in the evolution of the magnetic properties within
these series. The variety of interesting physical properties in structu-
rally related series represent a great opportunity to explore system-
atically the role of the Ruderman–Kittel–Kasuya–Yoshida (RKKY)
magnetic interaction, Kondo effect, crystalline electrical field (CEF),
Fermi surface (FS) effects in determining their properties, specially, in
ll rights reserved.
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favoring unconventional superconductivity (USC) in many Ce-based
members of these series [4,5,9–11]. As the Pr-based homologues are
non-magnetic singlet ground state systems [1], the Nd-based materi-
als are the obvious candidates for such a study.
2. Experiment

Single crystalline samples of the NdmRhnIn3m+2n (n¼0, 1; m¼1, 2)
were grown from the melt in In flux as described previously [1].
Typical crystal sizes were 1�1 cm� several mm. The tetragonal
HoCoGa5 (m¼1) and Ho2CoGa8 (m¼2) [12,13] structure types and
phase purity were confirmed by X-ray powder diffraction, and the
crystal orientation was determined by the usual Laue method.
Specific-heat measurements were performed in a small-mass calori-
meter that employs a quasiadiabatic thermal relaxation technique.
Samples used here ranged from 10 to 30 mg. Magnetization measure-
ments were made in a quantum design dc superconducting quantum
interference device and in a physical properties measurement system
(quantum design) in the temperature range 2rTr20 K.
3. Results and discussion

Fig. 1 shows magnetic contribution to the specific heat divided
by temperature to (a) NdRhIn5 and (b) Nd2RhIn8 to different values
of applied magnetic field along c-axis of the samples. The inset of
Fig. 1 presents magnetic specific heat measured at H¼90 kOe. To
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Fig. 1. Magnetic specific heat of (a) NdRhIn5 and (b) Nd2RhIn8 at different values of

applied magnetic field along c-axis of the samples.

Fig. 2. The cumulative phase diagrams for (a) NdRhIn5 and (b) Nd2RhIn8 for various

applied fields applied along the c-axis. TN corresponds to the antiferromagnetic

ordering temperature and T1 corresponds to field-induced transition.
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obtain the magnetic contribution to the specific heat, the phonon
contribution was subtracted from the original data using the
specific heat data of LaRhIn5 and La2MIn8. For all data the peak at
higher temperature range is consistent with the onset of antiferro-
magnetic order, which is continuously suppressed for increasing the
magnetic field. Besides, an additional peak (first-order-like to
H470 kOe) can be observed at lower temperature range.

It has been shown [14–16] via magnetization measurements
that the cubic compound NdIn3 is an antiferromagnet with
TN � 6 K. Magnetic order develops in a G8 quartet crystal field
ground state with [0 0 1] being the easy axis [15]. The insertion of
M–In layers along the c-axis in NdRhIn5 and Nd2RhIn8 causes the
Néel temperatures to increase by a factor of 2 [5]. In a similar way
the application of a magnetic field to the tetragonal relatives
NdRhIn5 and Nd2RhIn8 gives rise also to an additional magnetic
transition inside the ordered state as one can see in the magnetic
specific heat data shown in Fig. 1. The evolution in TN can be
explained qualitatively by the character of the crystal field ground
state and the extent to which it is isolated, that is, experimental
data results suggest that TN is increased by the splitting of the G8

quartet ground state into two doublets for the less symmetric
variants and also that TN increases with increasing doublet–doublet
splitting. Indeed, Hieu et al. [17] have shown in a recent paper that a
G8 quartet crystal field ground state in the NdIn3 spites in two
doublets in the NdRhIn5 compound.

The suppression of the order temperature as function of the
magnetic field is accompanied with the appearance of a low
temperature peak. At H¼90 kOe the order temperature is completely
suppressed and only that low temperature peak (with first-order-like
character) is observed (see inset in Fig. 1). Fig. 2 summarize our
experimental data through the cumulative phase diagrams for
NdRhIn5 and Nd2RhIn8 for various applied fields applied along the
c-axis. TN corresponds to the antiferromagnetic ordering temperature
and T1 corresponds to field-induced transition.

The magnetic phase diagram constructed via specific heat data
is very similar to that observed by Hieu et al. [18] to the NdRhIn5

compound using high-field magnetization measurements. Similar
phase diagrams have also been observed for them to the family
RRhIn5 (R¼Tb, Dy and Ho). The pointed line is the best fit to the
expression H¼H0ð1�T=TNÞ

b, H0¼111 kOe; TN¼11 K and b¼ 0:36.
Below TN � 6 K, the cubic relative NdIn3 show two additional

antiferromagnetic transitions at 4.61 and 5.13 K. The resulting
complex magnetic phase diagram with metamagnetic processes
arises due to the presence of crystal field and magneto-elastic
effects and both bilinear and quadrupolar exchange interactions
[15,19,16,20]. These two intermediate phases were determined to
have incommensurate structures with magnetic propagation vec-
tors qM¼(1/2 0.037 1/2) and (1/2 0.017 1/2), respectively, while the
ground state structure was determined to be commensurate with
qM¼(1/2 0 1/2) and staggered Nd moments of approximately 2:0mB

with [0 1 0] the easy magnetization direction [21,15].
On the other hand, neutron diffraction experiments performed

to the NdRhIn5 at ToTN reveal that the ground-state magnetic
structure was found to be a commensurate antiferromagnetic
structure with a magnetic wave vector qM¼(1/2 0 1/2) [22].
Therefore, ground-state magnetic structure of NdRhIn5 suggests
that the insertion of a RhIn2 layer creates a commensurate
magnetic structure more robust and stable in the tetragonal



Fig. 3. Magnetization measurements as function of (a) temperature to H¼70 kOe

and (b) magnetic field to selected temperatures values along c-axis of NdRhIn5

sample. We show that the magnetic susceptibility together with the magnetic

specific heat performed at H¼70 kOe.
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variant. Indeed, the Nd3 +(J¼9/2) ion in axial symmetry commonly
has its multiplet split in anisotropic doublets (with gc bg?)
favoring the Nd spins to point along the c-axis which is consistent
with our results.

As one can see that complex behavior shown by NdIn3 also
seems to occur to NdRhIn5 and Nd2RhIn8 relatives compounds as
function of an applied magnetic field. The magnetic phase diagram
is clearly separated in three regions: I, II and III. At low magnetic
field (region I) the commensurate antiferromagnetic structure with
a magnetic wave vector qM¼(1/2 0 1/2) [22] is still observed. With
increasing magnetic fields, metamagnetic processes give rise to a
new magnetic structures (see Ref. [18]) due to the competition
among the different inter and intra-layer exchange constants
(regions II and III).

Fig. 3 present magnetization measurements as function of (a)
temperature to H¼70 kOe and (b) magnetic field at T¼2 K along
c-axis of NdRhIn5 sample. We show together with the MvsT curve
the magnetic specific heat performed at H¼70 kOe. Once magnetic
susceptibility is performed along the easy direction (c-axis) the
magnetic moment should decrease with decreasing temperature.
However, below TN, one can see that the magnetic susceptibility
decreases and in the onset of the field induced phase begins to
increase. As we have commented above the increase in the
magnetic susceptibility is related with the metamagnetic transi-
tion which occur inside the ordered state. In fact, Hieu et al. [18]
have shown that the high-field magnetization presents two
metamagnetic transitions at distinct values of magnetic field. In
Fig. 3(b) we also show that our sample presents such sharp
metamagnetic transition and it is consistent the field induced
magnetic transition shown in the MvsT and magnetic specific heat
measurements.
4. Conclusions

In this work we measured the magnetic specific heat as function
of the magnetic field for NdRhIn5 and Nd2RhIn8 along the c-axis.
The experimental data show that the Néel temperature is
decreased for increasing the applied magnetic field and a field
induced magnetic peak is observed inside the ordered state. At
high fields this magnetic peak has a first-order-like character.
A magnetic phase diagram was constructed through the specific
heat measurements. It reflects the sharp two-step metamagnetic
transition as one can see in the MvsH, MvsT and magnetic specific
heat measurements. For comparing the magnetic phase diagram of
NdRhIn5 and Nd2RhIn8 with its cubic relative NdIn3 we conclude
that a commensurate magnetic structure more stable is generated
in the tetragonal variant.
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