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1Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
2Instituto de Fı́sica Gleb Wataghin, Unicamp, Caixa Postal 6165, Campinas, São Paulo 13083-970, Brazil

(Received 6 August 2008; published 20 May 2009)

We investigate the effects of disorder within the T ¼ 0 Brinkman-Rice scenario for the Mott metal-

insulator transition in two dimensions. For sufficiently weak disorder the transition retains the Mott

character, as signaled by the vanishing of the local quasiparticle weights Zi and strong screening of the

renormalized site energies at criticality. In contrast to the behavior in high dimensions, here the local

spatial fluctuations of quasiparticle parameters are strongly enhanced in the critical regime, with a

distribution function PðZÞ � Z��1 and � ! 0 at the transition. This behavior indicates a robust

emergence of an electronic Griffiths phase preceding the metal-insulator transition, in a fashion surpris-

ingly reminiscent of the ‘‘infinite randomness fixed point’’ scenario for disordered quantum magnets.
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The effects of disorder on quantum criticality [1] prove
to be much more dramatic than in classical systems.
Here, some critical points can be described by an ‘‘infinite
randomness fixed point’’ (IRFP) [2] and the associated
quantum Griffiths phase. Such exotic behavior is well
established in insulating quantum magnets with discrete
internal symmetry of the order parameter [3], but may or
may not survive in other models or in the presence of
dissipation due to conduction electrons.

More general insight into the robustness of the IRFP
scenario rests on a recently proposed symmetry classifica-
tion [1], based on the lower critical dimension of droplet
excitations. These ideas have found support in very recent
work [4], sparking considerable renewed interest [5]. Much
of this progress, however, relies on the ability to identify an
appropriate order parameter, describing the corresponding
symmetry breaking transitions.

The metal-insulator transition (MIT) represents another
important class of quantum criticality, one that often can-
not be reduced to breaking any static symmetry.
Conventional theories of the MIT in disordered systems
[6], based on the diffusion mode picture, strongly resemble
standard critical phenomena and thus do not easily allow
[3] for rare event physics or IRFP behavior. There currently
exists, however, a large body of experimental work [7],
documenting disorder-induced non-Fermi-liquid behavior
due to rare disorder configurations, even in systems far
from any spin or charge ordering.

Theoretically, such ‘‘electronic Griffiths phases’’
(EGPs) [8–10] have recently been proposed for correlated
electronic systems with disorder, based on generalized
dynamical mean-field theory (DMFT) approaches [3,11].
All these works were performed on the Bethe lattice and
identified EGPs only in the vicinity of disorder-driven
MITs, in particular, only for strong enough disorder, in
contrast to quantum magnets where even weak disorder
often results in IRFP behavior. Some key unanswered

questions thus remain: (a) What is the effect of weak to
moderate disorder on interaction-driven MITs such as the
Mott transition in finite dimensions? (b) Is the critical
behavior dramatically changed as in the examples of
IRFP or may a more conventional scenario suffice?
In this Letter, we investigate the effects of weak and

moderate disorder on the Mott MIT at half filling [12] in
two dimensions. As the simplest description of the effects
of disorder on the Mott transition, we work within a
Brinkman-Rice (BR) scenario [13], where a Gutzwiller
variational approximation is applied to a disordered two-
dimensional Hubbard model. Our results demonstrate that
(i) for sufficiently weak disorder the transition retains the
second order Mott character, where electrons gradually
turn into localized magnetic moments; (ii) disorder-
induced spatial inhomogeneities give rise to an intermedi-
ate EGP that displays IRFP character at criticality, even
when the transition is approached by increasing the inter-
action at weak disorder; (iii) the renormalized disorder
seen by quasiparticles is strongly screened only at low
energies, resulting in pronounced energy-resolved inhomo-
geneity of local spectral functions.
Model.—We focus on the paramagnetic disordered

Hubbard model with nearest-neighbor hopping and with
site energies "i uniformly distributed in the interval
[�W=2, W=2] [10,14]. We approach the Mott transition
by increasing the on-site Hubbard interaction U at half
filling (chemical potential � ¼ U=2), on an L� L square
lattice with periodic boundary conditions. All energies will
be expressed in units of the clean Fermi energy (half-
bandwidth) EF ¼ 4t, where t is the hopping amplitude.
Within our disordered BR approach, we self-

consistently calculate the local single-particle self-energies
�ið!nÞ [10,14], which assume a site-dependent form

�ið!nÞ ¼ ð1� Z�1
i Þ!n þ vi � "i þ�: (1)

The renormalized site energies vi ¼ viðei; diÞ and the local
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quasiparticle (QP) weights Zi ¼ Ziðei; diÞ are variationally
calculated through the saddle-point solution of the corre-
sponding Kotliar-Ruckenstein slave boson functional [15]

F ¼ �2T
X
!n

Tr ln½�i!n1þ Zvþ Z1=2H0Z
1=2�

þX
i

½Ud2i � ð1� e2i þ d2i ÞðZivi � "i þ�Þ�: (2)

Here, ei and di are the Kotliar-Ruckenstein slave boson
amplitudes [15], T is the temperature, and !n are the
Matsubara frequencies. The operators Z and v are site-
diagonal matrices ½Z�ij ¼ Zi�ij and ½v�ij ¼ vi�ij, and H0

is the clean and noninteracting lattice Hamiltonian.
This approach is mathematically equivalent to a general-

ization of the DMFT [11] to finite dimensions, the ‘‘statis-
tical DMFT’’[10] implemented using a slave boson
impurity solver, which provides an elegant and efficient
computational approach, allowing us, for example, to cal-
culate Zi values spanning 8 orders of magnitude. We
considered several lattice sizes ranging up to L ¼ 50,
and for every (U, W) pair we typically generated around
40 realizations of disorder. We carefully verified that for
such large lattices, all our results are robust and essentially
independent of the system size (see, e.g., the inset of
Fig. 2).

Phase diagram and Griffiths phase.—To characterize the
T ¼ 0 disordered Mott transition in d ¼ 2, we follow the
evolution of the local QP weights Zi, as the interactionU is
increased at fixed disorder W. For weak to moderate dis-
order, we find behavior partly reminiscent of that previ-
ously established for high dimensions (‘‘DMFT limit’’)
[16]. The approach to the critical point at U ¼ UcðWÞ is
identified by the vanishing of the typical QP weight Ztyp ¼
expfhlnZiig [10], indicating the Mott transmutation of a
finite (large) fraction of electrons into local magnetic mo-
ments. Because random site energies tend to push the local
occupation away from half filling, UcðWÞ increases with
disorder (Fig. 1).

The role of fluctuation effects, however, is best seen by
contrasting our d ¼ 2 results to those found in the DMFT
limit [14]. There each site has many neighbors, and thus
‘‘sees’’ the same (self-averaged) environment (‘‘cavity’’),
so ZDMFT

i ¼ ZDMFTð"iÞ depends only on the local site
energy "i. Its minimum value corresponds to the sites
closest to half-filling ZDMFT

min � Zo ¼ ZDMFTð"i ¼ 0Þ. In

the critical region all ZDMFT
i � hZi �UDMFT

c ðWÞ �U, but
the scaled local QP weights zDMFT

i ¼ ZDMFT
i =Zo approach

finite values at the transition, with zDMFT
min ¼ 1. The corre-

sponding scaled distribution PðzDMFT
i Þ approaches a fixed-

point form close to UDMFT
c ðWÞ (shown by the thick solid

line in Fig. 2).
In low dimensions, site-to-site cavity fluctuations give

rise to a low-Z tail emerging below the DMFT minimum
value Zo (Fig. 2). To bring this out, we present our d ¼ 2
results in precisely the same fashion as in the DMFT limit,
i.e., scaling each Zi with Zo. Away from the transition the

distribution resembles the DMFT form, but in the critical
region the low-z tail assumes a power-law form:

PðzÞ � z��1: (3)

Physically, the emergence of a broad distribution of
local QP weights Zi indicates the presence of rare disorder
configurations characterized by anomalously low local
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FIG. 2 (color online). Distribution of zi ¼ Zi=Z0 (see text) as
the transition is approached by increasing U [thin lines corre-
spond to U=UcðWÞ ¼ 0:6, 0.8, 0.9, 0.92, 0.94, 0.97]. For refer-
ence, the thick solid line shows the DMFT ‘‘fixed-point’’
distribution which remains bounded from below. Our d ¼ 2
results show that, due to rare events, a low-z tail PðzÞ � z��1

emerges for z & 1 as the transition is approached. In the critical
region the distribution assumes a singular form (�< 1), indicat-
ing the onset of an electronic Griffiths phase. Results are shown
forW ¼ 5:0 and L ¼ 20. The inset illustrates how for such large
lattices our results for PðZÞ are essentially independent of the
system size [shown for U=UcðWÞ ¼ 0:94 and � ¼ 0:77� 0:06,
0:81� 0:05, 0:82� 0:05 corresponding to L ¼ 20, 30, 50, re-
spectively].
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FIG. 1 (color online). T ¼ 0 phase diagram of the disordered
half-filled Hubbard model in d ¼ 2, as a function of the inter-
action U at weak to moderate disorder strength W & U. An
intermediate electronic Griffiths phase emerges separating the
disordered Fermi liquid metal and the Mott insulator. The inset
shows the typical (Ztyp) and average (Zav) values of the local

quasiparticle weight Zi as a function of U. The Mott transition is
identified by the (linear) vanishing of Ztyp. Note that Zav is finite

at Uc, indicating that a fraction of the sites remains nearly empty
or doubly occupied.
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energy scales �i � ZiEF. Since the approach to the Mott
insulator corresponds to Z ! 0, such regions with Zi �
Ztyp should be recognized as ‘‘almost localized’’ Mott

droplets. Within our BR picture, each local region provides
[10] a contribution �i � �i � Z�1

i to the spin susceptibility

or the Sommerfeld coefficient, respectively. The local re-
gions with the smallest Zi thus dominate the thermody-
namic response and produce non-Fermi-liquid metallic
behavior [8,9] whenever �< 1.

IRFP-like behavior.—To carefully calculate the expo-
nent �ðUÞ as the transition is approached, we use two
distinct methods. The first relies on the ‘‘estimator’’ [17]
� ¼ hln½Zmax=Zi�i�1

Zi	Zmax
, where Zmax � Ztyp � Zo (see

Fig. 2) is an appropriate upper bound on the power-law
behavior. The second approach consists in calculating
hZ��i�1

Zi	Zmax
for given �, as a function of U. This quantity

is expected to vanish at U ¼ U�, satisfying �ðU�Þ ¼ �.

Both methods give consistent results (open and closed
symbols, respectively, in Fig. 3), which agree within the
estimated error bars.

The exponent � is found to decrease smoothly as the
transition is approached, until the distribution assumes a
singular form (�< 1), indicating the emergence of an EGP
[8,9]. Its estimated onset (� ¼ 1) is generally found to
strictly precede the MIT (dashed line in Fig. 1), indicating
that disorder fluctuations qualitatively modify the critical
behavior even for weak to moderate disorder. Remarkably,
we find that, within our numerical accuracy, � ! 0 pre-
cisely along the critical lineU ¼ UcðWÞ. This establishes a
phenomenology which closely parallels the behavior of
magnetic Griffiths phases with IRFP behavior [1,3].

Structure of the rare events.—To explore the nature of
the rare events (REs) dominating the EGP, i.e., the regions
with Zi � Ztyp, we examined a number of disorder real-

izations and selected those few samples containing the
smallest Zi. A typical example is shown in Fig. 4, where
the RE is seen as a very sharp peak of the local spin

susceptibility �i � Z�1
i (note the logarithmic scale). The

corresponding RE site is then placed in the middle of a box
of side l (dashed line in Fig. 4). To examine the spatial
correlations, we preserve the same disorder realization
within this box, while the outside is replaced by an appro-
priate DMFT effective medium. We then recalculate the
QP parameters Zi as the box size is reduced from l ¼ L
(original model), down to l ¼ 1 (DMFT limit where all
spatial correlations are suppressed). We find that the RE is
essentially unmodified until the box size reaches l� lRE
(�9 for the example in Fig. 4), and then is rapidly (ex-
ponentially) suppressed for l < lRE. We also find that the
variance of the disorder strength within the box of size lRE
is appreciably weaker than on the average, establishing that
the REs dominating the Griffiths phase stem out from rare
disorder configurations, precisely as expected within the
IRFP scenario.
Critical behavior of the spatial inhomogeneity.—As

� ! 0 in the critical region, the PðZiÞ distribution becomes
‘‘infinitely broad,’’ since ��1 measures [3] the variance of
lnZi. The thermodynamic response becomes increasingly
inhomogeneous as the transition is approached; such be-
havior is typically seen in NMR experiments on materials
displaying disorder-driven non-Fermi-liquid behavior [3].
But what to expect from STM experiments directly

measuring the local electronic spectra? Within our BR
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FIG. 3 (color online). Exponent �ðUÞ for two different values
of disorder. To calculate � we use two methods (open and closed
symbols, see text). Results are shown for L ¼ 20. Within the
estimated error bars, we find an extrapolated value consistent
with � ¼ 0 at the critical point U ¼ UcðWÞ.

FIG. 4 (color online). (a) Spatial distribution of the (normal-
ized) local spin susceptibilities �i � Z�1

i , illustrating a typical
disorder realization containing a RE with �i 
 �typ. (b) Dis-

order fluctuations are eliminated outside a box of size l ¼ 9,
without appreciably affecting the RE. (c) When the box is further
reduced (here l ¼ 3), the RE is rapidly (exponentially) sup-
pressed, establishing the nonlocal nature of the rare event, in
strong support of the IRFP picture. Results are shown for L ¼
30, W ¼ 5:0, and U=Uc ¼ 0:96.
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approach, the local density of states in question, �ið!Þ ¼
1
� ImGiið!� i0þÞ, depends not only on the local QP

weights Zi but also on the renormalized site energies vi

through

Giið!Þ ¼ ½ðZ�1!� v�H0Þ�1�ii: (4)

The quasiparticles thus ‘‘see’’ a frequency-dependent ef-
fective disorder potential

"effi ð!Þ ¼ vi �!=Zi: (5)

Our explicit calculations find that the renormalized site
energies vi become strongly screened near the transition,
giving rise to a very small (but finite) renormalized disor-

der strengthWeff ¼
ffiffiffiffiffiffiffiffiffi
hv2

i i
q

� 1 at criticality (e.g., forW ¼
5, Weff � 0:05). Near the Fermi energy (! ¼ 0), we pre-
dict the local density of states spectra to appear increas-
ingly homogeneous in the critical region. At higher
energies, however, the very broad distribution of local
QP weights (essentially local QP bandwidths) creates a
very strong effective disorder seen by the quasiparticles,
and we expect the system to appear more and more in-
homogeneous as criticality is approached. This result is
illustrated by explicit computation of the density of states
profile (Fig. 5), which is surprisingly reminiscent of recent
spectroscopic images on doped cuprates [18]. Our theory,
which does not include any physics associated with super-
conducting pairing, strongly suggests that such energy-
resolved inhomogeneity is a robust and general feature of
disordered Mott systems.

Conclusions.—We presented the first detailed model
calculation investigating the effects of moderate disorder
on the Mott metal insulator in two dimensions. Our find-
ings indicate that rare disorder fluctuations may dominate
quantum criticality even in the absence of magnetic order-
ing—an idea that begs experimental tests on a broad class
of materials. The Brinkman-Rice scenario we considered,
which focuses on local (Kondo-like) effects of strong
correlation (while neglecting intersite magnetic correla-
tions), may be relevant only for systems with sufficiently
strong magnetic frustration, such as 3He monolayers ad-
sorbed on graphite [19]. Such a variational approach
should be generalized for systems, such as copper oxides,
where the intersite superexchange is strong, but this fasci-
nating research direction remains a challenge for future
work.
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FIG. 5 (color online). Spatial distribution of the local density
of states normalized by its clean value, for one disorder realiza-
tion, shown (a) away from the Fermi energy (! ¼ 0:10) and
(b) at the Fermi energy (! ¼ 0). Because of static disorder
screening, the distribution becomes homogeneous close to the
Fermi level, but displays pronounced spatial structures at higher
energies. Results are shown for L ¼ 50, U=Uc ¼ 0:96, and
W ¼ 0:75.
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