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Mottness-induced healing in strongly correlated superconductors
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We study impurity healing effects in models of strongly correlated superconductors. We show that in general
both the range and the amplitude of the spatial variations caused by nonmagnetic impurities are significantly
suppressed in the superconducting as well as in the normal states. We explicitly quantify the weights of the local
and the nonlocal responses to inhomogeneities and show that the former are overwhelmingly dominant over the
latter. We find that the local response is characterized by a well-defined healing length scale, which is restricted
to only a few lattice spacings over a significant range of dopings in the vicinity of the Mott insulating state.
We demonstrate that this healing effect is ultimately due to the suppression of charge fluctuations induced by
Mottness. We also define and solve analytically a simplified yet accurate model of healing, within which we
obtain simple expressions for quantities of direct experimental relevance.
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Introduction. Strong electronic correlations are believed to
be essential for a complete understanding of many classes of
unconventional superconductors, such as the cuprates [1–4],
heavy fermion superconductors [5], organic materials [6,7],
and iron pnictides [8]. Among the many puzzling features of
these systems is their behavior in the presence of disorder.
In the case of the cuprates, experiments have shown that
these d-wave superconductors are quite robust against disorder
as introduced by carrier doping [3,9,10]. In particular, there
seems to be a “quantum protection” of the d-wave nodal
points [11]. Other anomalies were found in the organics [12]
and the pnictides [13]. Although it is controversial whether
conventional theory is able to explain these features [14],
strong electronic interactions can give rise to these impurity
screening effects. Indeed, they have been captured numerically
by the Gutzwiller-projected wave function [15–17], even
though a deeper insight into the underlying mechanism is
still lacking. Similar impurity screening phenomena have been
found as a result of strong correlations in the metallic state of
the Hubbard model [18].

Despite this progress, it would be desirable to understand
to what extent this disorder screening is due only to the
presence of strong correlations or whether it is dependent on
the details of the particular model or system. For example,
are the effects of the intersite superexchange, crucial to
describe the cuprates, essential for this phenomenon? To
address these issues, it would be fruitful to have an analytical
treatment of the problem. We will describe in this Rapid
Communication how an expansion in the disorder potential
is able to provide important insights into these questions. In
particular, we show that the “healing” of the impurities is a
sheer consequence of the strong correlations and depends very
little on the symmetry of the superconducting (SC) state or the
inclusion of intersite magnetic correlations.

We considered dilute nonmagnetic impurities in an oth-
erwise homogenous, strongly correlated electronic state. We
avoided complications related to the nucleation of possible
different competing orders by the added impurities, such as
fluctuating or static charge- and spin-density waves [19–22] or
the formation of local moments [23]. Therefore, we focused
only on how a given strongly correlated state readjusts itself

in the presence of the impurities. We used a spatially inhomo-
geneous slave boson treatment [4,24–27], which allowed us to
perform a complete quantitative calculation. We have allowed
for either or both of d-wave SC and s-wave resonating valence
bond (RVB) orders.

Our analytical and numerical results demonstrate that
(i) for sufficiently weak correlations we recover the results
of the conventional theory [14], in which the variations of
the different fields induced by the impurities show oscilla-
tions with a long-ranged power-law envelope; (ii) for strong
interactions and in several different broken symmetry states,
the amplitude of the oscillations is strongly suppressed by a
common prefactor x, the deviation from half filling; (iii) the
spatial disturbances of the SC gap are healed over a precisely
defined length scale, which does not exceed a few lattice
parameters around the impurities; and (iv) this “healing effect”
is intrinsically tied to the proximity to the Mott insulating state,
even though it survives up to around 30% doping.

Model and method. We study the t-t ′-J model on a cubic
lattice in d dimensions with dilute nonmagnetic impurities,

H = −
∑
ijσ

tij c
†
iσ cjσ + J

∑
ij

Si · Sj +
∑

i

(εi − μ0)ni, (1)

where tij are the hopping matrix elements between nearest-
neighbor (t) and second-nearest-neighbor (t ′) sites, c

†
iσ (ciσ )

is the creation (annihilation) operator of an electron with
spin projection σ at site i, J is the superexchange coupling
constant between nearest-neighbor sites, ni = ∑

σ c
†
iσ ciσ is

the number operator, μ0 is the chemical potential, and εi is
the impurity potential. The no-double-occupancy constraint
(ni � 1) is implied. We set the nearest-neighbor hopping
t as the energy unit and choose t ′ = −0.25t . To treat this
model, we employ the U (1) slave boson theory [4,24,26,28].
Details can be found in Ref. [4] and we only describe it
very briefly here. It starts with the replacement c

†
iσ = f

†
iσ bi ,

where f
†
iσ and bi are auxiliary fermionic (spinon) and bosonic

fields, and the representation is faithful in the subspace ni � 1
if the constraint

∑
σ f

†
iσ fiσ + b

†
i bi = 1 is enforced. This is

implemented by a Lagrange multiplier λi on each site. The
J term is then decoupled by Hubbard-Stratonovich fields in
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the particle-particle (�ij ) and particle-hole (χij ) channels. The
auxiliary bosonic fields are all treated in the saddle-point ap-
proximation: 〈bi〉 = ri = √

Zi gives the quasiparticle residue,
〈λi〉 renormalizes the site energies, and χij = ∑

σ 〈f †
iσ fjσ 〉 and

�ij = 〈fi↑fj↓ − fi↓fj↑〉 describe, respectively, the strength
of a spinon singlet and the pairing amplitude across the
corresponding bonds. Note that we do not assume these values
are spatially uniform. This treatment is equivalent to the
Gutzwiller approximation [2,15]. In terms of Gorkov’s spinor
notation [29] with �i(iωn) = [f †

i↑(iωn) fi↓(−iωn)]†, where ωn

is the fermionic Matsubara frequency, the spinon Green’s func-
tion is a 2 × 2 matrix: [Gij (iωn)]ab = −〈�i(iωn)�†

j (iωn)〉ab.
Defining hij ≡ −tij , the saddle-point equations read as fol-
lows:

χij = 2T
∑

n

(Gij )11, (2)

�ij = −2T
∑

n

(Gij )12, (3)

(
r2
i − 1

) = −2T
∑

n

(Gii)11, (4)

λiri = −2T
∑
nl

hilrl(Gil)11 = −
∑

l

hilrlχil . (5)

Note that we used Eq. (2) in the second equality of
Eq. (5). At T = 0 and in the clean limit εi = 0, we have
Z = Z0 = x. The Mott metal-insulator transition is signaled
by the vanishing of the quasiparticle weight Z0 → 0 at half
filling. It will be interesting to compare the results of the above
procedure with the ones obtained from solving only Eqs. (2)
and (3) while setting Zi = 1 and λi = 0. The two sets will be
called correlated and noncorrelated, respectively. In order to
be able to compare them, we set J = t/3 in the correlated case
and adjusted J in the noncorrelated case in such a way that
the two clean dimensionful SC gaps coincide, as discussed in
Ref. [15].

Healing. Although the detailed solutions of Eqs. (2)–(5) can
be straightforwardly obtained numerically, we will focus on the
case of weak scattering by dilute impurities and expand those
equations up to first order in εi around the homogeneous case.
It has been shown and we confirm that disorder induces long-
ranged oscillations in various physical quantities, especially
near the nodal directions in the d-wave SC state [14]. The
linear approximation we employ is quite accurate for these
extended disturbances far from the impurities, since these are
always small. Besides, it provides more analytical insight into
the results.

In general, we can expand the spatial variations of the
various order parameters in different symmetry channels
through cubic harmonics, δϕij = ∑

g δϕi�(g)ij , where ϕij =
χij or �ij and �(g)ij are the basis functions for cubic
harmonic g of the square lattice.1 In the current discussion,
we choose δχij = δχi�(s)ij and δ�ij = δ�i�(dx2−y2 )ij , as
we are interested in oscillations with the same symmetry
as the ground state [4,24,26,28]. We also assume there is

1s, dx2−y2 , dxy , etc., with basis functions expressed as cos kx +
cos ky , cos kx − cos ky , and sin kx sin ky , etc.

no phase difference between order parameters on different
bonds linked to same site. Then, we can define “local” spatial
variations of the order parameters as δχi ≡ 1

2d

∑
j δχij�(s)ij

and δ�i ≡ 1
2d

∑
j δ�ij�(dx2−y2 )ij . Details of the calculation

can be found in the Supplemental Material [30].
We find that both δχij and δ�ij , as well as the impurity-

induced charge disturbance δni , are proportional to Z0=x,
indicating the importance of strong correlations for the
healing effect. Indeed, we can trace back this behavior to the
readjustment of the ri and λi fields, as encoded in Eqs. (4) and
(5). Besides, this O(x) suppression is a generic consequence of
the structure of the mean-field equations and holds for different
broken symmetry states, such as the flux phase state, s-wave
superconductivity, etc.

Let us focus in more detail on the spatial variations of the
local pairing field δ�i . In the first column of Fig. 1 we show
results for δ�i for three identical impurities. The “crosslike”
tails near the nodal directions [31] are conspicuous in the
absence of correlations (bottom) but are strongly suppressed in
their presence (top). While this suppression is further enhanced
as the Mott metal-insulator transition is approached (x → 0),
it is still quite significant even at optimal doping (x = 0.2).
This is the “healing” effect previously reported [15–17]. In
order to gain insight into its underlying mechanism, we look
at the spatial correlation function of local gap fluctuations,

〈
δ�i

�0

δ�j

�0

〉
disorder

= f
(
ri − rj

)
, (6)

where the brackets denote an average over disorder, after
which lattice translation invariance is recovered. The Fourier
transform of f (r) can be written in the linear approximation
as

f (k) = αW 2S(k), (7)

where W is the disorder strength, α depends on the detailed
bare disorder distribution, and the “power spectrum” (PS)
S(k) is related to gap linear response function M�(k) by
S(k) = M2

�(k). The latter is defined by Fourier transforming
the kernel in δ�i = �0

∑
j M�(ri − rj )εj , which in turn can

be easily obtained from the solution of the linearized equations
[30]. Inspired by the strongly localized gap fluctuations at
the top left of Fig. 1, we define the local component of
the PS, Sloc(k) ≡ M2

�,loc(k), where M�,loc(k) is obtained by
restricting the lattice sums up to the second-nearest-neighbor
distance (

√
2a) in the linearized equations [30]. We also

define Snonloc(k) = M2
�,nonloc(k) ≡ [M�(k) − M�,loc(k)]2. In

the last three columns of Fig. 1, we show, in this order, S(k),
Sloc(k), and Snonloc(k) for the correlated (top) and noncorrelated
(bottom) cases at x = 0.2. Clearly, in the presence of corre-
lations, the local PS is characterized by a smooth, spherically
symmetric bell-shaped function, whereas the nonlocal part
is highly anisotropic. Besides, and more importantly, the
nonlocal PS is negligibly small in the correlated case. The
full PS is thus overwhelmingly dominated by the local part,
unlike in the noncorrelated case. In the Supplemental Material
[30], we extend the analysis to the underdoped and overdoped
regimes, where very similar behavior is found, even up to
dopings of x = 0.3.
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FIG. 1. (Color online) Spatial variations of normalized local SC gap �i

�0
for three impurities (first column) and the corresponding power

spectra S(k), S(k)loc, and S(k)nonloc (second to fourth columns), in the presence (top) and in the absence (bottom) of correlations for x = 0.2.
The strong suppression of gap oscillations by correlations can be traced to the dominance of the local, spherically symmetric power spectrum
[Sloc(k)] over the nonlocal anisotropic part [Snonloc(k)].

In order to quantify the localized nature of the healing
effect, we are led to a natural definition of a “healing factor”
h in the d-wave SC state,

h =
∫

Snonloc(k)d2k∫
Sloc(k)d2k

, (8)

where the integration is over the first Brillouin zone. It
measures the relative weight of nonlocal and local parts of
the gap PS. The healing factor as a function of doping is
shown in the left panel of Fig. 2 for the noncorrelated (blue)
and correlated (red) cases. The contrast is striking. When
correlations are present, h is extremely small up to 30% doping
and the gap disturbance is restricted to a small area around
the impurities. In contrast, without correlations, significant
pair fluctuations occur over quite a large area for all dopings
shown. We conclude that the strong dominance of the local

FIG. 2. (Color online) Left: The healing factor h as a function
of doping in the uncorrelated case (blue curve with squares), in the
correlated case (red curve with circles), and in the correlated case
without δχi fluctuations (green curve with diamonds). Right: Doping
dependence of the SC (ξS , red curve with circles) and normal state
(ξN , blue curve with squares) healing lengths. The green curve with
diamonds gives ξS calculated within the minimal model (see text).

part over the highly anisotropic nonlocal contribution caused
by correlations is the key feature behind the healing process.

The shape of Sloc(k) shows that the gap disturbance created
by an impurity is healed over a well-defined distance, the
“healing length” ξS . This length scale can be obtained by
expanding the inverse of M�,loc(k) [or, equivalently, M�(k)]
up to second order in k2, thus defining a Lorentzian in k space,

M�,loc(k) ≈ 1

A + Bk2
. (9)

The SC healing length is then given by ξS = √
B/A. The x

dependence of ξS is shown in red in the right panel of Fig. 2.
It is of the order of one lattice spacing in the relevant range
0.15 < x < 0.3. It should be noted that precisely the same
length scale also governs the healing of charge fluctuations in
the SC state, showing that this phenomenon is generic to the
strongly correlated state. A similar procedure can be carried
out for the charge fluctuations in the normal state, thus defining
a normal state healing length ξN [30]. The blue curve of the
right panel of Fig. 2 shows the x dependence of ξN , which is
also of the order of one lattice spacing.

Mottness-induced healing. The healing effect we have
described comes almost exclusively from the δri and δλi

fluctuations: h is hardly affected by the δχi field. If we suppress
the δχi fluctuations completely [30], there is only a tiny change
in the results, as shown by the green curve in the left panel
of Fig 2. The same is not true, however, if we turn off either
δri or δλi or both. We conclude that the healing effect in the
d-wave SC state originates from the strong correlation effects
alone, rather than the spinon correlations.

Within the linear approximation we are employing, all fluc-
tuation fields (δ�, δr , etc.) are proportional, in k space, to the
disorder potential ε(k). Therefore, they are also proportional
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FIG. 3. (Color online) Local (left) and nonlocal (right) parts of
the charge-fluctuation power spectra N (k)loc and N (k)nonloc in the
presence of strong correlations for x = 0.2.

to each other. In particular, given the centrality of the strong
correlation fields, it is instructive to write the gap fluctuations
in terms of the slave boson fluctuations,

δ�(k) = −2χpc(k)rδr(k) = χpc(k)δn(k). (10)

In the last equality, we used ni = 1 − r2
i , which enables

us to relate two physically transparent quantities: the gap
and the charge fluctuations. Indeed, this will provide crucial
physical insight into the healing process. By focusing on
the linear charge response to the disorder potential δn(k) =
n0Mn(k)ε(k), we can, in complete analogy with the gap fluc-
tuations, define a PS for the spatial charge fluctuations, N (k) =
M2

n(k). This PS can also be broken up into local [Nloc(k) =
M2

n,loc(k)] and nonlocal {Nnonloc(k) = [
Mn(k) − Mn,loc(k)

]2}
parts, as was done for the gap-fluctuation PS. These two
contributions, obtained from the solution of the full linearized
equations, are shown in Fig. 3. The charge PS in the
correlated d-wave SC state is also characterized by a smooth,
almost spherically symmetric local part and a negligibly
small anisotropic nonlocal contribution. Note also the strong
similarity between the local PS for gap (top row of Fig. 1) and
charge fluctuations. This shows a strong connection between
the gap and charge responses. Evidently, this is also reflected
in real space, where the charge disturbance is healed in the
same strongly localized fashion as the gap disturbance [30]. In
fact, the local part of the charge response function Mn,loc(k)
can be shown to be well approximated by a Lorentzian [30]
and we can write for small k,

δ�loc(k) ≈ −χpc (k = 0)
8r2/λ

k2 + ξ−2
S

ε(k), (11)

where the SC healing length ξS can be expressed in terms of
the Green’s functions of the clean system [30]. The relations
implied by Eqs. (10) and (11), as well as the doping dependence
of the quantities in them, could be tested in scanning tunneling

microscopy (STM) studies and would constitute an important
test of this theory.

Equations (10) and (11) allow us to obtain a clear physical
picture of the healing mechanism. The spatial gap fluctua-
tions can be viewed as being ultimately determined by the
charge fluctuations. Furthermore, their ratio χpc(k), which
is essentially a pair-charge correlation function, is a rather
smooth function of order unity,only weakly renormalized by
interactions. Therefore, it is the strong suppression of charge
fluctuations by “Mottness,” as signaled by the r2 factor in
Eq. (11), which is behind the healing of gap fluctuations. This
elucidates the physics of healing previously found numerically
[15–17]. It also suggests that the healing phenomenon is
generic to Mott systems [18] and is not tied to the specifics of
the cuprates.

A minimal model. Interestingly, the crucial role played by
the strong correlation fields (ri and λi) suggests a “minimal
model” (MM) for an accurate description of the healing pro-
cess, which we define as follows: (i) The spatially fluctuating
strong correlation fields ri and λi are first calculated for the
self-consistently determined, fixed, uniform � and χ , and then
(ii) the effects of their spatial readjustments are fed back into
the gap equation (3) in order to find δ�i [30]. The accuracy
of this procedure can be ascertained by the behavior of the
healing factor: It is numerically indistinguishable from the
green curve in the left panel of Fig. 2. Furthermore, the value
of ξS calculated within the MM differs from the one obtained
from the solution of the full linearized equations by at most
20% (red and green curves in the right panel of Fig. 2). Besides
its accuracy, the advantage of this MM description lies in the
simplicity of the analytical expressions obtained. As shown in
the Supplemental Material [30], it provides simple expressions
for the important quantities χpc(k) and ξS .

Conclusions. In this Rapid Communication, we have
found an inextricable link between the healing of gap and
charge disturbances in strongly correlated superconductors,
suggesting that this phenomenon is generic to any system
close to Mott localization. An important experimental test of
this link would be provided by STM studies of the organic
superconductors [12] and maybe the pnictides [13]. Whether
it is also relevant for heavy fermion systems [32] is an open
question left for future study.
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