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Coulomb gas approach to the anisotropic one-dimensional Kondo lattice model at arbitrary filling
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We establish a mapping of a general spin-fermion system in one dimension into a classical generalized
Coulomb gas. This mapping allows a renormalization-group treatment of the anisotropic Kondo chain both at
and away from half-filling. We find that the phase diagram contains regions of paramagnetism, partial, and full
ferromagnetic order. We also use the method to analyze the phases of the Ising-Kondo chain.

DOI: 10.1103/PhysRevB.66.174409 PACS nuni®er75.10-b, 71.10.Pm, 71.10.Fd

[. INTRODUCTION Doniach’s picture envisages. As pointed out befSr¥ the
missing element is the lowering of the conduction-electron

The relevance of studying the Kondo lattice modelkinetic energy with the alignment of the localized spin as in
(KLM) has not decreased. It is believed to be at the heart ahe double exchange mechanism. Essentially, this is the rea-
the physics of both the heavy fermion materials, in its anti-son why the 1D FM and AFM KLM have similar phase
ferromagnetic(AFM) version; and also the manganites, diagrams.
when local moments and conduction electrons interact via Despite these successes, it would be considerably more
the ferromagneti¢FM) Hund’s coupling? In the first case, informative if some analytical understanding could be
the well-understood behavior of the singler few-) impu-  gained. Even though there have been some partial
rity Kondo model permeates much of our current under-successe¥,?? there is still room for improvement. Moti-
standing. However, the interplay between the local Kondovated by the enormous success of renormalization-group
physics and the nonlocal RKKY interaction in a lattice (RG) analyses in the few-impurity probleffi;?’ we set out
environment remains elusive in current approximate to apply scaling ideas to the 1D lattice case as well. How-
schemes, although it may play a prominent role close t@ver, an RG treatment of the KLM has never, to our knowl-
quantum critical points” or even away from them. In this edge, been achieved. Technically, although we know how to
respect, a more thorough understanding of the oneprogressively decimate the spins or the conduction-electron
dimensional1D) case might be fruitful, even in light of the states, no one has devised a way of doing both simulta-
peculiarities of 1D systems. Furthermore, the study of the 1Dheously, specially with the incorporation of local Kondo
KLM is important in its own right for the analysis of some physics. The usual way around this problem is to introduce a
quasi-one-dimensional organic compounds such adirect Heisenberg exchange interaction between the local
(PerpM(mnt), (M=Pt,Pd)®° CuPol (Ref. 1) and spins?®~3 This so-called Heisenberg-Kondo model, how-

(DMET),FeBr,. ever, has the potential of being a completely different prob-
A fairly complete ground-state phase diagram has beetem.
established for the 1D KLM:3 On one hand, the antiferro- It is the aim of this paper to put forth such a decimation

magnetic model at half-filling has both charge and spinscheme for one-dimensional models of spins and fermions,
gaps:* For lower band fillings there is a quantum phase tranin particular, the anisotropic Kondo lattice model, without
sition from a paramagnetic ground state to a ferromagnetiassuming any dynamics for the local magnetic moments. We
one®® On the other hand, the ferromagnetic model at half-draw a great deal of inspiration from the original work of
filling is also insulating with a Haldane-type spin g&for  Anderson and co-workers for the single-impurity Kondo
lower band fillings, the numerical evidence shows three dismodel?*~?® mapping the KLM into a classical Coulomb gas,
tinct phases: a phase with partial ferromagnetic order andhich is then decimated by standard meth&ushis task is
incommensurate spin correlations, a fully saturated ferromade simpler by the use of bosonization methods. We there-
magnetically ordered phase, and a region with phase separfare study the stability of the noninteracting ground state
tion where two kinds of ground state seem to compete. Thevith respect to the Kondo interaction as a function of the
energy scales where the transitions take place for both modaoupling constants. Our study reveals that there is no “weak-
els are of the order of the Fermi energy. Finally, there iscoupling” flow in the entire parameter space. Nevertheless,
strong numerical evidence in favor of a Luttinger-liqiid.)  the different “strong-coupling” flows of the RG equations
behavior in the paramagnetic phase of the AFM KLM, evenallow us to assign the magnetic ground states that emerge,
for considerably large coupling constants® Such phe- establishing the phase diagram for both signs of the coupling
nomenology is beyond a simple RKKY versus Kondo type ofconstant in a unified fashion. While our approach in part
picture’® as proposed by Doniach for the higher-dimensionabuilds upon previous studié$;?? it also puts on a firmer
models? In fact, the level crossing responsible for the quan-basis the procedure of neglecting backward-scattering terms
tum critical point is related to long-wavelength modes. Thisin the KLM away from half-filling. As another application of

is in contrast with the short-wavelength spin modes involvecbur Coulomb gas treatment, we also establish the phase dia-
in the paramagnetic-antiferromagnetic transition that theyram of the one-dimensional Ising-Kondo motfel.
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In Sec. Il, we develop a path-integral formulation of the = +
bosonized 1D KLM. The partition function is mapped into a $es(X)=16:(x) ¢l(x)]/J§,
two-dimensional generalized classical Coulomb gas in Sec.
lll. In Sec. IV, the RG equations of the Coulomb gas are
derived and solved. Their physical interpretation is given ings
Sec. V, where an effective Hamiltonian for the renormalized
Coulomb gas is obtained. The phase diagram of the model is H=Hy+ H;+ Hi + H§’+ Hf , 2)
established in Sec. VI. The Ising-Kondo model is discussed
in Sec. VII, where its phase diagram is established. We wrapvith
up with a brief discussion of the relation between our and

Oe.s(X)=[6;(x)= 6, (x)]/2

previous results in Sec. VIIl. Some more technical develop- _UF D ) )
ments can be found in the appendixes. Ho=7% 2 | dX(9xb,)"+(dx0,)% (3a
II. PARTITION FUNCTION § ¢ 2
N .- | Hi=2 35\ —0adxbs(0)S(X), (30)
We start by writing the 1D KLM Hamiltonian. The tradi- X ™

tional Kondo model is isotropic in spin space. Since we are

going to use Abelian bosonization, it is natural to break the iy B

SU(2) symmetry down to () Hi=§X‘, oo e V279,65 cog \2 g, b<(X)]S™(X) + H.C.,
(30

H:—tjz(r (¢]41,Cjo+H.C)+ I, (S'S+9s))+3,Ss7, L2
0 Hy=2 —sin V27, dc(x)

whgreqjo destroy§ a condugtion eleptron in sjtevith spin + 2kex]sin V279, d(X) ]SH(X), (30

projection o, S; is a localized spiry operator, ands,

=33 ,4¢],0¢] 5, the conduction-electron spin density. We b

will focus on the continuum, long-distance limit of the con- H® = —leiv?ﬂgaf’s(x)cog,/zwgp¢c(x)+2kFx]s*(x)

duction electrons. In this case, one can linearize the disper- x ema

sion around the noninteracting(, =0) Fermi points+ K, +H.c., (30)

wherekra= (7/2)n andn is the conduction-electron number
density, and take the continuous limit of the fermionic operayhere 9,=9,=1 and a~kz!. Hy is the free bosonic

tors in terms of left and right moving field operatdfs, Hamiltonian written as a function dfs . and ¢ .. We have
introduced the new parametegs andg,, for future use. The
. T T “relativistic” description enforced by us broke the interac-
H= —IUF; J AX(YR,6Ix¥R,e™ YL eOxL,o) tion term into two different components: forward-scattering,
H', and backscatteringii®. They involve the spin current
al, i g g and the Xz component of the magnetization of the nonin-
Tt 21: aEB:s Ya,s(1)¥ps(1)05sS(]) teracting electron gas, respectivély® since it is well
o known that the main contributions to the spin susceptibility
aJ, v ey of the electron gas at low frequencies come frgm0 and
+ o 2. E ) Yas(1)¥ps(1)ogsS"()), g~ 2kg . For further generalization, we will consider the four
@p5s parameters |, as independerff It is important to note that

wherea, =L or R, v =2t sink-a is the Fermi velocity, and the cosines and sines of the bosonic fields in Eﬁﬁsare just
a is the lattice spacing. The field operators can now be short-form notation. Forward and backward Klein factors

bosonizedwith the inclusion of the so-called Klein factdrs  do not have common eigenvectd?sThus, we shall not ne-

usual notatiors® gle(;:;[_'tbheir contribution to the simultaneous treatmentdf
an .
A quantum system of dimensiahcan be mapped into a
Ve o (X)= Fro i 6,00~ 0,00] +ikex classical system of dimensiaht 1.4%4* The single-impurity
R 2ma ’ Kondo problem has effective dimensid=0. The work of

Anderson and co-workers 2°showed that it can be mapped
into ad=1 classical Coulomb gas, where the extra dimen-

(3= FLo o= IVL6,00+ 8,(0] ~ikex sion is the imaginary tim&“2We will extend this idea and
o 2ra ' map the 1D KLM into ad=2 classical problem. As usual,

the starting point is the partition function

One can then rewrite the Hamiltonian in terms of the charge -
and spin fields Z=Tr[e AHo+H +H")], (%)
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Several bosonic operators can fit inside the example given in

@ @ @ the figure, for example,

jgji 2 Ff | et t z + 7
2 ;go\]z FLTFRTFRlFRTS (X,7'3)S (X,Tz)s
X (X, Tl)ei V279, he(X,73) i V/ZWQP¢C(X,T3)ei \/27T7gp05()(,72)
T3 % T

~INZTGybs(x 72+ 2KEX g b (X, 7)),

FIG. 1. Example of a spin history. 1 stands &roperator§Eq.
(5)] and 2 forS, ones[Eq. (6)].
where we regrouped terms to separate Klein factors, local

We will rescale the Hamiltonian an@ by the Fermi velocity.  spin operators, and bosonic fields.

Z=Tr

This introduces the dimensionless coupling constahts The lattice parameter in the Euclidean-time direction is
rescrintionf243we divide B into infinitesimal parts order terms, we write the partition function as the sum over
P ptior, B parts, all d=2 Ising spin configurations of the localized spins,
H e oM, ables. Since there are different types of bosonic exponentials
! (vertex operatops coming from the different interaction
the S basis for the local moments and the coherent states fokhich we will call “charges” in order to do the bookkeeping.
the bosonic field42*3 The next step is to introduce an iden- They give the sign of the corresponding bosonic field in the

—al,, lvr as well asB=veB. Following the standard set by the bosonic cutoffér=2mwa. Keeping the leading-
Klein factors, and a functional integral over the bosonic vari-

In order to proceed to a path-integral formulation we choosderms in Eq.(2), we now introduce new lIsing variables,

tity resolution between each exponential in the product ~ accompanying exponential according to the following

scheme.
B s (1) m(x,7)=S*x,7+ 1) —S*(x,7)=*1 gives the sign
Z‘H (Llmple™™e(m)), of 64(x,7) [Egs.(30) and (39)].

) . (2) e(x,7)= =1 gives the sign ofhs(x,7) [Egs.(3c) and
where we use¢l) to denote a general vector in the basis. We(3q)],

now expand the exponentials in powerséaf, (3) c(x,7) = =1 gives the sign ofb.(x,7) [Egs.(3d) and
1 (39)].
ZZEO 1 (ODNEDIHE(Tj10))- Note that onlym(x, 7) is always tied to a localized spin-flip

process, its value giving both the sign of thg coefficient
There are two possible spin configurations for a given pair oind the change i$?. With this notation, each point in the
consecutive instants along the imaginary-time direction.  Euclidean “space-time” is labeled by a triad of values
(1) If there is no spin flip between them, the only contrib- (m,e,c). We call a “particle” a point where if,e,c)
uting terms are from the components of the Hamiltonian = (0,0,0). Each kind of particle matches a certain incident in

(3b) and (3d), the history of a spin. From Eq$3), we can read off the
. . existence of three breeds of particles, each one with its re-
(S(x, 7+ 87)[SH(X) dxps(X)[S(X, 7)), spective fugacity. Table | summarizes the notation that we
R will use.
(s(x, 74 87)| SA(x)sin V2mg,dc(X) Denoting 77} as the space-time position of partigleof

. ~ type 1={1,2,3 and Dn=H|3:lHN; dyl, we can write the
+ 2k V2 \T)). 5 » i j=17
PXISin 279, ) ]Is(x,7)) © partition function as

(2) If there is a spin flip between these two instants, then
only Egs.(3c) and(3e) contribute,

(S(x, 7+ 87)|e'V?™9:05cog \27g, ps(X) 1S (X)

+H.c.|§(x,r)),

TABLE |. Particles in the 1D KLM and their charges.

Fugacity (n,e,c) Number of particles
(S(x, 7+ 87)|€'V2™90 0N cog \27mg , ¢ (X) + 2Kex]S™(X) y,=3' 12 (+1,+1,0) N,
. _"b
+H.c|s(x,7)). (6) Yz—;h/Z (+1,0=1) N2
ya=d5/2 (0,£1,+=1) N3

The two possible processes above are illustrated in Fig.
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o y,:lylz\lzyls\ls N3
/= E 2 2 J D¢S’CDGSYCD77 m (Klein factorS H O'Z( 77?)
{o} N1,N5,N3=0 {m,ec} 1- N2: N3 =1

xexp[—so—iéx/%ggi f 073,40 NS, i\ o 3 S min) )
X Qs1=12

!
7;

tiN2mg, 3 2 e(n)do(m) +2mg, 3 2, [c(n}>¢c<n}>+2ikFc(n}>x}]]. v
, Fa ]

!
7

where{o} stands for all Ising spin configurationgn,e,c} have both fermions and spins, and the latter have no inde-
represents all possible sets BfN; particles ] is the space ~pendent dynamics, thus hindering a rigorous analgsism-
coordinate of particler), and S, is the free Gaussian POrtant exception to this is the Heisenberg-Kondo mujglel
bosonic action in the variables, . and 6. .3 There are In our treatment, on the other hand, spins and fermions are
several restrictions ovefm,e,c!, usually called neutrality treated on the same footing and lose their independent iden-
conditions in the bosonizatidhand Coulomb ga¥ litera- tity. After the mapping to a Coulomb gas, the wre]evancg
tures. In the 1D KLM they are more stringent than usual criterion becomes identical to other models where its appli-

ina th tibility of th d ‘cability is firmly based. We have thus established a more
ensuring the compatibility ot the sums over} an {m,e,c}. rigorous basis for neglecting the backward-scattering terms
in Eq. (7). Therefore, we will call them strong neutrality

T X . in the 1D KLM, as has been done by Zachar, Kivelson, and
conditions(see Appendix A for the derivation of these con- Emery2°

ditions). They are:(1) for each space coordinate thma This situation changes when the conduction band is at
charges must be neutral;m(Xyixeq,7;) =0; (2) the totale  pait-filling. In this case, #-a=2m and these terms disap-
charge must be neutral;e(x;,7)=0; (3) for each space pear from the effective action, making all particles equally
coordinate the total charge must be an even integer probable. This commensurability condition is similar to that
Zic(Xsixed, 7i) = 2N, Ne Z; and the total charge in the entire for the umklapp term in the Hubbard mod&llt is interest-
space-time must be zer@;c(x;,r;)=0. We can immedi- ing to note that only the combinationkda appears in our
ately see two consequences of these conditions. The mofirmulation. Since we have bosonized the noninteracting
obvious is that the sign af'® is irrelevant since, from con- conduction electron sea, we must ls@= 7n/2, leading to
dition (1), the total number of spin flips in the time direction 4ks@=27n. Even if for some reason a large Fermi surface
N,+N, is even. The other consequence is more subtle angh?uld be consideret], this would not change any of our
more surprising: the complete cancellation of the Klein fac-T€Sults, since for a large Fermi surfac&r&=2m(n+1)

tors and the product a*(7?) in Eq. (7), =4kga(mod2m).
Ns I1l. COULOMB GAS
(Klein factors)H o( 77]3)=1. The bosonic fields in Eq.7) can now be integrated out,
=1

partially summing the partition function. The result can be

. : L understood as an effective action for the spins and the vari-
This result plays a central role in the renormahzatlon—groupables fn,e,c)

treatment of a single Kondo impurity in a LL by Lee and
Toner?* Moreover, it leads to

3\ 2 cog?2
0 Seff=<—z> > f ) drldrzs(rT‘plZ)SZ<1>SZ<2>
T1- T2

) X1>Xo

2ke >, c(i)x= (8) ”

4keal, le? 3_; exdie(n)e] _,

. . y . + =2 X | dr————S(x,7)
in each contribution to the partition function. Th&2terms T n X r

appear whenever there are particles of type 2 apse8 the Inz

definition of the charge and Egs.(3d) and (3¢)]. Due to + 2, —"2[m(n)+e(n)][m(p)+e(p)]
their oscillatory nature, configurations with these particles n=p 2

will be strongly suppressed in the statistical sum, and the
corresponding terms(with fugacities y2=TJE/2 and y; +

=J%/2) will be irrelevant in the RG sense. This irrelevance
criterion is precisely the same as that used from neglecting

InZp
5 [m(n)—e(n)][m(p)—e(p)]

umklapp scattering away from half-filling in models such as +|n|rnp|C(n)C(p)+2ikF§n: c(n)x,
the Hubbard modéf However, we stress that the situation
here is far less trivial than in the Hubbard model, since we +short-range interactions, 9
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where tantly, the interpretation of our results should be understood
in this rotated basis that mixes spins and bosons.
Xik= Xk = Xj The effective action in Eq12) can be viewed as describ-
ing the electrostatic and magnetostatic energy of singly
Tik= Tk~ Tj» charged particles with both electric and magnetic monopoles.
A These satisfy electric-magnetic duality in the sense that the
Zj = Xj+i T =r e ik, (100 action is invariant under the exchange=m and
N ] ) ) _g,=k?lg, , while x is unchanged. This is analogous to the
In addition to the long-range universal interactions, thispjrac relation between electric and magnetic monopoles.
procedure also gives rise to short-ranged terms that are CulQfiyrthermore, these particles possess a third electriclike
dependent’ These are similar to those found by Honner andcharge ¢), unrelated to the two previous ones. The partition
co-workers®! by smoothing the bosonic commutation rela- fynction sum now has been reduced to considering all par-

tions. In contrast to their treatment, though, here they are §cje configurations, blending spins and bosons in this Cou-

manifestation of the bosonic field dynamics. Following Za-|omp gas representation, where we have particles plus neu-

charet al.?® we will focus on the universal long-range part trality conditions.

of the action and neglect these terms. _ o A partially traced partition function allows us to link
Upon integrating by parts in imaginary time, spin time yroplems that are originally quite distinct. For example, the

derivatives become the charges we denotenb¥inally, we only difference between the CG's of the single-impurity

can rewrite all long-range terms in the form of a generalizedcondo problem and the problem of tunneling though an im-
Coulomb-gas(CG) action in two-dimensional Euclidean ity in a Luttinger liquid® are the neutrality conditions.

4
spacé’ as Analogously, the two-channel Kondo probl&ti® and the
B Ny Ny Na double barrier tunnelif§ can be mapped into each other
S Y17Y2Ys s with the same neutrality conditions. The KLM also has an
_Nl,NZ,N3:O (el anlNz-'Ns! eXpi Ser it unsuspicious counterpart in the literature: two weakly

(1)  coupled spinless Luttinger liquid§:>"**The tunneling from
one LL to the other is analogous to a spin-flip process that
with scatters a boson from an up-spin band to a down one and
vice versa. In particular, the two problems give the same
effective action(with different neutrality conditionsif we
disregard the backward-scattering terms in &j.and con-
. sider the anisotropic case=1 (J!=0).
+gInrilc(7)c(n) —ikei[e(7)m(n;) In the following section, we will derive the Coulomb gas
renormalization-group equations following closely the re-
+2ikF2 c(m)X, (120  view by Nienhuis** As expected, the procedure strongly re-
‘ sembles the regggT%I(ization-group analysis of the tunneling
~ , ) between 2 LL's®®>"7°° The Coulomb couplingy, , are
wherex=1—J;/7r._In the above effective action we have o5 t0 1 for noninteracting conduction electrons. However,
dropped the superindex indicating the particle type in ordef,o same RG equations will apply to the case of conduction
to unclutter the notation. It is now unnecessary as the depeRyjectrons with an S(2) noninvariant forward-scattering in-
dence with the history of a spin has disappeared. teraction. In this case, the initial values @f , are the cor-
In most other similar CG mappings, the coefficient of theresponding Luttinger-liquid parametefswe '\‘/)vill not dwell

term in ¢;; is an integer and goes by the name of conformal, o, this case here, but its phase diagram is analogous to the
spin™ Then, the ambiguity of 21, 1eZ in the angle is ;o we will derive below.

irrelevant. In this case, howevex, can assume noninteger
values. What guarantees that the theory is actually well de-
fined is the strong neutrality conditiqd), which leads to a
cancellation of the Riemann surface index

The integration by parts that we performed is equivalent The philosophy of the renormalization group is to sum the
to applying the duality relatiod,¢s=id.6 to Eq.(7), inte-  partition function by infinitesimal steps and find recursive
grating by parts and then tracing the bosonic fields. Alternaequations for the coupling constants while keeping the same
tively, at the Hamiltonian level, it is also equivalent to ap- form of the effective action. In a Coulomb gas each step

1 K2
Sett=3 ;J g_|n|rij|m( 70)M( 7))+ g,In|rij|e( ;) e( 7;)

+m(7i)e(7;)]

IV. RENORMALIZATION-GROUP EQUATIONS

plying the rotatioR” corresponds to three distinct procedures: length rescaling,
particle fusion, and particle annihilatiGhln order to imple-
\F f , ment these procedures all the particle fugacities must be
U=exp i ;‘ng 05(x)S'(x) (13 small and we are forced to impos@ and JP<t.

The first step consists of integrating large-wavelength
to Eg. (2) before going to a path integral and tracing out themodes and then rescaling parameters so as to reconstruct the
bosons. Hence, there is a strong link between our CG formueriginal action forn’ This corresponds to the overall length
lation and previous results in the literatdfe?*More impor-  rescaling
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10y T

@ {®) )

FIG. 2. Length rescaling in the CG. Originally
RG step distinct charge configurations are identified at the
new scale.

r the latter case, the identification of initially distinct configu-

r”:l—Jdé’ (14)  rations can involve charges at different space coordinates,
implying thatd=2 [see(a) in Fig. 2]. We will focus on this

in the action and the partition function measide). Upon  coherent regime and sdt=2 from now on.

rescaling we lose the ability to distinguish certain previously ~Collecting Eqs(15) and(16) we can express the partition

distinct charge configurations as exemplified in Fig. 2. Ap-function once again as a Coulomb gas by redefining the par-

plying Eq. (14) to the effective action Eq(12) and expand- ticle fugacities. A particle with chargesme,c) has its

ing the logarithm ford¢ <1, we obtain fugacity Yy, o . renormalized as
— 1 K2 dYnmec 1/ k?
Seff:Seff+§ ;] [Em( 7i)M( 7;) ac 1273 am2+gaez+gpcz Ymec- (17)

This equation gives the dimension of the corresponding
+0.e(71)€(7;) +9,C( ”i)c("i)}df' operator and leads to the standard relevance criteria for
) -~ ] bosonic operators. However, we have so far disregarded two
The neutrality conditions can be used to rewrite the last ternpossibilities. Suppose that a pair of initially distinct particles
as a single sum over sites: is within range of the new smallest scale. Following Ander-
2 sonet al?® we call it a “close pair.” After the RG step we
—m(7)2+9,e(7)2+9,c( ﬂi)z}df- can no longer resolve these two particles as separate entities.
ds On the one hand, if the particles have precisely opposite
(15  charges we have a “pair annihilatiodee(a) in Fig. (3)].
The residual dipole polarization of this pair renormalizes the
interaction among the other particles, leading to the RG
equations foig,, andg, . Note thatx is an RG invariant. On

— 1
Sett= Sefit 5 EI

The integral overyn is the sum over all possible particle
positions, and its rescaling leads to

dm the other hand, if the pair is not neutral, the particles are
dﬂi:—ld- (16)  fused into a new particle carrying the net chafgee(b) in
(1—d¢) Fig. (3)]. This last process may actually create particles pre-

We have left the dimensiod unspecified for the follow- viously absent in the gas. There are three new kinds of par-
ing reason. Since a particle can only exist at the space cooticles created upon fusion in the dense limit with initial con-
dinate where a spin exists, we can define two important limditionsg,~g,~ 1. Their charges and fugacities are listed in
its in the KLM. If the Kondo spins are separated by aTable Il. These new entities correspond to originally mar-
distance greater thaaf, the sum over identical configura- ginal operators that are absent in the bare prob{dreir
tions is one dimensionald=1), as in the single-impurity physical meaning will be discussed in the following section
case[see(b) and (c) of Fig. 2]. This is the dilute limit or  Other particles with higher charges could also be considered,
“incoherent regime” of the Kondo lattice, where the scaling but from Eq.(17) it is clear that they are highly irrelevant
proceeds exactly as in the single-impurity Kondo problem inand therefore can be neglected. Collecting the annihilation
a LL as found by Lee and Ton&t.In contrast, wherd¢ is  and fusion terms, derived in Appendix B, and adding the
larger than the distance between Kondo spins we are in thdimensionality — equation (17), we complete the
dense limit® or “coherent regime” of the Kondo lattice. In renormalization-group equations. Away from half-filling,
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T T
T W) <J
(D V.
@ @
(@)
FIG. 3. “Close pair” processes in the RG
RG step step: (a) particle annihilation andb) particle fu-
sion.
T T
D P
Fany
v \))
®)
where the backward-scattering terms are irrelevant, particlegy, 1/ k2 sin(2mk)
with fugacitiesy,; and ' can be disregarded. Thus, only =273 g—+90) +—y1(G+G)+wy2y3,
configurations involving the fugacities , G, andG need to 7
be considered. On the other hand, at half-filling all particles dy, 1/ k2 sm(mc)
from Tables | and Il should be included. This leads to the ~ - [2—5(—+9p Yot y1ya+ my(G+T),
following renormalization-group equations. 9o
(1) Away from half-filling, dys ( 1( o)y sm(wx) . Gt
o 147 58,10,) )Y Yiyat 7y
dy; 1/(«? Sin(27k) ~ dl 2 pr)7s 2 :
2—— —+0s| Y1t —5—Yi(G+G),
dl (o] 2k 4G
o7~ 2(1=9,)G+m(yi+y3),
dG
— =2(1-g,)G+myi,
dl ~ 5
dG K7\ ~ 5
_ WZZ 1-—|G+m(yitys),
9C 51— )& s my2 v
dar g, Y1, r
7 = 2(1=g) I+ m(y5+y3),
1 ding, sin(2mx
Y 2 - r( )( — 0o yl _G2 ga'Gz . 2 2
242 dl A7k \Q, Js 1 din 95 Sin(2mk) 2, K a2 P
on2 dl 4wk g, J7/ViTg, 2
1 ding,
- =0. y3
272 dI —-g,| G?+
7 2
(2) At half-filling,
1.ding, (v y3+F2
TABLE Il. New particles created upon rescaling and their 242 dl Pl 2
charges. A numerical solution of these sets of equations is shown
Fugacity m.e.c) Number of particles in Figs. 4 and 5. For these particular plots we used
¥1240)=0.01, g,(0)=g,(0)=1, and G(0FG(0)
G=0 (=£2,0,0) N, =I'(0)=0. The RG flows were stopped when any of the
G=0 (0,£2,0) Ns fugacities reached the value of 1 and the values of the other
r=o0 (0,0:+2) Ng parameters were then plotted at this point. The flow equa-

tions depend only on the absolute valuexof
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fugacities
fugacities

interactions
interactions

0 ' 03 ' 1 ' 13 ' 2 0 03 1 15 2

FIG. 4. RG flow away from half-filling as a function . FIG. 5. RG flow at half-filling as a function ot.

As can be readily checked, the equations always flow to . . .
strong coupling. Nevertheless, special valuef«dfallow us contrast to the previous  cases, single flips are always
to trace regions with qualitatively different flows. Since the strongl_y relevant in this region. Th? orde_r Of. rele_vance_ of the
RG equations depend only dr|, those regions are mirror fugacities changgs a few_t|mes Rags varied in this region.
reflections on thec=0 line, the “Toulouse line.%° For 2 :ﬂowzaver(,))a particularly simple case occurs in the Toulouse

- e ; . ine (k=0).
e e prcesses e et &)t even though th renomatizaton fows ar cear and e
over, the final flow is independent of the precise valueof special fllows were identified, their physical mterpretatpn is
clearly indicating a distinct phase of the model. From nowIess _stra|ghtfor_ward. In order to p.roceed we must assign a
on, we will denote this phase as region 1. In contrast, Sp"physmal meaning to each particle in the gas, from which we

flips are always relevant fdi| <3, but we also encounter a can then attempt to determine the phase diagram.
second special flow. Fgk|=1, the particle fugacitie& and

G are always the same. There is also a precise balance be-
tween the “magnetic” «?/g,) and “electric” (g,) interac-
tions. Consequently, the ground state is a plasma for particles At each RG step we rewrote the problem as a CG. More-
of type (m,e,0), implying that ¢, and 65 are completely over, all the neutrality conditions were preserved by the RG
disordered. In factx=1 corresponds to the critical point of step. We therefore can define a quantum Hamiltonian that
the problem of two weakly coupled LL's. Therefore, we canreproduces the CG at each step. This effective Hamiltonian
safely identify [k|=1 as a boundary between different allows us to understand the behavior of the system and, in
phases. For other values fof| the interactions are screened certain special cases, to infer its phase.

(g—0 or <) and/or the fugacities have different flows. Itis  In the dense limit of the KLM, the distance between lo-
clear that for & x?><3 (denoted as region) Zingle-spin-flip  calized spins is of the order of the smallest bosonic wave-
fugacities become less and less relevantas 3. This sug-  length available. Therefore, after the first RG step we were
gests a transition region from the disordered statecgt 1 forced to introduce new entities in the problem. Their Hamil-
to the flow of region 1. We shall callk|<1 region 3. In  tonian form is trivially guessed from their definitions,

V. EFFECTIVE HAMILTONIANS
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f ¢$$ ? f ff TABLE Ill. RG flows for the fugacities away from half-filling.
wor T, Region Y1 G G G-G
. 1 —0 — 00 0 <0
FIG. 6. Two different spin histories at the older RG scale that 2 — —0 — <0
cannot be distinguished at the new one. 3 — o0 — 0 —® >0

Né[F;TFRLFITFLlei‘K‘V/BW;QUGS(X)
J’ZJ. At the operator level, this is formally accomplished by

XS (x+68)S (x)+H.cl], (188  summing over all possible products of flip operators, expand-
_ ing the result in6~ « and reordering the Klein factors. The
02~G[FLTFR1F[1FLTe' BT9,450S* (x+ 8)S™(x) + H.c], latter are actually crucial for the correct final sisee Ap-

(18b pendix C for details Thus, we exactly reproduce the
z-backscattering particle bglefining the 3 spin at the new

—ar S S OFFLFTF scaleas

(n#VT=RL {oy,o00=1,, 7L P01 o2 192

Z —ct — — +
< 6 T+ e 4 5) ) + He, (180 284X, 7)=S"(X,7+ 8)S (X,7)—S (X,7+ 8)S (X, 7).
A similar calculation can be done for any other possible spin
history and bosonic operator within a disk of radi@s «.
herefore, the local spins in the effective Hamiltonian repre-
ent block spingas in the example aboyand not the origi-
nal ones.
Taking & as the lattice spacing at the last RG step and
collecting all these operators, we find the effective Hamil-
onian

where § is a distance of the order of the inverse of the
bosonic cutoff (- «). Both theO; and theO, terms involve
simultaneous flips of two nearby spins and the creation o
particles with chargesf,e,c)=(%2,0,0) and (Q+2,0), re-
spectively. In contrastQ5 is not related to spin flips and
generates particles with charges (6,@). It is simple to
understand their origin. In the original Hamiltonian of Eq
(2), it is possible to spatially resolve the fermion-spin scat—
tering events. As we reduce the bosonic cutoff this is no

longer true, and we must consider multiple-scattering events{ = H 0+2 {4[G2 G?]+8r cog§ V87g,dc(X))
within the new smallest scale,. There are clear similarities
between the conduction-electron operators in E#8) and

the usual backscattering and umklapp operators. The stan-

+AKeX( 1} (X1 1) S7(X)) + 8y 3sin V27g, bo(X;)

dard picture of the RKKY interaction is that of an effective +2kex;]sin /ZWQUQSS(XJ)]SZ(XJ')

spin-spin interaction mediated by the conduction electrons.

In Iigh_t of Egs. (f18_), it see_mj naturial to conlsider a!so the +2[y,c08V27g,hs(X))} +YoC08 V27g, Pc(X;)
opposite point of view: an indirect electron-electron interac- . Bk} | .2
tion mediated by the local spins. The RG procedure intro- + 2kex} 16N ETO R ODST () + [ GENETIr L) 1y

duces these composite events in a natural fashion. n Z]S*(x- 1S (%))
The final operator that must be introduced in the effective Y2 i+l !

Hamiltonian is a .re.sult of 'Fhe annihilation process. Uljlike +Ge \/’Wg_akes(xj)s+(xj+l)s+(x‘)+H.C. (20)

fusion, when a pair is annihilated, the zeroth-order term in an

operator product expansion of the bosonic fields is a con-

stant. Nevertheless, it is still a function of the local spins and VI. 1D ANISOTROPIC KLM PHASE DIAGRAM

must be considered at the last RG step in order to establish

an effective Hamiltonian. Collecting all possible pair annihi-

lation terms and expanding point-split bosonic operators w

get

For certain values ok the effective Hamiltonian in Eq.
20) is independent of the bosonic fields at the end of the RG
low. We will exploit these cases to intuit the various phases
of the model.
~5 9z z 2 2\ i We start by considering the system away from half-filling,
0z~ 4G =GHS(x+H)S(N) +(yity2)S (x+9)ST(X) wherey, ; are irrelevant and'=0. The RG flows are sum-
+H.c. (199  marized in Table IIl.
In region 1, the only relevant fugacity i&. Therefore,
It must be stressed that the spin operators in Eiy.and  8wQ, ¢ freezes atr. This reduces Eq(20) to the aniso-
(19 should not be understood as the original local spinstropic ferromagnetic Heisenberg model
Consider the spin history of Fig. 6 as an example. Suppose
that the pair flip-antiflip is produced by a forwa@ term

~ —AG2)SZ(x. Z( v
and a backward”® term at timesr and 7+ & within the new Hers EJ“ (—4G)S(X).42)Sx)
renormalization scale. This is equivalent to having no flip at . - . -
all and cannot be distinguished from a particle with fugacity —G[S"(Xj4+1)S (X)) +S"(X))S™(xj+1)] (21)
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in its ordered phaseG~1(S*)=1/2). 3.0 ' T - T - - T -
The effective Hamiltonian for the=0 line, the Toulouse

line, is also independent of the bosonic field. Since the mosi

relevant fugacity i/, , V27g, ¢, freezes atr. This leads to

an antiferromagnetiXYZmodel in an external field,

Heff~$ 2[ G2~ G2]SA(X{ 4 1) SH(X)) — 4y, SX(%))

yi+G+G\ y
— S (Xj+1) S (X)) A
2 ~ i
yi+G-G
+ — (X119 (X). (22 | | | |
190 0.2 0.4 06 0.8 1.0
In this case, the effective spin Hamiltonian exhibits order in n,

the XY plane,G~G~y~1. Nevertheless, this does not im-
ply any order of the original splng. As we stated before, a"half-filling. Regions 1 are fully polarized ferromagnets, regions 2
our resqlts must be underswqd_ in the rotated b?S'S_Of Edye partially polarized ferromagnets, and regions 3 are paramag-
(13). This ensures that the original model, HE), is still netic. See text for details.
disordered, as emphasized in Ref. 20. Therefore, the system
is paramagnetic with short-range antiferromagnetic correla- Ferromagnetism in the KLM has a long history in the
tions. Although the Toulouse line corresponds to a particulajsotropic model. In the FM case, this mechanism is well
case, it seems reasonable to extend this assignment to tBetablished for higher dimensions or classical spins, and it is
entire region 3. For one thing, because the first term in Edusually called double exchang®:®!In this case, ferromag-
(22), which drives the antiferromagnetic tendency, remainshetic ordering allows the electrons to lower their kinetic en-
positive throughout this region. Besides, ¥ disordering  ergy with respect to a disordered paramagnetic phase. In one
terms are the dominant interaction in the region. In particugimension, perturbation theory in th#J and mean-field
lar, in the|x|=1 line, the symmetric flow of5 andG en-  treatments supports this picture for a sufficiently lajge
sures that the term vanishes and therefore the order param- In the AFM model this simple image of an electron mov-
eter (S*¥%) is still zero. Hence, we propose that the entireing in a background of ordered localized spins is no longer
region 3 is a paramagnetic phase with short-range antiferrosalid because of quantum fluctuations. Nevertheless, an ana-
magnetic correlations. Note that this is not necessarily trudytical solution was found for the antiferromagnetic Kondo
for other observables, since the flows néaf=0 and|«| lattice with a single conduction electroin arbitrary
=1 are qualitatively different. dimensions®®21t showed that the ground state of the model
There is no simple effective Hamiltonian within region 2, is ferromagnetic witl§,,;= (L —1)/2. The proof bears strong
but the disordering term, proportional yq, becomes pro- similarities to Nagaoka’'s theorem on the infiniteHubbard
gressively less relevant ag’—3. More importantly, the model with one hole added to the half-filled st&t®espite
short-rangez correlations turn from antiferromagnetic to fer- these similarities, it holds under much less restrictive condi-
romagnetic. Consistent with the identification of region 1 adtions than Nagaoka’s proof and, in particular, is valid in the
a ferromagnetic phase, these two features lead us to tentane-dimensional case. The lowering of conduction-electron
tively identify region 2 as a ferromagnetically ordered phasekinetic energy is still the driving mechanism here because,
with unsaturated magnetization of the spins. unlike in the infinited Hubbard model, the electron can hop
Collecting these results, we conclude that there are at leagtithout shifting the localized spins. As a rigorous theorem,
two continuous phase transitions in the anisotropic KLM farthis applies only to a single conduction electron, but there is
from half-filling. The first transition, from region 1 to region very little doubt that this effect survives at finite filling
2 in Fig. 7, reminiscent of the Berezinskii-Kosterlitz- (again, unlike the infinitdd Hubbard model The best evi-
Thouless transition of the single-impurity Kondo moéfel, dence comes from numerical density-matrix renormalization-
separates regions of relevance and irrelevance of the singlgroup studies on very large systemis @p to 120, which
flip process. The effective model for region 1, E1), has show an extended region of ferromagnetism JorJ.(n),
ferromagnetic order with full saturation of thecalized whereJ.(n)<« for anyn.**54®Moreover, the result is cor-
spins. A regime with ferromagnetic order, however, is be-roborated by the perturbation and the mean-field theory.
yond the present bosonization treatment, since the spin po- The physics of the anisotropic problem we are consider-
larization of the conduction electrons leads to different Ferming is very similar, quantum fluctuation effects beitegs
velocities for up- and down-spin electrons. However, the RGoronounced. ThgJ,|=c limit corresponds to a classical
flow is still able to indicate its existence through the irrel- Ising spin lattice. In this case the simple image of an
evance of single spin flips and the nature of the effectivanverted-spin electron moving in an ordered background is
Hamiltonian(21). applicable. The flow ofy (ultimately related tal, ) to zero

FIG. 7. Phase diagram of the 1D anisotropic KLM away from
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reflects the asymptotic irrelevance of quantum fluctuations. -
However, at any finite scale, the residual quantum fluctua- Herr~ 2 [2(G?—G?)+ 4TS (Xj41) SH(x;)
tions in the AFM chain transform the inverted-spin conduc- '
tion electron and the nearby localized moment into a mobile
Kondo singlet. Following this argument, the total spin per —
site (electrons-sping is Sf,,=(S?) —n/2=(1—n.)/2 in the
ant?ferromagnetic case alﬁ_ﬁot:(1+ n.)/2 in the ferromag- G+y"{+y§—€;
netic one, as seen numerically? — | =% )Y (x))
There is another continuous phase-transition line from re- 2
gion 2 to region 3 in Fig. 7, similar to the transition of the — Ay, + (= 1)%iy,) S(X)).
Ising model in a transverse fiefd,which separates a para- .
magnetic phaséregion 3 of Fig. 7 from a region with un- As before this does not imply any order of the original spins
saturated magnetization of the localized spins. The magnetin the XY plane. From this effective model we can see that
zation grows continuously up to the border of region 1. It isthe|«|=0 point is characterized by spin and charge gaps and
tempting to identify region 2 with similar phases with unsat-no ordering.
urated moments found in numerical studies of both the iso- In summary, at half-filling we assign two distinct mag-
tropic FM KLM of Dagotto et al? and the isotropic AFM  netic phases. Regions 1 and 2 haveNwder in thez direc-
KLM of Tsunetsuguet al,** and conjectured in the mean- tion. On the other hand, if we assume that the Toulouse line
field treatment by Irkhin and Katsnels8h. features can be extended to the entire region 3, we can iden-
The numerical studies of the FM KLM also identified a tify this region with a paramagnetic phase. The several
region of phase separatiéiwe did not find any indication of changes in the relative flows maybe a sign of additional
phase separation. We can think of two reasons why. First, thehases as a function of. However, the effective Hamil-
coupling constant in that region is of the order of the electrortonian cannot be so easily solved and we are unable to make
bandwidth and therefore bosonization is no longer validfurther progress.
Moreover, this phase is a competition between the ferromag- The KLM at half-filling was studied by Shibatt al.*> By
netic tendencies of lower band fillings and the antiferromagiooking at the strong-coupling limit, they were able to find
netic counterpart at half-filling. Since we completely neglectfive distinct magnetic phases, which they argue survive down
backscatteringultimately responsible for the antiferromag- to weak coupling: two Nel phase$FM and AFM), a planar
netism this phase was lost even before we began. phase(the triplet state with§°=0), a Haldane phase, and a
As we pointed out before, at half-filling we are able to Kondo singlet (paramagnetic phase. Because of the rel-
include the backscattering terms in the RG scheme. We wilkvance of backscattering and the Condiﬂiﬂqgl, a direct
now consider this case. The first result from the RG flow iscomparison between the RG flows and the available numeri-
that O3, whose bosonic part is identical to an umklapp term,cal results is restricted ta~1. This neighborhood has no
is always relevant, pointing to the presence of a charge gagimple effective Hamiltonian and we are unable to make di-
The spin sector is more subtle and we must consider somect contact with the numerical results. We can point out,
special cases. however, that the strong-coupling flow @f; is an indication
Region 1 can be simply analyzed. The interaction paramof the opening of a spin gap, though this is less certain be-
etersg, andg,, go to zero and the most relevant fugacity is cause of the difficulty of analyzing the effective Hamil-
y3. Therefore,y27g,¢. freezes atr/2. The other relevant tonian. This possible spin gap is compatible with the
flows arel’ andG. The effective Hamiltonian reduces to an Haldane-type phase d;<0 and the Kondo singlet phase at
anisotropic ferromagnetic Heisenberg model in a staggereg,>0 obtained in Ref. 15. As we dope the system away from
field, half-filling the backward-scattering terms become irrelevant,
and a direct comparison with the numerical data becomes
more feasible.
Heff~2 (—4G2—8F)Sz(x]-+1)sz(xj) As a final illustration of the usefulness of the Coulomb
i gas mapping, we develop in Sec. VIl its application to a
related yet simplified model of spins and fermions: the Ising-
Kondo chain. Its simplicity makes it a more pedagogical ex-

i ample of the formalism.
The staggered field induces &leorder, but the system has

strong.ferromagnetic tend_encies. As we move away .from VII. THE ISING-KONDO CHAIN

half-filling, the staggered field becomes progressively irrel-

evant and the ferromagnetic effective model is reobtained.  The Ising-Kondo model,
The k=0 point is once again very special. At the end of

the RG flow, the effective Hamiltonian is also free of the T s+ Tss .

bosonic fields and the most relevant fugacitiesygrandy. H=2 8§¢R,a¢l€,<r+32, Siso- 'J/i,oJFVEi S

They force y27g,¢. and y27g,¢s to freeze atw, sup- ko hes

pressing the staggered field in thdirection. Thus, the Tou- was proposed by Sikkemet al>> as a model for the weak

louse point effective Hamiltonian is antiferromagnetism of UR&i,. Here, we will consider the

G+y2+y3+G
| S ) ()

—GS"(X11)S (X)) +H.cH(—1)%i8y3S(X;).

z

|35
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1.0

on the physics in this regime. Indeed, we could have applied
the rotation in Eq(13) to the original Hamiltonian to get

03 H=Ho— %e*i\’f’_’fg(’(Xi>s+(xi)+H. cts. It

J/2mt

where “s.r.t.” stands for “short-range terms.” The operators
in this rotated basis are called “displaced” in the cooperative
Jahn-Teller literatur€® This rotation is equivalent to the in-
tegration by parts of th&, variables in the time direction, as
we saw. By taking nowy—oo and g—0, the effective
Hamiltonian is simply a magnetic field in the direction
acting to order the local spins. Unlike in the KLM, the origi-
nal spins are also ordered in thelirection sinced freezes at
the value of zero. The transition is continuous and of the
Kosterlitz-Thouless type.

0.0

-0.5

FIG. 8. Phase diagram of the Ising-Kondo chain. In region 1 the VIIl. DISCUSSION AND CONCLUSIONS
transverse field is irrelevant, while in region 2 it is relevant. See text

for details. We have proposed in this paper what is the natural exten-

sion to the one-dimensional lattice of the highly successful

_25 K
one-dimensional version of this model and apply the sam@pPproach of Anderson and co-wo_rk’e°’r§' to the single-
methods that we used in the Kondo chain. Using bosonizaMpurity Kondo problem. The mapping to a Coulomb gas is

tion and disregarding the backscattering terms, the Hamilade specially easy by using bosonization methods, and par-
tonian simplifies to ticularly subtle developments demonstrate the importance of

a careful consideration of Klein factors, so often neglected in
2. . o most treatment® Since bosonization relies on the lineariza-
H=Ho+ 2> ;Jo?xdi(l)sz(l)—ysx(l), (23 tion of the conduction-electron dispersion and is appropriate
' for the analysis of the long-wavelength physics it is never
where the coupling constants were rescaled by the Ferngjuite obvious how far it can be taken in its application to
velocity as before. Equatiof23) is identical to the coopera- lattice systems. However, motivated by |§s_success in the
tive Jahn-Teller Hamiltoniaff} The lower symmetry of the Hubbard, Heisenberg, and other models, it is reasonable to
model allows us to foresee that the signJdb irrelevant to ~ attempt a direct comparison of our treatment to the phases of
the physics. It is also a well-known result from the cooperathe anisotropic Kondo lattice model.
tive Jahn-Teller problem that the strong-coupling limits One of the hardest tasks in our treatment is the extraction
~ . . L of physical information from the effective models we obtain
>1 andy>1 show easy axis order in ttreandx directions, . A .
. after several rescaling steps. Some special lines in the phase
respectively. di ' .
iagram can be more confidently analyzed, but as is common

Ex.actly as in the KLM' we can p_roceed by going to 2in RG treatments, we are then forced to attempt an extrapo-
path-integral formulation with bosonic coherent states ancli

) . ; . ation to other regions based on continuity arguments. This is
fche IOC"’." spinS, basis. A“‘?f tracing the bosonic fields and pecially true in our case, where most of the flows are to-
integrating by parts the spin variables, the Coulomb gas tha

follows has only one breed of particlesi(0,0), subjected to ards strong coupling. Given these caveats, however, the
the neutrality condition 1 of Sec. Il. To mimic our previous overall topology of the phase diagram away from half-filling

) ] . is compatible with the known phases of thsotropic
notation we defineg=y2n/J. Assumingy<1, the RG  model2!3 The extension of these studies to the anisotropic

equation can be derived in a similar fashion. They correcase would be highly desirable. At half-filling, the method

spond to the standard Kosterlitz-Thouless equations itself limits its application to thel,<t region. Unfortunately,
q this is one of the regions where the effective Hamiltonian is
_y:2 1— hard to solve and we are not able to explore the rich phase
qr ~2(1-9y.

diagram obtained in Ref. 15. Nevertheless, we do find a
charge gap at half-filling throughout the phase diagram,

ding 5 which seems compatible with the numerical results. The
dl -9y question of the spin gap is less clear but our results are also
compatible with what is known numerically.
For g>1, spin-flip processes are irrelevasiee Fig. 8, We would also like to try to make contact with previous

region 1. In the Jahn-Teller language this corresponds to atudies of the Kondo lattice model in one dimension based
ferrodistortion of they<<J fixed point. On the other hand, for on the use of Abelian bosonization. In the important work of
g<1, spin flips are relevany—o andg—O0 (see Fig. 8, Zachar, Kivelson, and Emefj,where the rotation of Eq.
region 2. We can find an effective Hamiltonian to shed light (13) is first used, the highly anisotropic Toulouse line (
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=0) is analyzed in detail. One of their findings is the pres-renormalization-group approach. When applied to the Kondo

ence of a spin gap in the spectrum away from half-filling, lattice model, the method enables us to identify its various

which also appears in our effective Hamiltonian. At half- phases both at and away from half-filling.

filling, they also find spin and charge gaps, which seem com-

patible with our results. They also point out that the metal-

insulator transition asn—1 is of the commensurate-

incommensurate  typ¥. In  our treatment, the We thank I. Affleck, A. L. Chernyshev, E. Dagotto, M.

commensurability condition Ka=27n=1 for the rel- Gulacsi, N. Hasselmann, S. Kivelson, S. Sachdev, J. C.

evance of the backward-scattering terms, the same as in theavier, and O. Zachar for suggestions and discussions. E.N.,

Hubbard model, is a strong indication that the transition ise. M., and G.G.C. acknowledge financial support from

indeed of this type. FAPESP(01/00719-8, 01/07777)3and CNPq(301222/97-
Honner and co-workers have also investigated the spis). A.H.C.N. acknowledges partial support provided by a

dynamics of the isotropic Kondo chaitt®* After smearing CULAR grant under the auspices of the U.S. DOE.

out the discontinuity in the commutation relations of the

bosonic fields, they replace the latter by their expectation

value in the noninteracting ground state and write an effec- APPENDIX A:

tive Hamiltonian for the localized spins. This Hamiltonian NEUTRALITY CONDITIONS FOR THE KLM

can then be treated numerically and the phase diagram deter- Neutrality conditions are common in Coulomb gas formu-

mined. This procedurg requires the fitting of the smearing,ions of quantum problems. In the simplest applications,
length scale to numerical results. One of the advantages oese conditions impose that the overall charge is zero as, for
treatment brings to the problem is the ability to do the full; siance. in the sine-Gordon modéf8 As applied to our
analysis analytically and without any priori assumption ..¢e thié condition reads

about the boson dynamics. In fact, the Coulomb gas mapping

treats spins and bosons on the same footing. Besides, no

fitting to numerical results is necessary. A discrepancy be- CN— N — =

tween our results and those of Honner and ‘Gsilas the E. M%) 2 e(Xi.7i) 2 e, 7i)=0. (AL

partially polarized FM phase we find 3<0. In their treat-

ment, a paramagnetic phase is found instead. It would bghese are the mathematical expressions of the condition for

interesting to extend their treatment to the anisotropic casghe bosonic correlation functiometto vanish in the thermo-

for a fuller comparison. dynamic limit and they also ensure the overall cancellation
Recently, Zach&f conceived an alternative approach to of the Klein factors. However, in the KLM, the presence of

the KLM in the rotated basis. He used a particular exampléyoth spins and bosons leads to more stringent neutrality con-

ACKNOWLEDGMENTS

of the rotation in Eq(13), ditions than in other problems. Therefore, besides (Bd),
there are two additional restrictions.
— . The first one comes from the impossibility of performing
— Z
U —exp(| 2772)(: 0(x)S(x) | two consecutive upward spin flips on a given localized spin-

1 site. Since, from Eq(6) the m=+1 variable gives the

and treated the KLM in a self-consistent mean-field approxidirection of a spin flip, it follows thatn must alternate in
mation. This approach led him to predict three differenttime. This condition is also present in the Coulomb gas for-
phases in the AFM KLM as well. The first region is con- mulation of the single-impurity Kondo problefAAs a direct
trolled by the paramagnetic Toulouse line fixed point. In theconsequence of the alternation of the chargand the peri-
rotated basis, this phase is characterized $§x))=0 and  odic boundary conditions in imaginary time, we obtain the
(S*#0), precisely as we find in region 3 of Fig. 7. Another first “strong” neutrality condition: the total chargm at a
phase hagS*)#0 and (S*)=0. In this case, the system given spatial position is zerm(Xsixeq,7;) =0. This gives
exhibits ferromagnetic order in the original basis, and therecondition (1) of Sec. Il, whereas conditiof2) is already
fore could be identified with region 1 of Fig. 7. Finally, em- contained in Eq(A1).
bedded between these two phases, he also finds a third inter- The second additional restriction is slightly less obvious.
mediate region, which he identifies as a “soliton lattice,” From Eq.(7), we see that each contribution to the partition
with (S*#0 and(S*)#0. It is tempting to associate this function has a prefactor sign that depends on a string of
intermediate phase with region 2 of Fig. 7. However, ZachaKlein factors andS* operators, the latter coming from
proposes a different description calling remiba ‘staggered  backward-scattering events generatedH§yof Eq. (3d). The
liquid Luttinger liquid,” whereas we find it much more natu- neutrality condition we will derive comes from the cancella-
ral to associatéS’)#0 with ferromagnetic order. He also tion of terms with identical absolute values but with opposite
conjectures that region 2 does not exist. Finally, he arguegrefactor signs. This will finally lead to conditid) of Sec.
that all transitions are first order and of the commensurateH. We will now consider different cases separately.
incommensurate type, while we find them to be continuous. Let us first focus on the contributions to the partition
In conclusion, we have presented a flexible treatment of &unction coming from terms with forward scattering only
one-dimensional system of spins and fermions based on [&qgs.(3b) and (3¢)]. If there are no spin flips, then the pre-
mapping to a Coulomb gas, which we treat within afactor is obviously positive. When there is a pair of opposite
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C B B Az generalized for any number of flips. Finally, we must con-
? f ? f sider the possibility of having flips coming both frohh!
* * 11 - * * 11 T andH" . For this we note that a flip frordl’ and a subse-
quent opposite flip fronIHb “fuse” in a way that is precisely

FIG. 9. A possible spin history and the diagrammatic represeneqUIVaIent to the insertion of a smgl-b’z’ particle (Klein fac-

tation of Eq. (AS) AYB =B, C°, whereAP=F' F, o(r), B, tors, S, operators, and all Therefore our previous conclu-

:F%Fm’ andC —FLJFWU(Tz) K sion is valid in this case as Wel! there must be an even
number ofc charges(not necessarily neutnaht each space

flips [the only possibility allowed by the neutrality condition coordinate.

(1)], then, because of the overall neutrality conditign the ~ Finally, we have so far considered insertions along one

Klein factors cancel, imaginary-time line only, which is not the general case. Nev-
ertheless, because there is always an even number of Klein

F' F,Fl F, =1, factors in each time line, we can always reorder them so as to

N0 MO Moy MO . . L. . . .
o e T group together contributions from individual time lines with-

preserving the positive sign. The consideration of configuraput introducing additional signs. Then, the previous analysis
tions with additional pairs of flips leads to the same cancelcan be used to prove the global cancellation of Klein factors
lation of Klein factors. andsS, operators in the general case as well.

Next, we look at contributions generated § [Eq. (3¢)] We would like to note that the arguments presented in this
only. By considering again increasing numbers of pairs ofappendix indicate a rather surprising precise cancellation of
opposite flips as in the previous paragraph we arrive at aklein factors andS, operators, suggesting that perhaps there
analogous cancellation of Klein factors. is a deeper underlying symmetry behind this result. How-

Moving on now to contributions coming frorhl? [Egq. ever, we were not able to find a more general symmetry-
(3d)], we first consider the possibility of no spin flips. In this based demonstration. We also point out that, in the problem
case, integrating out the bosonic modes, the contribution tof a single Kondo impurity in a Luttinger liquid, Lee and
the partition function is Tonef introduce the same kinds of particles defined in the

Table I. However, in their analysis there is no explicit men-
e S e tion of how to deal with the product of Klein factors and the
Z”WS (1S, (A2) & operators coming from the backscattering events. We
1 have shown that these factors almost miraculously cancel out
where the Klein factors also cancel nicely. Tracing over theand do not affect the remainder of the analysis of tlieir
spin variables leads to no contribution to the partition func-our) Coulomb gas.
tion sum, unless andj have the same space coordinate.
What happens for a higher number of insertion&-@f’ For APPENDIX B:
the general case ® particles coming from-lb the contri- ANNIHILATION AND FUSION OF PARTICLES
bution to the partition function will be

* 2ikpAXj;

We now show in detail how the RG procedure leads to the
. annihilation and fusion of charged particles. Consider that
z~ex;{z In|ri;|(g,cici+a.e€) |11 e2Fexisyi. we initially have a “close pair” with each particle having
! ! fugacitiesF,; andF,. In the complex notation of Eq10),
Note how eachS, insertion comes with a corresponding the action takes the simple form
charge. Thus, it is simple to show that tracing o&¢(i)
leads to the condition of havingn even number of particles
of charge c at each spatial coordinatMoreover, the reor-
dering of Klein factors leads to their complete cancellation.
In order to generalize this result to a configuration with anwith
arbitrary number of spin flips, let us assume initially that

1 _
Seff:i ; a{ijln Zij+Bij|n Zij+2|k|:zi C( 7]i)Xi,

there are only flips of one kind: eithét! or H® . By using 1 I«
the identity(using Pauli matrices instead of spin operaltors =3 Em( 7i) = N9se(7i)
O']_F 7]0'F vszg(rlFi//(rz: UZFE(T:LFL/IU'ZFI?(TF Vo (AS) | K|
_ . . x| —=m(7)~a.e(n) | +g,cm)cin) |,

with v# 7 ando1# o, it is easy show that aH;, insertion @

on one side of a domain wadlan be moved to the other side

with a sign changésee Fig. 9. Now consider, for example, 1| |«

a pair of particles generated Ibj2 as before. When there is Bi=5 Em( 7)) +Ng.e(7)

a pair of flips lying along the time line, we can move the
Klein factors ands? through the domain walls with the iden-
tity above and cancel them out. Therefore, our previous re- x( NER 7j)+

. ‘ . . . _ +g,c(7)c(n)) |-
sult, obtained without the flips, remains valid. This can be

| |
Em(m)
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Suppose the close pair particles are at positioasd m in s a s Bi
space-time. We split the action into three parts: B(l,m)= 2 — L=
i<0m \Isl zi || Z,
1 The integration over the pair center-of-mass coordihase
S5l 3+ 2 : P
i#]#| i#]#m
- f dIB(l,m)=0.
X aijlnzij-l—,Bijanij-l-Zik,:Z C(77i)Xi y L . . . .
i This is different from the single-impurity Kondo problem or

the dilute limit, where this integral does not vanish. The rea-
52_2 Nzt BN T+ 2 Nzt B INZ son is .that., in these cases, the integr_ation is .only along the
T aninz Bulnz; — XimiN Zim BimlN Zim, time direction and, therefore, a logarithmic divergence ap-
pears. Consequently, the expansiorBiistops at first order.
— In contrast, in the dense limit the integral is over space and
Ss= imIN Zim+ BimlN i imaginary time, hence removing this singularity. The first
onvanishing term is second order By as in the sine-

S, gives the interaction between the particles that are not i
1 9 b ordon and the 2 LLs problert,

the close pairS, gives the interactions between the close

pair and the other particles, ai®] gives the interaction be- 1
tween the particles belonging to the pair. Finally, we define ff dIB(l,m)?
the relative coordinate of the pair 8s-z,,—z . Fors~d¢{
<1 we expand the logarithm is 1 $ ey ‘2 BiiBil
s —zi,#(l,m)f Is12 zizi |82 zz
Inzmi=Inz;+ o
ZZj

1. Fusion

If th - i tral. the leading t in th . After integration, the first two terms are power-law functions
€ pair 1S not neutral, the leading term in th€ expansiony e gistance between the remaining particles of the gas.
of S, is of order zero ins|. Therefore, we can rewrit8, as

L : . ; For a sufficiently dilute gas, the most significant contribution
giving the interactions between all other particles and th

§s given by the last term
new “fused” one. In order to once again write the problem in g y

a Coulomb gas form, we must rescale the fugacities to ac- 1 )
commodate this new particle. Doing the integralSy) EJ diB(I,m) ~—27'ri A ;i By In| z;j| + const.
B1
Sin7Tb|m . . . o ( )
J’ dses~ b—d€, It has a simple physical meaning: it gives the “vacuum po-
Im

larization” coming from the dipole moment of the close pair.
where, The final step in the calculation is to integrate over the rela-
tive coordinates,

bim= k[ €(7m)M(7)+m(7yn)e(n)].

, sinmbyy,
. . o dse|s|*~ ———d¢, (B2)
After summing over particle configurations that do not con- Bim
tain the fused pair, we get the contribution from fusion of\nere
particles with fugacitie§; andF, to the fugacityF5 of this
new fused patrticle, bim=«le(n)m(ny,) +m(np,)e(n)].

Collecting Egs(B1) and(B2), the partition function contri-

dFs _ sinmbyn bution after rescaling is

d¢ b, 1Fa-
m

sinmby,

—_— a; BjIn|z;|d¢

z=e5| — 27
bim  ijEdm

2. Annihilation

If the pair is neutral, the particles annihilate each other. InT0 complete the RG step, we must sum the charge configu-
this case,a; = — @, and ;= — Bim. We can expand the ration of S, that did not contain the close par,

partition function contribution ins|, sinwb
_ S ™ Im
z=e 1(1—2#F1F2—b _ 2 ailﬁjllnlzij|d€)'
|S|2 Im i,j#(l,m)
= +S5 —_ 24 ... . . I . .
z f dsdlex 1+[s[B(I,m)+ 2 B(l,m)"+ ' Summing over all possible annihilations of pairs of particles
and reexponentiating, we get the renormalization-group
where equations for the Coulomb interaction strengghhsandg,, .
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APPENDIX C: DETAILED EXAMPLE OF A FUSION On the other hand, there are four possible bosonic opera-
PROCESS tors that can fit into the second history case. Let us start with

. : . . . the close pair,
In this appendix we show in greater detail how to interpret P

the local spins in the effective Hamiltonian of Sec. V after FlFLF] FriST (X, 7+ 87)S (x,7)
several RG steps.

Let us focus on the spin histories of Fig. 6. In the new RG
scale(dashed ling all we know is that the spins at times @I NZTGbc(x,7) — i TG ROs(X,7)
and 7, have the same orientation. Each process compatible
with the histories shown in the figure is an independent parPoint splitting the bosonic operators, we obtain
of the partition function. For definiteness, let us assume that
in this position there is a net charge (0,1,1). At the new scale
there are two indistinguishable possibilities to be consideredAnother possible pair is
either there is a single particle produced by a terr l}f or
there is a close pair at and 7+ d7 that was fused.

% @ V278 ps(X, 7+ 87) +i 27 K bs(X, T+ 57)

FlFriS"(x,7+87)S (X, 7)€ V2T o, 1)+ ZTG o),

FlFriFLFLS (X, 7+ 87)S (x,7)

The effective Hamiltonian strategy is to reconstruct the % @279, be(X, 7+ 87) +i\2alg gk O5(X, 7+ 87) g
CG at each RG step. Since there is no spin flip betwgen _ _
and 7, and there is a net charge (0,1,1), the operator that X V279 bs(x,7) =1 2T G K Os(X,7)

performs this task is Reordering the Klein Factors and point splitting again, we

FITFRng(TT) o T ek T+ ngpgc(m’ 1) can rewrite this pair as
et - + i (270, s, 7) +i 27T, (X, 7)
where the overbar denotes an operator at the new scale. " L1FRIS (X, 7+67)S7(x, 7)€ ) e
We want to know how to compare the spins at the newThe other two possibilities give the same contributions as
scale with these at the previous scale. In the first history ofhese ones. If we now identify
Fig. 6 this is a trivial question. Before rescaling, the process — ——

had the same form, so ZSZ(X,T)ES+(X,T+ o71)S (X,7)—S (X,7+ 5T)S+(X,7'),
_ we reconstruct Eq(C1). Note the importance of the Klein
SH(X,7)=SX,7). factors for this identification to hold.
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