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Coulomb gas approach to the anisotropic one-dimensional Kondo lattice model at arbitrary filling
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We establish a mapping of a general spin-fermion system in one dimension into a classical generalized
Coulomb gas. This mapping allows a renormalization-group treatment of the anisotropic Kondo chain both at
and away from half-filling. We find that the phase diagram contains regions of paramagnetism, partial, and full
ferromagnetic order. We also use the method to analyze the phases of the Ising-Kondo chain.
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I. INTRODUCTION

The relevance of studying the Kondo lattice mod
~KLM ! has not decreased. It is believed to be at the hea
the physics of both the heavy fermion materials, in its an
ferromagnetic~AFM! version,1 and also the manganites
when local moments and conduction electrons interact
the ferromagnetic~FM! Hund’s coupling.2 In the first case,
the well-understood behavior of the single-~or few-! impu-
rity Kondo model permeates much of our current und
standing. However, the interplay between the local Kon
physics and the nonlocal RKKY interaction in a lattic
environment3 remains elusive in current approxima
schemes, although it may play a prominent role close
quantum critical points4–7 or even away from them. In this
respect, a more thorough understanding of the o
dimensional~1D! case might be fruitful, even in light of the
peculiarities of 1D systems. Furthermore, the study of the
KLM is important in its own right for the analysis of som
quasi-one-dimensional organic compounds such
(Per)2M (mnt)2 (M5Pt,Pd),8–10 Cu~Pc!I ~Ref. 11! and
(DMET)2FeBr4.12

A fairly complete ground-state phase diagram has b
established for the 1D KLM.2,13 On one hand, the antiferro
magnetic model at half-filling has both charge and s
gaps.14 For lower band fillings there is a quantum phase tr
sition from a paramagnetic ground state to a ferromagn
one.13 On the other hand, the ferromagnetic model at ha
filling is also insulating with a Haldane-type spin gap.15 For
lower band fillings, the numerical evidence shows three d
tinct phases: a phase with partial ferromagnetic order
incommensurate spin correlations, a fully saturated fe
magnetically ordered phase, and a region with phase sep
tion where two kinds of ground state seem to compete.
energy scales where the transitions take place for both m
els are of the order of the Fermi energy. Finally, there
strong numerical evidence in favor of a Luttinger-liquid~LL !
behavior in the paramagnetic phase of the AFM KLM, ev
for considerably large coupling constants.16–18 Such phe-
nomenology is beyond a simple RKKY versus Kondo type
picture,19 as proposed by Doniach for the higher-dimensio
models.3 In fact, the level crossing responsible for the qua
tum critical point is related to long-wavelength modes. T
is in contrast with the short-wavelength spin modes involv
in the paramagnetic-antiferromagnetic transition that
0163-1829/2002/66~17!/174409~17!/$20.00 66 1744
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Doniach’s picture envisages. As pointed out before,13,19 the
missing element is the lowering of the conduction-electr
kinetic energy with the alignment of the localized spin as
the double exchange mechanism. Essentially, this is the
son why the 1D FM and AFM KLM have similar phas
diagrams.

Despite these successes, it would be considerably m
informative if some analytical understanding could
gained. Even though there have been some pa
successes,19–22 there is still room for improvement. Moti-
vated by the enormous success of renormalization-gr
~RG! analyses in the few-impurity problem,23–27 we set out
to apply scaling ideas to the 1D lattice case as well. Ho
ever, an RG treatment of the KLM has never, to our know
edge, been achieved. Technically, although we know how
progressively decimate the spins or the conduction-elec
states, no one has devised a way of doing both simu
neously, specially with the incorporation of local Kond
physics. The usual way around this problem is to introduc
direct Heisenberg exchange interaction between the lo
spins.28–33 This so-called Heisenberg-Kondo model, how
ever, has the potential of being a completely different pro
lem.

It is the aim of this paper to put forth such a decimati
scheme for one-dimensional models of spins and fermio
in particular, the anisotropic Kondo lattice model, witho
assuming any dynamics for the local magnetic moments.
draw a great deal of inspiration from the original work
Anderson and co-workers for the single-impurity Kond
model,23–25mapping the KLM into a classical Coulomb ga
which is then decimated by standard methods.34 This task is
made simpler by the use of bosonization methods. We th
fore study the stability of the noninteracting ground sta
with respect to the Kondo interaction as a function of t
coupling constants. Our study reveals that there is no ‘‘we
coupling’’ flow in the entire parameter space. Neverthele
the different ‘‘strong-coupling’’ flows of the RG equation
allow us to assign the magnetic ground states that eme
establishing the phase diagram for both signs of the coup
constant in a unified fashion. While our approach in p
builds upon previous studies,19–22 it also puts on a firmer
basis the procedure of neglecting backward-scattering te
in the KLM away from half-filling. As another application o
our Coulomb gas treatment, we also establish the phase
gram of the one-dimensional Ising-Kondo model.35
©2002 The American Physical Society09-1
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In Sec. II, we develop a path-integral formulation of t
bosonized 1D KLM. The partition function is mapped into
two-dimensional generalized classical Coulomb gas in S
III. In Sec. IV, the RG equations of the Coulomb gas a
derived and solved. Their physical interpretation is given
Sec. V, where an effective Hamiltonian for the renormaliz
Coulomb gas is obtained. The phase diagram of the mod
established in Sec. VI. The Ising-Kondo model is discus
in Sec. VII, where its phase diagram is established. We w
up with a brief discussion of the relation between our a
previous results in Sec. VIII. Some more technical devel
ments can be found in the appendixes.

II. PARTITION FUNCTION

We start by writing the 1D KLM Hamiltonian. The tradi
tional Kondo model is isotropic in spin space. Since we
going to use Abelian bosonization, it is natural to break
SU~2! symmetry down to U~1!

H52t(
j ,s

~cj 11s
† cj s1H.c.!1J'~Sj

xsj
x1Sj

ysj
y!1JzSj

zsj
z ,

~1!

wherecj s destroys a conduction electron in sitej with spin
projection s, Sj is a localized spin-12 operator, andsj

5 1
2 (abcj a

† scj b
† , the conduction-electron spin density. W

will focus on the continuum, long-distance limit of the co
duction electrons. In this case, one can linearize the dis
sion around the noninteracting (Jz,'50) Fermi points6kF ,
wherekFa5(p/2)n andn is the conduction-electron numbe
density, and take the continuous limit of the fermionic ope
tors in terms of left and right moving field operators,20

H52 ivF(
s

E dx~cR,s
† ]xcR,s2cL,s

† ]xcL,s!

1
aJz

2 (
j

(
a,b,s

ca,s
† ~ j !cb,s~ j !ss,s

z Sz~ j !

1
aJ'

2 (
i

(
a,b,s,s8

ca,s
† ~ j !cb,s8~ j !ss,s8

h Sh~ j !,

wherea,b5L or R, vF52t sinkFa is the Fermi velocity, and
a is the lattice spacing. The field operators can now
bosonizedwith the inclusion of the so-called Klein factorsin
usual notation,36

cR,s~x!5
FR,s

A2pa
eiAp[fs(x)2us(x)] 1 ikFx,

cL,s~x!5
FL,s

A2pa
e2 iAp[fs(x)1us(x)] 2 ikFx.

One can then rewrite the Hamiltonian in terms of the cha
and spin fields
17440
c.

n
d
is
d
p

d
-

e
e

r-

-

e

e

fc,s~x!5@f↑~x!6f↓~x!#/A2,

uc,s~x!5@u↑~x!6u↓~x!#/A2

as

H5H01Hz
f1H'

f 1Hz
b1H'

b , ~2!

with

H05
vF

2 (
n5s,c

E dx~]xfn!21~]xun!2, ~3a!

Hz
f5(

x
Jz

fA2

p
gs]xfs~x!Sz~x!, ~3b!

H'
f 5(

x

J'
f

2pa
eiA2p/gsus(x)cos@A2pgsfs~x!#S2~x!1H.c.,

~3c!

Hz
b5(

x

2Jz
b

pa
sin@A2pgrfc~x!

12kFx#sin@A2pgsfs~x!#Sz~x!, ~3d!

H'
b 5(

x

J'
b

2pa
eiA2p/gsus(x)cos@A2pgrfc~x!12kFx#S2~x!

1H.c., ~3e!

where gs5gr51 and a;kF
21 . H0 is the free bosonic

Hamiltonian written as a function ofus,c andfs,c . We have
introduced the new parametersgs andgr for future use. The
‘‘relativistic’’ description enforced by us broke the intera
tion term into two different components: forward-scatterin
H f , and backscattering,Hb. They involve the spin curren
and the 2kF component of the magnetization of the noni
teracting electron gas, respectively,37,38 since it is well
known that the main contributions to the spin susceptibi
of the electron gas at low frequencies come fromq;0 and
q;2kF . For further generalization, we will consider the fo
parametersJ',z

f ,b , as independent.20 It is important to note that
the cosines and sines of the bosonic fields in Eqs.~3! are just
a short-form notation. Forward and backward Klein facto
do not have common eigenvectors.39 Thus, we shall not ne-
glect their contribution to the simultaneous treatment ofH f

andHb.
A quantum system of dimensiond can be mapped into a

classical system of dimensiond11.40,41The single-impurity
Kondo problem has effective dimensiond50. The work of
Anderson and co-workers23–25showed that it can be mappe
into a d51 classical Coulomb gas, where the extra dime
sion is the imaginary time.38,42 We will extend this idea and
map the 1D KLM into ad52 classical problem. As usua
the starting point is the partition function

Z5Tr@e2b(H01H f1Hb)#. ~4!
9-2
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COULOMB GAS APPROACH TO THE ANISOTROPIC . . . PHYSICAL REVIEW B 66, 174409 ~2002!
We will rescale the Hamiltonian andb by the Fermi velocity.
This introduces the dimensionless coupling constantsJ̃z,'

5aJz,' /vF as well as b̃5vFb. Following the standard
prescription,42,43 we divide b̃ into infinitesimal parts,

Z5TrF)
j

e2dtHG .
In order to proceed to a path-integral formulation we cho
theSz basis for the local moments and the coherent states
the bosonic fields.42,43 The next step is to introduce an ide
tity resolution between each exponential in the product

Z5)
j

^z~t j !ue2dtHuz~t j !&,

where we useduz& to denote a general vector in the basis. W
now expand the exponentials in powers ofdt,

Z5 (
n50

1

n!
~dt!n^z~ j !uHnuz~t j 11!&.

There are two possible spin configurations for a given pai
consecutive instants along the imaginary-time direction.

~1! If there is no spin flip between them, the only contri
uting terms are from thez components of the Hamiltonia
~3b! and ~3d!,

^sW~x,t1dt!uSz~x!]xfs~x!usW~x,t!&,

^sW~x,t1dt!uSz~x!sin@A2pgrfc~x!

12kFx#sin@A2pgsfs~x!#usW~x,t!&. ~5!

~2! If there is a spin flip between these two instants, th
only Eqs.~3c! and ~3e! contribute,

^sW~x,t1dt!ueiA2p/gsus(x)cos@A2pgsfs~x!#S2~x!

1H.c.usW~x,t!&,

^sW~x,t1dt!ueiA2p/gsus(x)cos@A2pgrfc~x!12kFx#S2~x!

1H.c.usW~x,t!&. ~6!

The two possible processes above are illustrated in Fig

FIG. 1. Example of a spin history. 1 stands forSz operators@Eq.
~5!# and 2 forS' ones@Eq. ~6!#.
17440
e
or

f

n

1.

Several bosonic operators can fit inside the example give
the figure, for example,

J̃z
bJ̃'

f

2 SA2

p
gsJ̃z

f DFL↑
† FR↑FR↓

† FR↑Sz~x,t3!S1~x,t2!Sz

3~x,t1!eiA2pgsfs(x,t3)1 iA2pgrfc(x,t3)eiA2p/grus(x,t2)

2 iA2pgsfs(x,t2)12ikFx]xfs~x,t1!,

where we regrouped terms to separate Klein factors, lo
spin operators, and bosonic fields.

The lattice parameter in the Euclidean-time direction
set by the bosonic cutoff:dt>2pa. Keeping the leading-
order terms, we write the partition function as the sum o
all d52 Ising spin configurations of the localized spin
Klein factors, and a functional integral over the bosonic va
ables. Since there are different types of bosonic exponen
~vertex operators! coming from the different interaction
terms in Eq.~2!, we now introduce new Ising variables
which we will call ‘‘charges’’ in order to do the bookkeeping
They give the sign of the corresponding bosonic field in
accompanying exponential according to the followi
scheme.

~1! m(x,t)5Sz(x,t1dt)2Sz(x,t)561 gives the sign
of us(x,t) @Eqs.~3c! and ~3e!#.

~2! e(x,t)561 gives the sign offs(x,t) @Eqs.~3c! and
~3d!#.

~3! c(x,t)561 gives the sign offc(x,t) @Eqs.~3d! and
~3e!#.

Note that onlym(x,t) is always tied to a localized spin-flip
process, its value giving both the sign of theus coefficient
and the change inSz. With this notation, each point in the
Euclidean ‘‘space-time’’ is labeled by a triad of value
(m,e,c). We call a ‘‘particle’’ a point where (m,e,c)
Þ(0,0,0). Each kind of particle matches a certain inciden
the history of a spin. From Eqs.~3!, we can read off the
existence of three breeds of particles, each one with its
spective fugacity. Table I summarizes the notation that
will use.

Denoting h j
l as the space-time position of particlej of

type l 5$1,2,3% and Dh5) l 51
3 ) j 51

Nl dh j
l , we can write the

partition function as

TABLE I. Particles in the 1D KLM and their charges.

Fugacity (m,e,c) Number of particles

y15 J̃'
f /2 (61,61,0) N1

y25 J̃'
b /2 (61,0,61) N2

y35 J̃z
b/2 (0,61,61) N3
9-3
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Z5(
$s%

(
N1 ,N2 ,N350

`

(
$m,e,c%

E Dfs,cDus,cDh
y1

N1y2
N2y3

N3

N1!N2!N3!
~Klein factors! F)

j 51

N3

sz~h j
3!G

3expH 2S02 J̃z
fA2

p
gs(

x
E dt]xfs~x,t!Sz~x,t!1 iA2p

gs
(

l 51,2
(
h j

l
m~h j

l !us~h j
l !

1 iA2pgs (
l 51,3

(
h j

l
e~h j

l !fs~h j
l !1A2pgr (

l 52,3
(
h j

l
@c~h j

l !fc~h j
l !12ikFc~h j

l !xj
l #J , ~7!
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where$s% stands for all Ising spin configurations,$m,e,c%
represents all possible sets of( iNi particles,xj

l is the space
coordinate of particleh j

l , and S0 is the free Gaussian
bosonic action in the variablesfs,c and us,c .38 There are
several restrictions over$m,e,c%, usually called neutrality
conditions in the bosonization38 and Coulomb gas34 litera-
tures. In the 1D KLM they are more stringent than usu
ensuring the compatibility of the sums over$s% and$m,e,c%
in Eq. ~7!. Therefore, we will call them strong neutralit
conditions~see Appendix A for the derivation of these co
ditions!. They are: ~1! for each space coordinate them
charges must be neutral,( im(xf ixed ,t i)50; ~2! the totale
charge must be neutral,( ie(xi ,t i)50; ~3! for each space
coordinate the total chargec must be an even intege
( ic(xf ixed ,t i)52n, nPZ; and the total charge in the entir
space-time must be zero,( ic(xi ,t i)50. We can immedi-
ately see two consequences of these conditions. The m
obvious is that the sign ofJ̃'

f ,b is irrelevant since, from con
dition ~1!, the total number of spin flips in the time directio
N11N2 is even. The other consequence is more subtle
more surprising: the complete cancellation of the Klein fa
tors and the product ofsz(h j

3) in Eq. ~7!,

~Klein factors!)
j 51

N3

sz~h j
3!51.

This result plays a central role in the renormalization-gro
treatment of a single Kondo impurity in a LL by Lee an
Toner.44 Moreover, it leads to

2kF(
i

c~ i !xi5H 0

4kFaI, I PZ
~8!

in each contribution to the partition function. The 2kF terms
appear whenever there are particles of type 2 and 3@see the
definition of the chargec and Eqs.~3d! and ~3e!#. Due to
their oscillatory nature, configurations with these partic
will be strongly suppressed in the statistical sum, and
corresponding terms~with fugacities y25 J̃'

b /2 and y3

5 J̃z
b/2) will be irrelevant in the RG sense. This irrelevan

criterion is precisely the same as that used from neglec
umklapp scattering away from half-filling in models such
the Hubbard model.45 However, we stress that the situatio
here is far less trivial than in the Hubbard model, since
17440
l,

ost

d
-

p

s
e

g

e

have both fermions and spins, and the latter have no in
pendent dynamics, thus hindering a rigorous analysis~an im-
portant exception to this is the Heisenberg-Kondo model31!.
In our treatment, on the other hand, spins and fermions
treated on the same footing and lose their independent id
tity. After the mapping to a Coulomb gas, the irrelevan
criterion becomes identical to other models where its ap
cability is firmly based. We have thus established a m
rigorous basis for neglecting the backward-scattering te
in the 1D KLM, as has been done by Zachar, Kivelson, a
Emery.20

This situation changes when the conduction band is
half-filling. In this case, 4kFa52p and these terms disap
pear from the effective action, making all particles equa
probable. This commensurability condition is similar to th
for the umklapp term in the Hubbard model.45 It is interest-
ing to note that only the combination 4kFa appears in our
formulation. Since we have bosonized the noninteract
conduction electron sea, we must usekFa5pn/2, leading to
4kFa52pn. Even if for some reason a large Fermi surfa
should be considered,46 this would not change any of ou
results, since for a large Fermi surface 4kF* a52p(n11)
54kFa(mod2p).

III. COULOMB GAS

The bosonic fields in Eq.~7! can now be integrated out
partially summing the partition function. The result can
understood as an effective action for the spins and the v
ables (m,e,c),

Se f f5S J̃z
f

p
D 2

(
x1.x2

E
t1.t2

dt1dt2

cos~2w12!

r 12
2

Sz~1!Sz~2!

1
J̃z

f

p (
n

(
x
E dt

exp@ ie~n!w#

r
Sz~x,t!

1 (
n.p

ln znp

2
@m~n!1e~n!#@m~p!1e~p!#

1
ln z̄np

2
@m~n!2e~n!#@m~p!2e~p!#

1 lnur npuc~n!c~p!12ikF(
n

c~n!xl

1short-range interactions, ~9!
9-4
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where

xjk5xk2xj ,

t jk5tk2t j ,

zjk5xjk1 i t jk5r jkeiw jk. ~10!

In addition to the long-range universal interactions, t
procedure also gives rise to short-ranged terms that are c
dependent.47 These are similar to those found by Honner a
co-workers19,21 by smoothing the bosonic commutation rel
tions. In contrast to their treatment, though, here they a
manifestation of the bosonic field dynamics. Following Z
charet al.,20 we will focus on the universal long-range pa
of the action and neglect these terms.

Upon integrating by parts in imaginary time, spin tim
derivatives become the charges we denote bym. Finally, we
can rewrite all long-range terms in the form of a generaliz
Coulomb-gas~CG! action in two-dimensional Euclidea
space34 as

Z5 (
N1 ,N2 ,N350

`

(
$m,e,c%

E Dh
y1

N1y2
N2y3

N3

N1!N2!N3!
exp$Se f f%,

~11!

with

Se f f5
1

2 (
iÞ j

H k2

gs
lnur i j um~h i !m~h j !1gslnur i j ue~h i !e~h j !

1grln ur i j uc~h i !c~h j !2 ikw i j @e~h i !m~h j !

1m~h i !e~h j !#J 12ikF(
i

c~h i !xi , ~12!

where k512 J̃z
f /p. In the above effective action we hav

dropped the superindex indicating the particle type in or
to unclutter the notation. It is now unnecessary as the dep
dence with the history of a spin has disappeared.

In most other similar CG mappings, the coefficient of t
term in w i j is an integer and goes by the name of conform
spin.38 Then, the ambiguity of 2pI , I PZ in the angle is
irrelevant. In this case, however,k can assume nonintege
values. What guarantees that the theory is actually well
fined is the strong neutrality condition~1!, which leads to a
cancellation of the Riemann surface indexI.

The integration by parts that we performed is equival
to applying the duality relation]xfs5 i ]tus to Eq. ~7!, inte-
grating by parts and then tracing the bosonic fields. Alter
tively, at the Hamiltonian level, it is also equivalent to a
plying the rotation20

U5expS iA2

p
Jz

f(
x

us~x!Sz~x! D ~13!

to Eq. ~2! before going to a path integral and tracing out t
bosons. Hence, there is a strong link between our CG for
lation and previous results in the literature.19–21More impor-
17440
s
off

a
-

d

r
n-

l

e-

t

-

u-

tantly, the interpretation of our results should be understo
in this rotated basis that mixes spins and bosons.

The effective action in Eq.~12! can be viewed as describ
ing the electrostatic and magnetostatic energy of sin
charged particles with both electric and magnetic monopo
These satisfy electric-magnetic duality in the sense that
action is invariant under the exchangee
m and
gs
k2/gs , while k is unchanged. This is analogous to th
Dirac relation between electric and magnetic monopo
Furthermore, these particles possess a third electric
charge (c), unrelated to the two previous ones. The partiti
function sum now has been reduced to considering all p
ticle configurations, blending spins and bosons in this C
lomb gas representation, where we have particles plus n
trality conditions.

A partially traced partition function allows us to lin
problems that are originally quite distinct. For example, t
only difference between the CG’s of the single-impur
Kondo problem and the problem of tunneling though an i
purity in a Luttinger liquid48 are the neutrality conditions
Analogously, the two-channel Kondo problem49,50 and the
double barrier tunneling48 can be mapped into each oth
with the same neutrality conditions. The KLM also has
unsuspicious counterpart in the literature: two wea
coupled spinless Luttinger liquids.38,51,52The tunneling from
one LL to the other is analogous to a spin-flip process t
scatters a boson from an up-spin band to a down one
vice versa. In particular, the two problems give the sa
effective action~with different neutrality conditions! if we
disregard the backward-scattering terms in Eq.~2! and con-
sider the anisotropic casek51 (Jz

f50).
In the following section, we will derive the Coulomb ga

renormalization-group equations following closely the r
view by Nienhuis.34 As expected, the procedure strongly r
sembles the renormalization-group analysis of the tunne
between 2 LL’s.38,51–56 The Coulomb couplingsgs,r are
equal to 1 for noninteracting conduction electrons. Howev
the same RG equations will apply to the case of conduc
electrons with an SU~2! noninvariant forward-scattering in
teraction. In this case, the initial values ofgs,r are the cor-
responding Luttinger-liquid parameters.36 We will not dwell
upon this case here, but its phase diagram is analogous t
one we will derive below.

IV. RENORMALIZATION-GROUP EQUATIONS

The philosophy of the renormalization group is to sum t
partition function by infinitesimal steps and find recursi
equations for the coupling constants while keeping the sa
form of the effective action. In a Coulomb gas each s
corresponds to three distinct procedures: length resca
particle fusion, and particle annihilation.34 In order to imple-
ment these procedures all the particle fugacities must
small and we are forced to imposeJz

b andJ'
f ,b!t.

The first step consists of integrating large-wavelen
modes and then rescaling parameters so as to reconstru
original action form.57 This corresponds to the overall leng
rescaling
9-5



y
he

NOVAIS, MIRANDA, CASTRO NETO, AND CABRERA PHYSICAL REVIEW B66, 174409 ~2002!
FIG. 2. Length rescaling in the CG. Originall
distinct charge configurations are identified at t
new scale.
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r i j 5
r̄ i j

12d,
~14!

in the action and the partition function measureDh. Upon
rescaling we lose the ability to distinguish certain previou
distinct charge configurations as exemplified in Fig. 2. A
plying Eq. ~14! to the effective action Eq.~12! and expand-
ing the logarithm ford,!1, we obtain

Se f f5S̄e f f1
1

2 (
iÞ j

Fk2

gs
m~h i !m~h j !

1gse~h i !e~h j !1grc~h i !c~h j !Gd,.

The neutrality conditions can be used to rewrite the last te
as a single sum over sites:

S̄e f f5Se f f1
1

2 (
i

Fk2

gs
m~h i !

21gse~h i !
21grc~h i !

2Gd,.

~15!

The integral overh is the sum over all possible particl
positions, and its rescaling leads to

dh i5
dh̄ i

~12d, !d
. ~16!

We have left the dimensiond unspecified for the follow-
ing reason. Since a particle can only exist at the space c
dinate where a spin exists, we can define two important l
its in the KLM. If the Kondo spins are separated by
distance greater thand,, the sum over identical configura
tions is one dimensional (d51), as in the single-impurity
case@see~b! and ~c! of Fig. 2#. This is the dilute limit or
‘‘incoherent regime’’ of the Kondo lattice, where the scalin
proceeds exactly as in the single-impurity Kondo problem
a LL as found by Lee and Toner.44 In contrast, whend, is
larger than the distance between Kondo spins we are in
dense limit20 or ‘‘coherent regime’’ of the Kondo lattice. In
17440
y
-

m

r-
-

n

he

the latter case, the identification of initially distinct config
rations can involve charges at different space coordina
implying thatd52 @see~a! in Fig. 2#. We will focus on this
coherent regime and setd52 from now on.

Collecting Eqs.~15! and~16! we can express the partitio
function once again as a Coulomb gas by redefining the
ticle fugacities. A particle with charges (m,e,c) has its
fugacity Ym,e,c renormalized as

dYm,e,c

d,
5F22

1

2 S k2

gs
m21gse21grc2D GYm,e,c . ~17!

This equation gives the dimension of the correspond
operator and leads to the standard relevance criteria
bosonic operators. However, we have so far disregarded
possibilities. Suppose that a pair of initially distinct particl
is within range of the new smallest scale. Following And
son et al.25 we call it a ‘‘close pair.’’ After the RG step we
can no longer resolve these two particles as separate ent
On the one hand, if the particles have precisely oppo
charges we have a ‘‘pair annihilation’’@see~a! in Fig. ~3!#.
The residual dipole polarization of this pair renormalizes
interaction among the other particles, leading to the R
equations forgs andgr . Note thatk is an RG invariant. On
the other hand, if the pair is not neutral, the particles
fused into a new particle carrying the net charge@see~b! in
Fig. ~3!#. This last process may actually create particles p
viously absent in the gas. There are three new kinds of
ticles created upon fusion in the dense limit with initial co
ditionsgs;gr;1. Their charges and fugacities are listed
Table II. These new entities correspond to originally m
ginal operators that are absent in the bare problem~their
physical meaning will be discussed in the following sectio!.
Other particles with higher charges could also be conside
but from Eq.~17! it is clear that they are highly irrelevan
and therefore can be neglected. Collecting the annihila
and fusion terms, derived in Appendix B, and adding t
dimensionality equation ~17!, we complete the
renormalization-group equations. Away from half-filling
9-6
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FIG. 3. ‘‘Close pair’’ processes in the RG
step:~a! particle annihilation and~b! particle fu-
sion.
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where the backward-scattering terms are irrelevant, parti
with fugacitiesy2,3 and G can be disregarded. Thus, on
configurations involving the fugacitiesy1 , G, andG̃ need to
be considered. On the other hand, at half-filling all partic
from Tables I and II should be included. This leads to t
following renormalization-group equations.

~1! Away from half-filling,

dy1

dl
5F22

1

2 S k2

gs
1gsD Gy11

sin~2pk!

2k
y1~G1G̃!,

dG

dl
52~12gs!G1py1

2 ,

dG̃

dl
52S 12

k2

gs
D G̃1py1

2 ,

1

2p2

d ln gs

dl
5

sin~2pk!

4pk S k2

gs
2gsD y1

21
k2

gs
G̃22gsG2,

1

2p2

d ln gr

dl
50.

~2! At half-filling,

TABLE II. New particles created upon rescaling and th
charges.

Fugacity (m,e,c) Number of particles

G̃50 (62,0,0) N4

G50 (0,62,0) N5

G50 (0,0,62) N6
17440
es

s
e

dy1

dl
5F22

1

2 S k2

gs
1gsD Gy11

sin~2pk!

2k
y1~G1G̃!1py2y3 ,

dy2

dl
5F22

1

2 S k2

gs
1grD Gy21

sin~pk!

k
y1y31py2~G̃1G!,

dy3

dl
5S 22

1

2
~gs1gr! D y31

sin~pk!

k
y1y21py3~G1G!,

dG

dl
52~12gs!G1p~y1

21y3
2!,

dG̃

dl
52S 12

k2

gs
D G̃1p~y1

21y2
2!,

dG

dl
52~12gr!G1p~y2

21y3
2!,

1

2p2

d ln gs

dl
5

sin~2pk!

4pk S k2

gs
2gsD y1

21
k2

gs
S G̃21

y2
2

2 D
2gsS G21

y3
2

2 D ,

1

2p2

d ln gr

dl
52grS y2

2

2
1

y3
2

2
1G2D .

A numerical solution of these sets of equations is sho
in Figs. 4 and 5. For these particular plots we us
y1,2,3(0)50.01, gs(0)5gr(0)51, and G(0)5G̃(0)
5G(0)50. The RG flows were stopped when any of t
fugacities reached the value of 1 and the values of the o
parameters were then plotted at this point. The flow eq
tions depend only on the absolute value ofk.
9-7
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As can be readily checked, the equations always flow
strong coupling. Nevertheless, special values ofuku allow us
to trace regions with qualitatively different flows. Since t
RG equations depend only onuku, those regions are mirro
reflections on thek50 line, the ‘‘Toulouse line.’’20 For k2

.3, single-spin-flip processes are irrelevant (y1,2→0), just
like in the FM single-impurity Kondo problem.25,58 More-
over, the final flow is independent of the precise value ofk,
clearly indicating a distinct phase of the model. From n
on, we will denote this phase as region 1. In contrast, s
flips are always relevant foruku,3, but we also encounter
second special flow. Foruku51, the particle fugacitiesG and
G̃ are always the same. There is also a precise balance
tween the ‘‘magnetic’’ (k2/gs) and ‘‘electric’’ (gs) interac-
tions. Consequently, the ground state is a plasma for part
of type (m,e,0), implying thatfs and us are completely
disordered. In fact,k51 corresponds to the critical point o
the problem of two weakly coupled LL’s. Therefore, we c
safely identify uku51 as a boundary between differe
phases. For other values ofuku the interactions are screene
(g→0 or `) and/or the fugacities have different flows. It
clear that for 1,k2,3 ~denoted as region 2! single-spin-flip
fugacities become less and less relevant ask2→3. This sug-
gests a transition region from the disordered state atuku51
to the flow of region 1. We shall calluku,1 region 3. In

FIG. 4. RG flow away from half-filling as a function ofk.
17440
o

in

be-

es

contrast to the previous cases, single flips are alw
strongly relevant in this region. The order of relevance of
fugacities changes a few times ask is varied in this region.
However, a particularly simple case occurs in the Toulou
line (k50).

Even though the renormalization flows are clear and
special flows were identified, their physical interpretation
less straightforward. In order to proceed we must assig
physical meaning to each particle in the gas, from which
can then attempt to determine the phase diagram.

V. EFFECTIVE HAMILTONIANS

At each RG step we rewrote the problem as a CG. Mo
over, all the neutrality conditions were preserved by the R
step. We therefore can define a quantum Hamiltonian
reproduces the CG at each step. This effective Hamilton
allows us to understand the behavior of the system and
certain special cases, to infer its phase.

In the dense limit of the KLM, the distance between l
calized spins is of the order of the smallest bosonic wa
length available. Therefore, after the first RG step we w
forced to introduce new entities in the problem. Their Ham
tonian form is trivially guessed from their definitions,

FIG. 5. RG flow at half-filling as a function ofk.
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O1;G̃@FR↑
† FR↓FL↑

† FL↓ei ukuA8p/gsus(x)

3S2~x1d!S2~x!1H.c.#, ~18a!

O2;G@FR↑
† FR↓FL↓

† FL↑eiA8pgsfs(x)S1~x1d!S2~x!1H.c.#,
~18b!

O3;4G (
$hÞn%5R,L

(
$s1 ,s2%5↑,↓

@Fhs1

† Fns1
Fns2

† Fhs2

3eiA8pgrfc(x)14ikFxSz~x1d!Sz~x!1H.c.#, ~18c!

where d is a distance of the order of the inverse of t
bosonic cutoff (;a). Both theO1 and theO2 terms involve
simultaneous flips of two nearby spins and the creation
particles with charges (m,e,c)5(62,0,0) and (0,62,0), re-
spectively. In contrast,O3 is not related to spin flips and
generates particles with charges (0,0,62). It is simple to
understand their origin. In the original Hamiltonian of E
~2!, it is possible to spatially resolve the fermion-spin sc
tering events. As we reduce the bosonic cutoff this is
longer true, and we must consider multiple-scattering eve
within the new smallest scale,a. There are clear similarities
between the conduction-electron operators in Eqs.~18! and
the usual backscattering and umklapp operators. The s
dard picture of the RKKY interaction is that of an effectiv
spin-spin interaction mediated by the conduction electro
In light of Eqs. ~18!, it seems natural to consider also th
opposite point of view: an indirect electron-electron intera
tion mediated by the local spins. The RG procedure int
duces these composite events in a natural fashion.

The final operator that must be introduced in the effect
Hamiltonian is a result of the annihilation process. Unli
fusion, when a pair is annihilated, the zeroth-order term in
operator product expansion of the bosonic fields is a c
stant. Nevertheless, it is still a function of the local spins a
must be considered at the last RG step in order to estab
an effective Hamiltonian. Collecting all possible pair annih
lation terms and expanding point-split bosonic operators
get

Oz;4~G̃22G2!Sz~x1d!Sz~x!1~y1
21y2

2!S2~x1d!S1~x!

1H.c. ~19!

It must be stressed that the spin operators in Eqs.~18! and
~19! should not be understood as the original local spi
Consider the spin history of Fig. 6 as an example. Supp
that the pair flip-antiflip is produced by a forwardJ'

f term
and a backwardJ'

b term at timest andt1d within the new
renormalization scale. This is equivalent to having no flip
all and cannot be distinguished from a particle with fugac

FIG. 6. Two different spin histories at the older RG scale t
cannot be distinguished at the new one.
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b . At the operator level, this is formally accomplished b

summing over all possible products of flip operators, expa
ing the result ind;a and reordering the Klein factors. Th
latter are actually crucial for the correct final sign~see Ap-
pendix C for details!. Thus, we exactly reproduce th
z-backscattering particle bydefining the Sz spin at the new
scaleas

2Sz~ x̄,t̄ ![S1~x,t1d!S2~x,t!2S2~x,t1d!S1~x,t!.

A similar calculation can be done for any other possible s
history and bosonic operator within a disk of radiusd;a.
Therefore, the local spins in the effective Hamiltonian rep
sent block spins~as in the example above! and not the origi-
nal ones.

Taking d as the lattice spacing at the last RG step a
collecting all these operators, we find the effective Ham
tonian

He f f5H01(
j

$4@G̃22G2#18G cos@A8pgrfc~xj !

14kFxj #%S
z~xj 11!Sz~xj !18y3sin@A2pgrfc~xj !

12kFxj #sin@A2pgsfs~xj !#S
z~xj !

12@y1cos$A2pgsfs~xj !%1y2cos$A2pgrfc~xj !

12kFxj%#eiA2p/gskus(xj )S1~xj !1@GeiA8pgsfs(xj )1y1
2

1y2
2#S1~xj 11!S2~xj !

1G̃eiA8p/gskus(xj )S1~xj 11!S1~xj !1H.c. ~20!

VI. 1D ANISOTROPIC KLM PHASE DIAGRAM

For certain values ofk the effective Hamiltonian in Eq.
~20! is independent of the bosonic fields at the end of the
flow. We will exploit these cases to intuit the various phas
of the model.

We start by considering the system away from half-fillin
wherey2,3 are irrelevant andG[0. The RG flows are sum
marized in Table III.

In region 1, the only relevant fugacity isG. Therefore,
A8pgsfs freezes atp. This reduces Eq.~20! to the aniso-
tropic ferromagnetic Heisenberg model

He f f;(
j

~24G2!Sz~xj 11!Sz~xj !

2G@S1~xj 11!S2~xj !1S1~xj !S
2~xj 11!# ~21!

t

TABLE III. RG flows for the fugacities away from half-filling.

Region y1 G G̃ G̃2G

1 →0 →` 0 ,0
2 →` →` →` ,0
3 →` →` →` .0
9-9
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NOVAIS, MIRANDA, CASTRO NETO, AND CABRERA PHYSICAL REVIEW B66, 174409 ~2002!
in its ordered phase (G;1,̂ Sz&51/2).
The effective Hamiltonian for thek50 line, the Toulouse

line, is also independent of the bosonic field. Since the m
relevant fugacity isy1 , A2pgsfs freezes atp. This leads to
an antiferromagneticXYZmodel in an external field,

He f f;(
j

2@G̃22G2#Sz~xj 11!Sz~xj !24y1Sx~xj !

1S y1
21G1G̃

2
DSx~xj 11!Sx~xj !

1S y1
21G2G̃

2
DSy~xj 11!Sy~xj !. ~22!

In this case, the effective spin Hamiltonian exhibits order
the XY plane,G;G̃;y;1. Nevertheless, this does not im
ply any order of the original spins. As we stated before,
our results must be understood in the rotated basis of
~13!. This ensures that the original model, Eq.~2!, is still
disordered, as emphasized in Ref. 20. Therefore, the sy
is paramagnetic with short-range antiferromagnetic corr
tions. Although the Toulouse line corresponds to a particu
case, it seems reasonable to extend this assignment to
entire region 3. For one thing, because the first term in
~22!, which drives the antiferromagnetic tendency, rema
positive throughout this region. Besides, theXY disordering
terms are the dominant interaction in the region. In parti
lar, in the uku51 line, the symmetric flow ofG and G̃ en-
sures that thez term vanishes and therefore the order para
eter ^Sx,y,z& is still zero. Hence, we propose that the ent
region 3 is a paramagnetic phase with short-range antife
magnetic correlations. Note that this is not necessarily t
for other observables, since the flows nearuku50 and uku
51 are qualitatively different.

There is no simple effective Hamiltonian within region
but the disordering term, proportional toy1, becomes pro-
gressively less relevant ask2→3. More importantly, the
short-rangez correlations turn from antiferromagnetic to fe
romagnetic. Consistent with the identification of region 1
a ferromagnetic phase, these two features lead us to te
tively identify region 2 as a ferromagnetically ordered pha
with unsaturated magnetization of the spins.

Collecting these results, we conclude that there are at l
two continuous phase transitions in the anisotropic KLM
from half-filling. The first transition, from region 1 to regio
2 in Fig. 7, reminiscent of the Berezinskii-Kosterlitz
Thouless transition of the single-impurity Kondo model25

separates regions of relevance and irrelevance of the sin
flip process. The effective model for region 1, Eq.~21!, has
ferromagnetic order with full saturation of thelocalized
spins. A regime with ferromagnetic order, however, is b
yond the present bosonization treatment, since the spin
larization of the conduction electrons leads to different Fe
velocities for up- and down-spin electrons. However, the
flow is still able to indicate its existence through the irre
evance of single spin flips and the nature of the effect
Hamiltonian~21!.
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Ferromagnetism in the KLM has a long history in th
isotropic model. In the FM case, this mechanism is w
established for higher dimensions or classical spins, and
usually called double exchange.59–61 In this case, ferromag-
netic ordering allows the electrons to lower their kinetic e
ergy with respect to a disordered paramagnetic phase. In
dimension, perturbation theory in thet/J and mean-field
treatments supports this picture for a sufficiently largeJ.

In the AFM model this simple image of an electron mo
ing in a background of ordered localized spins is no lon
valid because of quantum fluctuations. Nevertheless, an
lytical solution was found for the antiferromagnetic Kond
lattice with a single conduction electronin arbitrary
dimensions.13,62 It showed that the ground state of the mod
is ferromagnetic withStot5(L21)/2. The proof bears strong
similarities to Nagaoka’s theorem on the infinite-U Hubbard
model with one hole added to the half-filled state.63 Despite
these similarities, it holds under much less restrictive con
tions than Nagaoka’s proof and, in particular, is valid in t
one-dimensional case. The lowering of conduction-elect
kinetic energy is still the driving mechanism here becau
unlike in the infinite-U Hubbard model, the electron can ho
without shifting the localized spins. As a rigorous theore
this applies only to a single conduction electron, but there
very little doubt that this effect survives at finite fillin
~again, unlike the infinite-U Hubbard model!. The best evi-
dence comes from numerical density-matrix renormalizati
group studies on very large systems (L up to 120!, which
show an extended region of ferromagnetism forJ.Jc(n),
whereJc(n),` for anyn.13,64,65Moreover, the result is cor-
roborated by the perturbation and the mean-field theory.

The physics of the anisotropic problem we are consid
ing is very similar, quantum fluctuation effects beingless
pronounced. TheuJzu5` limit corresponds to a classica
Ising spin lattice. In this case the simple image of
inverted-spin electron moving in an ordered background
applicable. The flow ofy ~ultimately related toJ') to zero

FIG. 7. Phase diagram of the 1D anisotropic KLM away fro
half-filling. Regions 1 are fully polarized ferromagnets, regions
are partially polarized ferromagnets, and regions 3 are param
netic. See text for details.
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COULOMB GAS APPROACH TO THE ANISOTROPIC . . . PHYSICAL REVIEW B 66, 174409 ~2002!
reflects the asymptotic irrelevance of quantum fluctuatio
However, at any finite scale, the residual quantum fluct
tions in the AFM chain transform the inverted-spin condu
tion electron and the nearby localized moment into a mo
Kondo singlet. Following this argument, the total spin p
site ~electrons1spins! is Stot

z 5^Sz&2nc/25(12nc)/2 in the
antiferromagnetic case andStot

z 5(11nc)/2 in the ferromag-
netic one, as seen numerically.2,13

There is another continuous phase-transition line from
gion 2 to region 3 in Fig. 7, similar to the transition of th
Ising model in a transverse field,40 which separates a para
magnetic phase~region 3 of Fig. 7! from a region with un-
saturated magnetization of the localized spins. The magn
zation grows continuously up to the border of region 1. It
tempting to identify region 2 with similar phases with uns
urated moments found in numerical studies of both the
tropic FM KLM of Dagotto et al.2 and the isotropic AFM
KLM of Tsunetsuguet al.,13 and conjectured in the mean
field treatment by Irkhin and Katsnelson.66

The numerical studies of the FM KLM also identified
region of phase separation.2 We did not find any indication of
phase separation. We can think of two reasons why. First,
coupling constant in that region is of the order of the elect
bandwidth and therefore bosonization is no longer va
Moreover, this phase is a competition between the ferrom
netic tendencies of lower band fillings and the antiferrom
netic counterpart at half-filling. Since we completely negle
backscattering~ultimately responsible for the antiferromag
netism! this phase was lost even before we began.

As we pointed out before, at half-filling we are able
include the backscattering terms in the RG scheme. We
now consider this case. The first result from the RG flow
thatO3, whose bosonic part is identical to an umklapp ter
is always relevant, pointing to the presence of a charge
The spin sector is more subtle and we must consider s
special cases.

Region 1 can be simply analyzed. The interaction para
etersgs andgr go to zero and the most relevant fugacity
y3. Therefore,A2pgrfc freezes atp/2. The other relevan
flows areG andG. The effective Hamiltonian reduces to a
anisotropic ferromagnetic Heisenberg model in a stagge
field,

He f f;(
j

~24G228G!Sz~xj 11!Sz~xj !

2GS1~xj 11!S2~xj !1H.c.1~21!xj8y3Sz~xj !.

The staggered field induces Ne´el order, but the system ha
strong ferromagnetic tendencies. As we move away fr
half-filling, the staggered field becomes progressively irr
evant and the ferromagnetic effective model is reobtaine

The k50 point is once again very special. At the end
the RG flow, the effective Hamiltonian is also free of th
bosonic fields and the most relevant fugacities arey2 andy1.
They forceA2pgrfc and A2pgsfs to freeze atp, sup-
pressing the staggered field in thez direction. Thus, the Tou-
louse point effective Hamiltonian is
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He f f;(
j

@2~G̃22G2!14G#Sz~xj 11!Sz~xj !

2S G1y1
21y2

21G̃

2
DSx~xj 11!Sx~xj !

2S G1y1
21y2

22G̃

2
DSy~xj 11!Sy~xj !

24~y11~21!xjy2!Sx~xj !.

As before this does not imply any order of the original sp
in the XY plane. From this effective model we can see th
the uku50 point is characterized by spin and charge gaps
no ordering.

In summary, at half-filling we assign two distinct mag
netic phases. Regions 1 and 2 have Ne´el order in thez direc-
tion. On the other hand, if we assume that the Toulouse
features can be extended to the entire region 3, we can i
tify this region with a paramagnetic phase. The seve
changes in the relative flows maybe a sign of additio
phases as a function ofk. However, the effective Hamil-
tonian cannot be so easily solved and we are unable to m
further progress.

The KLM at half-filling was studied by Shibataet al.15 By
looking at the strong-coupling limit, they were able to fin
five distinct magnetic phases, which they argue survive do
to weak coupling: two Ne´el phases~FM and AFM!, a planar
phase~the triplet state withSz50), a Haldane phase, and
Kondo singlet ~paramagnetic! phase. Because of the re
evance of backscattering and the conditionJ̃z

b!1, a direct
comparison between the RG flows and the available num
cal results is restricted tok;1. This neighborhood has n
simple effective Hamiltonian and we are unable to make
rect contact with the numerical results. We can point o
however, that the strong-coupling flow ofgs is an indication
of the opening of a spin gap, though this is less certain
cause of the difficulty of analyzing the effective Ham
tonian. This possible spin gap is compatible with t
Haldane-type phase atJz,0 and the Kondo singlet phase
Jz.0 obtained in Ref. 15. As we dope the system away fr
half-filling the backward-scattering terms become irreleva
and a direct comparison with the numerical data becom
more feasible.

As a final illustration of the usefulness of the Coulom
gas mapping, we develop in Sec. VII its application to
related yet simplified model of spins and fermions: the Isin
Kondo chain. Its simplicity makes it a more pedagogical e
ample of the formalism.

VII. THE ISING-KONDO CHAIN

The Ising-Kondo model,

H5(
kW ,s

«kWckW ,s
†

ckW ,s1J(
i ,s,ś

Si
zc i ,s

†
ss,ś

z

2
c i ,s̄1y(

i
Si

x ,

was proposed by Sikkemaet al.35 as a model for the weak
antiferromagnetism of URu2Si2. Here, we will consider the
9-11
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NOVAIS, MIRANDA, CASTRO NETO, AND CABRERA PHYSICAL REVIEW B66, 174409 ~2002!
one-dimensional version of this model and apply the sa
methods that we used in the Kondo chain. Using boson
tion and disregarding the backscattering terms, the Ha
tonian simplifies to

H5H01(
i
A2

p
J̃]xf~ i !Sz~ i !2 ỹSx~ i !, ~23!

where the coupling constants were rescaled by the Fe
velocity as before. Equation~23! is identical to the coopera
tive Jahn-Teller Hamiltonian.68 The lower symmetry of the
model allows us to foresee that the sign ofJ is irrelevant to
the physics. It is also a well-known result from the coope
tive Jahn-Teller problem that the strong-coupling limitsJ̃

@1 andỹ@1 show easy axis order in thez andx directions,
respectively.

Exactly as in the KLM, we can proceed by going to
path-integral formulation with bosonic coherent states a
the local spinSz basis. After tracing the bosonic fields an
integrating by parts the spin variables, the Coulomb gas
follows has only one breed of particles (m,0,0), subjected to
the neutrality condition 1 of Sec. II. To mimic our previou
notation we defineg5A2p/J. Assuming ỹ!1, the RG
equation can be derived in a similar fashion. They cor
spond to the standard Kosterlitz-Thouless equations

dy

dl
52~12g!y,

d ln g

dl
52gy2.

For g.1, spin-flip processes are irrelevant~see Fig. 8,
region 1!. In the Jahn-Teller language this corresponds t
ferrodistortion of they!J fixed point. On the other hand, fo
g,1, spin flips are relevant,y→` and g→0 ~see Fig. 8,
region 2!. We can find an effective Hamiltonian to shed lig

FIG. 8. Phase diagram of the Ising-Kondo chain. In region 1
transverse field is irrelevant, while in region 2 it is relevant. See
for details.
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on the physics in this regime. Indeed, we could have app
the rotation in Eq.~13! to the original Hamiltonian to get

H5H02
y

2
e2 iA8pgu(xi )S1~xi !1H. c.1s. r. t.,

where ‘‘s.r.t.’’ stands for ‘‘short-range terms.’’ The operato
in this rotated basis are called ‘‘displaced’’ in the cooperat
Jahn-Teller literature.68 This rotation is equivalent to the in
tegration by parts of theSz variables in the time direction, a
we saw. By taking nowy→` and g→0, the effective
Hamiltonian is simply a magnetic field in thex direction
acting to order the local spins. Unlike in the KLM, the orig
nal spins are also ordered in thex direction sinceu freezes at
the value of zero. The transition is continuous and of
Kosterlitz-Thouless type.

VIII. DISCUSSION AND CONCLUSIONS

We have proposed in this paper what is the natural ex
sion to the one-dimensional lattice of the highly success
approach of Anderson and co-workers23–25 to the single-
impurity Kondo problem. The mapping to a Coulomb gas
made specially easy by using bosonization methods, and
ticularly subtle developments demonstrate the importanc
a careful consideration of Klein factors, so often neglected
most treatments.36 Since bosonization relies on the lineariz
tion of the conduction-electron dispersion and is appropr
for the analysis of the long-wavelength physics it is nev
quite obvious how far it can be taken in its application
lattice systems. However, motivated by its success in
Hubbard, Heisenberg, and other models, it is reasonabl
attempt a direct comparison of our treatment to the phase
the anisotropic Kondo lattice model.

One of the hardest tasks in our treatment is the extrac
of physical information from the effective models we obta
after several rescaling steps. Some special lines in the p
diagram can be more confidently analyzed, but as is comm
in RG treatments, we are then forced to attempt an extra
lation to other regions based on continuity arguments. Thi
specially true in our case, where most of the flows are
wards strong coupling. Given these caveats, however,
overall topology of the phase diagram away from half-fillin
is compatible with the known phases of theisotropic
model.2,13 The extension of these studies to the anisotro
case would be highly desirable. At half-filling, the metho
itself limits its application to theJz!t region. Unfortunately,
this is one of the regions where the effective Hamiltonian
hard to solve and we are not able to explore the rich ph
diagram obtained in Ref. 15. Nevertheless, we do find
charge gap at half-filling throughout the phase diagra
which seems compatible with the numerical results. T
question of the spin gap is less clear but our results are
compatible with what is known numerically.

We would also like to try to make contact with previou
studies of the Kondo lattice model in one dimension ba
on the use of Abelian bosonization. In the important work
Zachar, Kivelson, and Emery,20 where the rotation of Eq.
~13! is first used, the highly anisotropic Toulouse line (k

e
t

9-12
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50) is analyzed in detail. One of their findings is the pre
ence of a spin gap in the spectrum away from half-fillin
which also appears in our effective Hamiltonian. At ha
filling, they also find spin and charge gaps, which seem co
patible with our results. They also point out that the met
insulator transition asn→1 is of the commensurate
incommensurate type.67 In our treatment, the
commensurability condition 4kFa52pn51 for the rel-
evance of the backward-scattering terms, the same as in
Hubbard model, is a strong indication that the transition
indeed of this type.

Honner and co-workers have also investigated the s
dynamics of the isotropic Kondo chain.19,21 After smearing
out the discontinuity in the commutation relations of t
bosonic fields, they replace the latter by their expectat
value in the noninteracting ground state and write an eff
tive Hamiltonian for the localized spins. This Hamiltonia
can then be treated numerically and the phase diagram d
mined. This procedure requires the fitting of the smear
length scale to numerical results. One of the advantages
treatment brings to the problem is the ability to do the f
analysis analytically and without anya priori assumption
about the boson dynamics. In fact, the Coulomb gas map
treats spins and bosons on the same footing. Besides
fitting to numerical results is necessary. A discrepancy
tween our results and those of Honner and Gula´csi is the
partially polarized FM phase we find atJz,0. In their treat-
ment, a paramagnetic phase is found instead. It would
interesting to extend their treatment to the anisotropic c
for a fuller comparison.

Recently, Zachar22 conceived an alternative approach
the KLM in the rotated basis. He used a particular exam
of the rotation in Eq.~13!,

Ū5expS iA2p(
x

us~x!Sz~x! D ,

and treated the KLM in a self-consistent mean-field appro
mation. This approach led him to predict three differe
phases in the AFM KLM as well. The first region is co
trolled by the paramagnetic Toulouse line fixed point. In t
rotated basis, this phase is characterized by^Sz(x)&50 and
^SxÞ0&, precisely as we find in region 3 of Fig. 7. Anoth
phase haŝ Sz&Þ0 and ^Sx&50. In this case, the system
exhibits ferromagnetic order in the original basis, and the
fore could be identified with region 1 of Fig. 7. Finally, em
bedded between these two phases, he also finds a third
mediate region, which he identifies as a ‘‘soliton lattice
with ^Sz&Þ0 and ^Sx&Þ0. It is tempting to associate thi
intermediate phase with region 2 of Fig. 7. However, Zac
proposes a different description calling region 1 a ‘‘staggered
liquid Luttinger liquid,’’ whereas we find it much more natu
ral to associatêSz&Þ0 with ferromagnetic order. He als
conjectures that region 2 does not exist. Finally, he arg
that all transitions are first order and of the commensur
incommensurate type, while we find them to be continuo

In conclusion, we have presented a flexible treatment
one-dimensional system of spins and fermions based o
mapping to a Coulomb gas, which we treat within
17440
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renormalization-group approach. When applied to the Kon
lattice model, the method enables us to identify its vario
phases both at and away from half-filling.
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APPENDIX A:
NEUTRALITY CONDITIONS FOR THE KLM

Neutrality conditions are common in Coulomb gas form
lations of quantum problems. In the simplest applicatio
these conditions impose that the overall charge is zero as
instance, in the sine-Gordon model.34,38 As applied to our
case this condition reads

(
i

m~xi ,t i !5(
i

e~xi ,t i !5(
i

c~xi ,t i !50. ~A1!

These are the mathematical expressions of the condition
the bosonic correlation functionsnot to vanish in the thermo-
dynamic limit and they also ensure the overall cancellat
of the Klein factors. However, in the KLM, the presence
both spins and bosons leads to more stringent neutrality c
ditions than in other problems. Therefore, besides Eq.~A1!,
there are two additional restrictions.

The first one comes from the impossibility of performin
two consecutive upward spin flips on a given localized sp
1
2 site. Since, from Eq.~6! the m561 variable gives the
direction of a spin flip, it follows thatm must alternate in
time. This condition is also present in the Coulomb gas f
mulation of the single-impurity Kondo problem.23 As a direct
consequence of the alternation of the chargem and the peri-
odic boundary conditions in imaginary time, we obtain t
first ‘‘strong’’ neutrality condition: the total chargem at a
given spatial position is zero( im(xf ixed ,t i)50. This gives
condition ~1! of Sec. II, whereas condition~2! is already
contained in Eq.~A1!.

The second additional restriction is slightly less obviou
From Eq.~7!, we see that each contribution to the partitio
function has a prefactor sign that depends on a string
Klein factors andSz operators, the latter coming fromz
backward-scattering events generated byHz

b of Eq. ~3d!. The
neutrality condition we will derive comes from the cancell
tion of terms with identical absolute values but with oppos
prefactor signs. This will finally lead to condition~3! of Sec.
II. We will now consider different cases separately.

Let us first focus on the contributions to the partitio
function coming from terms with forward scattering on
@Eqs.~3b! and ~3c!#. If there are no spin flips, then the pre
factor is obviously positive. When there is a pair of oppos
9-13
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NOVAIS, MIRANDA, CASTRO NETO, AND CABRERA PHYSICAL REVIEW B66, 174409 ~2002!
flips @the only possibility allowed by the neutrality conditio
~1!#, then, because of the overall neutrality condition~2!, the
Klein factors cancel,

Fhs1

† Fhs2
Fhs2

† Fhs1
51,

preserving the positive sign. The consideration of configu
tions with additional pairs of flips leads to the same canc
lation of Klein factors.

Next, we look at contributions generated byH'
b @Eq. ~3e!#

only. By considering again increasing numbers of pairs
opposite flips as in the previous paragraph we arrive a
analogous cancellation of Klein factors.

Moving on now to contributions coming fromHz
b @Eq.

~3d!#, we first consider the possibility of no spin flips. In th
case, integrating out the bosonic modes, the contributio
the partition function is

z;
e62ikFDxi j

r i j
gr1gs

Sz~ i !Sz~ j !, ~A2!

where the Klein factors also cancel nicely. Tracing over
spin variables leads to no contribution to the partition fun
tion sum, unlessi and j have the same space coordina
What happens for a higher number of insertions ofHz

b? For
the general case ofN particles coming fromHz

b , the contri-
bution to the partition function will be

z;expF(
i j

lnur i j u~grcicj1gseiej !G)
i

e2ikFcixiSz~ i !.

Note how eachSz insertion comes with a correspondingc
charge. Thus, it is simple to show that tracing overSz( i )
leads to the condition of havingan even number of particle
of charge c at each spatial coordinate. Moreover, the reor-
dering of Klein factors leads to their complete cancellatio

In order to generalize this result to a configuration with
arbitrary number of spin flips, let us assume initially th
there are only flips of one kind: eitherH'

f or H'
b . By using

the identity~using Pauli matrices instead of spin operator!

s1Fhs
† FnsFjs1

† Fcs2
5s2Fjs1

† Fcs2
Fhs

† Fns , ~A3!

with nÞh ands1Þs2, it is easy show that anHz
b insertion

on one side of a domain wallcan be moved to the other sid
with a sign change~see Fig. 9!. Now consider, for example
a pair of particles generated byHz

b as before. When there i
a pair of flips lying along the time line, we can move th
Klein factors andSz through the domain walls with the iden
tity above and cancel them out. Therefore, our previous
sult, obtained without the flips, remains valid. This can

FIG. 9. A possible spin history and the diagrammatic repres
tation of Eq. ~A3!. Az

bB'5B'Cz
b , whereAz

b5Fhs
† Fnss(t1), B'

5Fj↑
† Fc↓ , andCz

b5Fhs
† Fnss(t2).
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generalized for any number of flips. Finally, we must co
sider the possibility of having flips coming both fromH'

f

andH'
b . For this we note that a flip fromH'

f and a subse-
quent opposite flip fromH'

b ‘‘fuse’’ in a way that is precisely
equivalent to the insertion of a singleHz

b particle~Klein fac-
tors, Sz operators, and all!. Therefore our previous conclu
sion is valid in this case as well: there must be an ev
number ofc charges~not necessarily neutral! at each space
coordinate.

Finally, we have so far considered insertions along o
imaginary-time line only, which is not the general case. Ne
ertheless, because there is always an even number of K
factors in each time line, we can always reorder them so a
group together contributions from individual time lines wit
out introducing additional signs. Then, the previous analy
can be used to prove the global cancellation of Klein fact
andSz operators in the general case as well.

We would like to note that the arguments presented in
appendix indicate a rather surprising precise cancellation
Klein factors andSz operators, suggesting that perhaps th
is a deeper underlying symmetry behind this result. Ho
ever, we were not able to find a more general symme
based demonstration. We also point out that, in the prob
of a single Kondo impurity in a Luttinger liquid, Lee an
Toner44 introduce the same kinds of particles defined in t
Table I. However, in their analysis there is no explicit me
tion of how to deal with the product of Klein factors and th
Sz operators coming from thez backscattering events. W
have shown that these factors almost miraculously cance
and do not affect the remainder of the analysis of their~or
our! Coulomb gas.

APPENDIX B:
ANNIHILATION AND FUSION OF PARTICLES

We now show in detail how the RG procedure leads to
annihilation and fusion of charged particles. Consider t
we initially have a ‘‘close pair’’ with each particle havin
fugacitiesF1 and F2. In the complex notation of Eq.~10!,
the action takes the simple form

Se f f5
1

2 (
iÞ j

a i j ln zi j 1b i j ln z̄i j 12ikF(
i

c~h i !xi ,

with

a i j 5
1

2 F S uku

Ags

m~h i !2Agse~h i !D
3S uku

Ags

m~h j !2Agse~h j !D 1grc~h i !c~h j !G ,

b i j 5
1

2 F S uku

Ags

m~h i !1Agse~h i !D
3S Agse~h j !1

uku

Ags

m~h j !D 1grc~h i !c~h j !G .

-

9-14
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Suppose the close pair particles are at positionsl and m in
space-time. We split the action into three parts:

S15
1

2 S (
iÞ j Þ l

1 (
iÞ j Þm

D
3Fa i j ln zi j 1b i j ln z̄i j 12ikF(

i
c~h i !xi G ,

S25(
iÞ l

a i l ln zil 1b i l ln z̄i l 1 (
iÞm

a imln zim1b imln z̄im ,

S35a lmln zlm1b lmln z̄lm .

S1 gives the interaction between the particles that are no
the close pair,S2 gives the interactions between the clo
pair and the other particles, andS3 gives the interaction be
tween the particles belonging to the pair. Finally, we defi
the relative coordinate of the pair ass5zm2zl . For s;d,
!1 we expand the logarithm ins:

ln zmi> ln zli 1
s

zli
.

1. Fusion

If the pair is not neutral, the leading term in the expans
of S2 is of order zero inusu. Therefore, we can rewriteS2 as
giving the interactions between all other particles and
new ‘‘fused’’ one. In order to once again write the problem
a Coulomb gas form, we must rescale the fugacities to
commodate this new particle. Doing the integral inS3,

E dseS3;
sinpblm

blm
d,,

where,

blm5k@e~hm!m~h l !1m~hm!e~h l !#.

After summing over particle configurations that do not co
tain the fused pair, we get the contribution from fusion
particles with fugacitiesF1 andF2 to the fugacityF3 of this
new fused particle,

dF3

d,
5

sinpblm

blm
F1F2 .

2. Annihilation

If the pair is neutral, the particles annihilate each other
this case,a i l 52a im and b i l 52b im . We can expand the
partition function contribution inusu,

z5E dsdleS11S3S 11usuB~ l ,m!1
usu2

2
B~ l ,m!21••• D ,

where
17440
in

e

n

e

c-

-
f

n

B~ l ,m!5 (
iÞ( l ,m)

S s

usu
a i l

zil
2

s̄

usu
b i l

z̄i l
D .

The integration over the pair center-of-mass coordinatel is

E dlB~ l ,m!50.

This is different from the single-impurity Kondo problem o
the dilute limit, where this integral does not vanish. The re
son is that, in these cases, the integration is only along
time direction and, therefore, a logarithmic divergence
pears. Consequently, the expansion inB stops at first order.
In contrast, in the dense limit the integral is over space a
imaginary time, hence removing this singularity. The fi
nonvanishing term is second order inB, as in the sine-
Gordon and the 2 LL’s problem,38

1

2E dlB~ l ,m!2

5
1

2 (
i , j Þ( l ,m)

E dl F s2

usu2

a i l a j l

zil zj l
1

s̄2

usu2
b i l b j l

z̄i l z̄j l

22
a i l b j l

zil z̄j l
G .

After integration, the first two terms are power-law functio
of the distance between the remaining particles of the g
For a sufficiently dilute gas, the most significant contributi
is given by the last term

1

2E dlB~ l ,m!2;22p (
i , j Þ( l ,m)

a i l b j l lnuzi j u1const.

~B1!

It has a simple physical meaning: it gives the ‘‘vacuum p
larization’’ coming from the dipole moment of the close pa
The final step in the calculation is to integrate over the re
tive coordinates,

E dseS3usu2;
sinpblm

blm
d,, ~B2!

where

blm5k@e~h l !m~hm!1m~hm!e~h l !#.

Collecting Eqs.~B1! and ~B2!, the partition function contri-
bution after rescaling is

z5eS1S 22p
sinpblm

blm
(

i , j Þ( l ,m)
a i l b j l lnuzi j ud, D .

To complete the RG step, we must sum the charge confi
ration of S1 that did not contain the close par,

z5eS1S 122pF1F2

sinpblm

blm
(

i , j Þ( l ,m)
a i l b j l lnuzi j ud, D .

Summing over all possible annihilations of pairs of partic
and reexponentiating, we get the renormalization-gro
equations for the Coulomb interaction strengthsgs andgr .
9-15
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APPENDIX C: DETAILED EXAMPLE OF A FUSION
PROCESS

In this appendix we show in greater detail how to interp
the local spins in the effective Hamiltonian of Sec. V aft
several RG steps.

Let us focus on the spin histories of Fig. 6. In the new R
scale~dashed line!, all we know is that the spins at timest1
and t2 have the same orientation. Each process compa
with the histories shown in the figure is an independent p
of the partition function. For definiteness, let us assume
in this position there is a net charge (0,1,1). At the new sc
there are two indistinguishable possibilities to be conside
either there is a single particle produced by a term ofHz

b , or
there is a close pair att andt1dt that was fused.

The effective Hamiltonian strategy is to reconstruct t
CG at each RG step. Since there is no spin flip betweent1
and t2 and there is a net charge (0,1,1), the operator
performs this task is

FL↑
† FR↑S̄z~ x̄,t̄ !eiA2pgsf̄s( x̄,t̄)1 iA2pgrf̄c( x̄,t̄), ~C1!

where the overbar denotes an operator at the new scale
We want to know how to compare the spins at the n

scale with these at the previous scale. In the first history
Fig. 6 this is a trivial question. Before rescaling, the proc
had the same form, so

S̄z~ x̄,t̄ !5Sz~x,t!.
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by E. Brézin and J. Zinn-Justin~North-Holland, Amsterdam,
1990!, Chap. 10, pp. 563–640.

38A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik,Bosonization
and Strongly Correlated System~Cambridge University Press
Cambridge, 1998!.
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