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Luttinger liquid superlattices: Realization of gapless insulating phases
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We investigate Luttinger liquid superlattices, periodic structures composed of two kinds of one-dimensional
systems of interacting electrons. We calculate several properties of the low-energy sector: the effective charge
and spin velocities, the compressibility, various correlation functions, the Landauer conductance, and the Drude
weight. The low-energy properties are subsumed into effective parameters, much like homogeneous one-
dimensional systems. A generic result is theighted average nature of these parameters, in proportion to the
spatial extent of the underlying subunifointing to the possibility of “engineered” structures. As a specific
realization, we consider a one-dimensional Hubbard superlattice, which consists of a periodic arrangement of
two long Hubbard chains with different coupling constants and different hopping amplitudes. This system
exhibits a rich phase diagram with several phases, both metallic and insulating. We have found that gapless
insulating phases are present over a wide range of parameters.
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[. INTRODUCTION class of quantum critical behavior called “bounded Luttinger
liquids.”3°

The physics of one-dimensional electronic systems has A particular kind of boundary effect emerges in the case
been the subject of a vigorous onslaught recently, both theaf inhomogeneities. In general, an inhomogeneous LL is
retical and experimental. Experimentally, the ability to growmodeled by allowing the velocities of collective excitations
nanostructures such as quantum wifésand carbon u, andu, and the correlation exponerks, andK, to vary
nanotube&™ has enabled the investigation of systems of ain space. The absence of conductance renormalization in
truly one-dimensional nature. On the theoretical side, the pdong high-mobility GaAs wires, for instance, has been ana-
culiarities of the behavior of interacting electrons in one di-lyzed and explained in terms of an inhomogeneous LL
mension have culminated in the proposal of a unique univermodel, where the Fermi liquid leads are replaced by a non-
sality class dubbed the Luttinger liqdfi® (LL), which  interacting one-dimensional electron gas®® Furthermore,
stands in sharp contrast with the higher dimensional FerndiL's with different inhomogeneity profiles have also been
liquids established by Landau. The LL is characterized byiS€d in the context of the fractional quantum Hall effect, to
the absence of stable quasiparticles, its low-energy secté]?scr'b;% 37tranS|t|ons between edge states at different
being exhausted by collective charge- and spin-density excflngs,™ " or between an edge state and a Fermi ligiid.

g With an eye to practical applications as diodes or transis-

tations. Since the latter travel at different velocities, an adde rs. researchers have recently beaun to fabricate heteroiunc
electron splits up into well separated charge and spin degre s, Y oed )

: . Y~Yions of carbon nanotub&s°~** which look especially
of freedom. Furthermore, correlation functions decay in a . o ;
ower-law fashion. with exponents set by onlv a few aram_promlsmg. They happen to be another realization of an inho-
P ' P y only P mogeneous one-dimensional system. Taking this idea one

h q . hich exhibit th é?ep further, we have been led to consider another kind of
the case of edge transport in systems which exhibit the fraGeterostructurea superlattice The effect of electronic cor-

tional quantum Hall eﬁ?d?_ﬂ'-'- theory has also been suc- (g|ations in superlattices was initiated through a one-
cessfully used to describe some low-energy properties of cagimensional Hubbard-like model called a Hubbard superlat-
bon nanotube&~** though the situation in quantum wires tice (HSL),*>~*’ consisting of a periodic arrangement where
remains controversiaf:*® the Hubbard on-site repulsiod is turned on and off in a
The effect of boundary conditions on the low-energyrepeated fashion. Despite its simplicity, a number of remark-
properties of LL's was considered several years dddore-  able features were found, in marked contrast with the other-
over, the interplay between boundary, finite-size, and thermakise homogeneous system: local moment weight can be
effects has been shown to alter considerably the properties tfansferred from repulsive to free sites, spin-density wave
the systent®?°In particular, the zero-temperature critical be- (SDW) quasiorder is wiped out as a result of frustration, and
havior of the bulk always crosses over to a boundary domistrong SDW correlation$in a subset of sitgscould set in
nated regime. These studies are important to explain the exbove half filling. Furthermore, the evolution of the local
perimental results of tunneling spectroscopy into oneimoment and of the charge gap, together with a strong-
dimensional systems. More recently, it has been proposecbupling analysis, showed that the electron density at which
that one-dimensional systems with gapless degrees of fre¢he system becomes a Mott insulator increases with the size
dom and open boundary conditions form a new universalityof the free layer relative to the repulsive one. More recently,
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the possibility of a periodically modulated hopping at arbi-
trary filling and magnetization has been considéfed.

In order to generalize the effects of a superlattice structure
in an interacting one-dimensional system, we consider here a
general Luttinger liquid superlattideLSL), making at first tice. Hereu K andL, are the velocities, interaction param-
no reference to the underlying microscopic details. We Showi'c 0] aives of two Lut?inger liquids £ 1.2)
how its low-energy properties bear strong resemblance to a e
conventional Luttinger liquid. However, as in the case of
bounded Luttinger liquid2® new effective parameters have

FIG. 1. Schematic representation of a Luttinger liquid superlat-

to be introduced, which are the superlattice analogs of the 1 _ J
spin and charge velocities and stiffnesses. These encode all I1,(x)=— 2 e’“‘p‘x’z"px[m(p)— v_(p)]+ f" 4
the information necessary for a description of the low-energy p#0

sector. Moreover, these effective parameters turn out to migere p.(p)[o,(p)] are the Fourier components of the

the properties of the underlying subunits in proportion tocharge-(spin-)density operator for the right & +) and left
their spatial extent. This spatial averaging characteristic sugq — —) branches of moving fermions. Introducing the total
gests the possibility of fine tuning the physical properties bynumber operatoréneasured with respect to the ground State

a gareful selection of thg superlattipe mod_ulat_ion, a featureNrS for branchr and spins, the total(charge and spimum-
which may prove useful in nanodevice applications. We the er and current operatols, ,J, are
vIi¥y

consider specific realizations of the LLSL by analyzing in
full detail a general HSL. We find a proliferation of phases, 1
both metallic and insulating. Surprisingly, the insulating N,=—=[(Ns;+N_)=(N. +N_ )] (5
phases often have no charge gap, because additional charge V2 ' ' ’ ’
can be accommodated in the compressible subunits. A partial
account of these results has appeared in Ref. 49. and
The paper is organized as follows: In Sec. II, we introduce 1
the Bosonic formulation of the Tomonaga-Luttinger model _ = _ + _
and our model. We obtain the effective charge and spin ve- Iy \/E[(N+’T N-D=EN = N- D, ©®
locities, the correlation functions with the effective expo-
nents and the Drude weight for LL superlattices. The appliwhere the upper and lower signs correspong g anda,
cation of these results to various cases where the LIrespectively.
describes the low-energy sector of a Hubbard model is ana- The operatorsb, andIl, in Egs.(1) and(2) obey Bose-
lyzed in Sec. lIl. We close with the conclusions in Sec. IV. like commutation relationg:®,(x),I1,(y)]=i4,,6(x—Y).
Consequently, at least fg, =0, Eq. (1) describes indepen-
Il. MODEL dent long-wavelength oscillations of the charge and spin den-
sity, with linear dispersion relations, (k) =u,|k| (u, is the
We briefly review the general aspects of a homogeneouselocity of elementary excitationsand the system is con-
LL in order to set up the notation. The low-energy, large-ducting. The only nontrivial interaction effects in E([L)
distance behavior of a one-dimensional Fermionic systentgome from the cosine term. However, for repulsive(3U
with spin-independent interactions is described by thenvariant interactionsd;>0), this term is renormalized to

Hamiltoniart®~*° zero in the long-wavelength limit, and at the fixed point one
haskK* =1. The three remaining parameters in Eg). then
20, completely determine the long-distance properties of the sys-
H=H,+H,+ Wj dxcog\8®,), D tem:in particularK , determines the long-distance decay of
all the correlation functions of the system.
wherea is a short-distance cutoffj; is the spin backward- ~ We now consider a LLSL, consisting of a repeated pattern
scattering amplitude, and of two different LL's with parametersi, ,, K, , and sizes

L, (A=1,2) perfectly connecte@Fig. 1). We use the adia-
Ko u, ) batic approximation, in which the scale of the inhomogeneity
HV:J dX| —— I+ 5 (0x®,)7 ), () petween the two liquids is much larger than the Fermi wave-
Y length 27/ke . Thus the single-particle backscattering from
with v=p ando for the charge and spin degrees of freedom,the inhomogeneities can be neglected. Accordingly, the low-

respectively. energy properties of this LLSL are described by generalizing
The phase fields are the usual bosonized Hamiltonian of EJ) as follows:
K 1 — a|p|x/2—ipx 1 2
®ux)== T 2 Se PP (p) 4y (p)] H=oo 2| dx{u,(0K,(0(50,)
v=p,0
N X 3 uv(x) @ 2 7
VT’ ( ) + m(ax V) ’ ( )
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where the sum extends over separated chargep( and
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[obtained by taking Eq(11) into Eg. (10)], subject to the

spin (v=0) degrees of freedom, each of which with same boundary conditions at the contacts as before, with

interaction- and layer-dependent parametergx) and
K,(x). For x on the first(second “layer” one has K, (x)
= Kl,v(KZ,V) and uV(X) = ul,v(u2,v) .

The boson phase fieldb, are related to the charge and

spin densitiesp ande, throughy24,® ,(x)/ 7= v, while ® ,
is such thats,® , is the momentum field conjugate tb,,:
[®,(X),d,0,(y)]=16, ,0(x=y). Note that II,(x)
=0,0 ,(x) in Egs.(1) and(4).

The equations of motion for the fields, and® , are

(yt(I)V:uV(X)KV(X)&X@VV (8)
u,(X)
&t@)V:K (X) &X(I)V’ (9)

which illustrate their duality under the replacemégy(x)
—1/K,(X). Substituting Eq(9) into Eq. (8) yields

UV
ﬂtt(DV_UVKV(?)((_(?X(DV) :0, (10)

K,

and a similar equation fo® ,, .

®p,,(X) replacing® ,(x). The eigenvalues are given by

w, L w, L
cosp(Lq+ L2)=cos< P, 2)005( N l)
u2,v ul,V

AV . (wp,VLZ) . (wp,vL
— ——SINn SIN|
2 UZ,V ul,v

1>, (14)

where A,=7,+7,' and 5,=K,,/K,,. For p<w/(L,
+L,), the dispersion relation of the LLSL is linear, i.e.,
o,(p)=c,|p|, with an effective velocity
Uy, (1+1)
CV: ’
VI+A Uy, /ug,+(lug,/u,,)?

(15

wherel=L,/L,; clearly,c,—u,, asl—«, andc,—u,, as
|—0. Also, from Eq.(14) it follows that the spectrum of
elementary excitations of a LLSL has bands and gaps, re-
flecting the superlattice structure. In this regard, it should be
mentioned that, for a Luttinger liquid with a periodically
modulated particle density, the presence of a plasmon gap
was reported’ Here, we will focus only on the low-energy

We now have to set up the matching equations at théroperties of the LLSL. _
interfaces between layers. The equations of motion lead to On the other hand, the zero mode functighg,(x) and
the continuity of®, and® , and their time derivatives. The 0o.(X), satisfy

right-hand sides of Eq$8) and (9) yield, as additional con-

u,(X)

ditions, the continuity of bothy,/K,)d,®, andu,K, 3,0, )= b0 (X), (16)
at the contacts. Note that the continuity®f, and® , guar- YK () TR

antees that of the Fermionic field:3® Physically, these

boundary conditions simply encodlee conservation of both M= U (X)K,(X) 3500, (X), 17

charge and spin currents, j= 20,0, I (since we are ne- nich follow from Egs.(8) and (9). While for the homoge-
glecting umklapp processes and backscattering of electrong,q s system one has

with opposite spih We stress that, under these conditions,
these are the only universal requirements on the fields, irre-
spective of the actual interface potentials.

The superlattice structure is incorporated into the solution
of the equations of motion in a way completely analogous taand
the discussion of reflection and transmission in the Kronig-
Penney model. That is, we diagonalize the Hamiltor(ian J,
by expanding the phase fields in normal modes 00,,(X) = ™

N,
bo.(X) = T (18

X, (19

for the LLSL there will be, in general, an inhomogeneous
periodic density profile. As we will see, there is a tendency
for the charge to accumulate more in thess interactive

layer. Thus the zero mode functions will reflect this

$p,(X)
2\/wp’,,

®,(x,t)=—i 2, sgr(p) [b_p.€' !
p#0

T —iwy 7
0.8 1= b0, 00 F vt (D inhomogeneity* Now, since each layer is a LLg,, and
0o, will vary in such a way thatl ¢y ,=7N,, andAd,,
=i Op.,(X) [b . e“st—bl e 1@ty (x) mJ,, across each layex, with layer-specific number and
e $70 2\w, , TP p.v O current operators. We then obtain
— 7t 12 N X
' 2 0s()=Annut — (20
wherebgyv, are boson creation operatops¥0). The normal A
mode eigenfunctiong, ,(x) and eigenvalues, , satisfy 73 X
v
BO,V(X) = Bm,)\v+ (21)

L L
u Y
2 14
wy ,&bp ,(X) U K, dy| = 3dybp . | =0, 13
Py plX) X<KV e ) 13 where
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N2V NlV .
(m—1)7wLy| — — if A=1,
L, Ly
A= NN (22
maly| —~ — 22| if A=2

with an analogous expression f8, , , obtained with the
replacement oN, , by J, ,. Herem=1,2,3 ... labels the
unit cell. Analogously, from Eq98) and (9) we have

I
Y= T 0K 0 T (23
_ UV(X) N)\v (24)

T Ly

In a LL, the ground-state value af, measures the charge
compressibility, whereas,, is related to the spin susceptibil-
ity. Considering the LLSL zero moddg&qgs. (20) and (21)]
and the Hamiltoniar{7) we find that the superlattice com-
pressibility is given by

1 1+1

Ks Kit+lky’

(29

wherex, =2K, ,/mu, ,is the compressibility of each layer.

Clearly 4 is nothing but an average of the individual com-

pressibilities weighted by the layer lengths.

PHYSICAL REVIEW B 65 115115

2kg and &g correlations in the homogeneous case. And,
similarly to the homogeneous system, the former dominate
over the latter forKj;z% (see, however, Ref. 52

The correlation functions for spin-spin, singl&S and
triplet (TS) superconducting pairing are given by

@ 2400~ ()]
(S() - S(y))~———5+Bs e
’772|X—y|2 |X—y|KP+Ku—
e2i[4()~ ¢(¥)]
+B o (29
le_lep+KU
(0{dx)0sdy)) =(075(X)Org/(¥)) (30)
C
~———, (31)
|X—y|KP+K0
C
t 2
(Ots, ,(X)Ors, (V) ~ m, (32

WhereEV=f(1/K1’V,1/K2YV) [Eq. (27)], reflecting the duality
properties(in the homogeneous limit we hawe,— 1/K,).
One should note that the correlation functions depend not
only on the differencex—y, but also on the actual positions

x andy, through the zero mode functions. It is interesting to

Interactions in a one-dimensional system can enhancgqie that, even though we now have new effective coupling

charge density or superconducting fluctuations depending on
whether they are repulsive or attractive. Let us then consid

the correlation functions for the LLSL af=0. The
asymptotic(i.e., for well separated andy) behavior of the
density-density correlation function is

e2i[#(9)~ ¢(¥)]

o
n(x)n(y))~———+A T
< U VY R NI

eHIA()~ ¢(¥)]
+A————, (26)
2 |X—y|4KP
where
VTR T P 0
v = 1 N 1 U]_’V = 1wy ™2/
KlV KZVV u2V
(27)
r (K, \2
( 1'”) if x and yel,
KZ,V
1+1 2 Kq,Ug
—K* - X v v |f X, 1121
%y KV Klv Ui, < K2vu2v ( y)E( )
K — 4| U : U’ 2
20 2 ( 1V) if x and ye2,
\ us,
(29)

fonstants K* K,), the scaling laws between the exponents

of the correlation functions are not broken by the superlattice
structure. In other words, the replacemef;—K? and

K, '—K, in the exponents of the correlation functions of the
homogeneous system yields the exponents given above for
the superlattice.

Finally, we discuss the conducting properties. Let us first
consider a LLSL in the presence of a weak external space-
and time-dependent electrostatic potentidk,t), such that
the electric fielde(x,t) = —d,V(X,t). The interaction of the
fermions withV(x,t) is described by a source term

Hextz—ef dxp(X)V(X,t). (33

Now the equation of motion fod , is**~%*

_ It Up(x)
U (0K, (X) ‘”( K,00 7

”d)p(x,t)= —eE(x,t).
(34)
Defining the Bosonic Green'’s function

G(x,y,t) = =i 0(t){[P,(x,1),D,(y,0]), (35
the nonlocal conductivity is given by

29o
U(X,y.t)=—7ﬁtG(X.y,t), (36)

andE(x) =KeX— ¢g,,(X). The second and third terms on the wherego=e?/h is the conductance quantum. First, we con-

right-hand side of Eq(26) respectively correspond to the

sider the usual order of limits, taking—0 beforew—0,
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ensure this symmetry throughout the whole system. Instead,
under a particle-hole transformation the system is mapped
onto a different one with a spatially modulated chemical po-
tential.

A weak-coupling perturbation theory, similar to that for
the homogeneous model can be used to show that&q.

indeed describes the low-energy and small momentum sector
of the discrete model of Eq39) in the limit of long layers;
) . . see the Appendix. Then, in E¢/) one ha ,(x) =K, , and
FIG. 2. S_che_matu_: representatlpn of I—!ubb_aro_l superlattices. "PJ,,(X) =u,, for x on the layem = 1,2, where, , andu, , are
(@) the hopping is uniform but the interaction i, in the A sub-  {he gyal uniform weak-coupling LL parameters for each
chain. In(b) the interaction is uniform, whereas the hopping Canlayer. It is by now well established that a LL description is
assume two values. appropriate for the low-energy sector of the Hubbard model,
even in the strong-coupling limit & .>* Now, each long
Hubbard subchain is still a finite-sized LL, though connected
to particle reservoirs at each efldWe therefore make the
(37) quite reasonable assumption that the above LLSL description
remains valid even in the strong-coupling limit. With respect
which has the same form as for the homogeneous¥dsg, to magnetic properties, the superlattice structwigh repul-
with the effective velocity and effective exponent replacingsive interactionsdoes not break S(2) symmetry, so that the
the corresponding uniform quantitieg andK,. Taking the  inhomogeneous,, is still expected to renormalize tK,,
limits in the reverse order yields the Landauer conductance,»1.
which corresponds to a situation where an electric field is Because each subchain is apenLL, there will be a
applied to a finite region of the sampteln the LLSL we  certain amount of charge redistribution between them, lead-
have ing to a nonuniform charge profile. Let us first consider the
special case of two layers onllwith parametersy,,t;) and
0(g—0,0=0)=29,K} 5(q), (38 (U,,t,)]initially disconnected and with the same initial den-

which is similar to the homogeneous c&&@xcept that the Sity n=N/L. In general, these two subsystems will not have
effective exponent appears. Naturally, the conductance renot?® same chemical potential. We then bring them in contact
malization of Eq.(38) is usually hidden in the presence of With €ach other, so that particle exchange is allowed. Elec-
Fermi-liquid leads'~%® However, it should be accessible in rons will flow from one system to the other until their

ac measurements, i>c,/L, the inverse traversal time of chemical potentials exactly match:

the sample®
m(ty,Ug,ng)=pu(ty,Uz,ny), (40

O0—-O0-O0-O0O0=0=0=-0—0-0-00=0=0

h o 4 § b hH by g fHh oH bbb

which yields the Drude weight, appropriate for a situation of
a uniform static electric field® In this case

o(q=0,0—0)=2g,c K} 8(w),

Ill. HUBBARD SUPERLATTICES . . .
whereu andn, are the chemical potential and the equilib-

For the sake of illustrating the LLSL with a specific real- rium densities of each layer, respectively. This is just the
ization, we now discuss a one-dimensional Hubbard supeicondition for thermodynamic equilibrium. Naturally, conser-
lattice (HSL).*>~*8We first consider a periodic arrangement vation of total charge dictates that
of L, sites in which the on-site coupling i$,=0, followed
by L, others with on-site coupling),>0; the hopping pa-
rametert is uniform, as shown in Fig.(2). We subsequently
consider the on-site interaction as being uniform but the hopm order to determinen; and n,, we must solve simulta-
ping integrals as periodi¢; betweerl, sites, followed byt,  neously Egs.(40) and (41). The extension to the case of
betweenL, sites; see Fig. (®). more than two layers leads to no modifications of the above

Both cases above are contemplated if one writes thequations and the charge profile will be periodic with the
Hamiltonian as densities determined as above.

The dependence gi on the densityn and on the inter-
actionU can be obtained from the exact solution of the ho-
mogeneous Hubbard mod¥IAs a function ofn, the chemi-
cal potential u(t,U,n) increases monotonically and is
discontinuous at half filling, where it jumps from_(t,U) to
: pmo(t,U)y=U—pu_(t,U). Thus the homogeneous model is a

at sitei in the spin stater=1 or | andnj,=c;,Ci;- Itis  \ott insulator at half filling.._(t,U) is the lower chemical
important to notice that the SL structure breaks particle-holgyotential at half filling, given by

symmetry?’ The homogeneous Hubbard model, in a grand-
canonical ensemble description, is invariant under a particle-
hole transformatiorﬁcigec;',,(—1)‘] only whenu=U/2. In

the superlattice case, a uniform chemical potential cannot

ny+In,=n(1+1). (47

H==2 tiisa(Cl,Ciraot HE)+ 2 Uininiy, (39)

where, in standard notation,runs over the sites of a one-
dimensional Iatticecit, (ci,) creategannihilate$ a fermion

M,(t,U)z2t—4tF Ji(w)dw 42)

0 w[1+e(l/2)wU/t]'

115115-5



SILVA-VALENCIA, MIRANDA, AND DOS SANTOS PHYSICAL REVIEW B 65 115115

2.0
\
— - 1=0.5
1.8\ — 1=2
\\r .....................................
=1.6' Inu
n
1.4} ! T
i
L/
1.2 ,/
/
o276 "3 10
Ut
FIG. 3. Phase diagram of a Hubbard superlattice With=0
andt;=t,=t for two layer length ratiost=0.5 and 2. For each
there are two metallic phases and two insulating ones. The two dots
locate U, ,n), whereU./t=3.2309 anch,=(2+1)/(1+1).

where J;(w) is a Bessel function. To increase the particle | |
number above half filling, we need to pay an energy given by 00,5 %0 2.0 a0 60

wi

AH:/'L+(t1U)_/-L—(t1U):U_ZM—(tvU)! (43)

FIG. 4. Particle densities for tHe=2 Hubbard superlattice with
1=0, as functions of the chemical potential:is the overall
charge densityfull lines), n, is the density at free siteshort-
dashed curvgsandn, is the density at repulsive sitél®ng-dashed
) (44) curve3. Two cases are considere@) U,=2t<U. and (b) U,

=4t>U,.

which is the quasiparticle gap. For later use, we also quot%
the chemical potential of the noninteracting case,

n
m(t,0n)=-2t 005(7

As the density is further increased, the system responds in
two different ways, depending on whethel, is larger or

We first consider the case in which one of the layers issmaller thanU,=3.2309 (for all 1); see Figs. 3 and 4. If
“free” ( U;=0) and taket;=t,=t for simplicity. Figure 3 U,<U, [Fig. 4(@)], the insulating state can only be sustained
shows the phase diagram forL,/L,=0.5 and 2; the case up to a limited amount of additional charge; that is, as long
=1 has been discussed in Ref. 49. For the sake of compar&s it is energetically favorable to accommodate this extra
son, one should also keep in mind the phase diagram for theharge in the free layer, while keeping=1. Further in-
homogeneous LL, in which there is a single gappeitt) crease im soon leads to an increase in the occupation of the
insulating phase for any nonzero repulsion at half filling; repulsive layefwith 2>n;>n,>1) and the system reenters
upon either electron or hole doping the system becomes men overall metallic phase. This metallic character will be lost
tallic. In what follows, we start with a qualitative discussion again for largem, when the free layer becomes completely
of the phase diagram, after which we provide the details ofull (n;=2,1<n,<2), with the superlattice displaying insu-
how the boundaries and special points are determined.  lating behavior. Again, this insulating phase is gapless.

In the case of a superlattice, while forx1 the system is If U,>U, [Fig. 4b)], on the other hand, all added elec-
always metallic, interesting metal-insulator transitions haverons will be accommodated in the free layer<{ti; <2,
been found fom>1, as displayed in Fig. 3. Indeed, for a =1), so that the superlattice remains in the state of a gapless
densityn just above half filling, the system is still metallic, insulator. Further increase in the electron density leads to the
with more particles occupying the free layer than the repul{ree layer becoming bandinsulator fi;=2), while keeping
sive one in order to decrease the overall electronic repulsionthe repulsive one pinned at half filling; the density at
One has;>1 andn,<1, as shown in Fig. 4. As the density which this occurs depends on the aspect ratind is given
is increased for givehandU,, electrons will be accommo- by [cf. Eq. (41) and Refs. 46 and 47n.=(2+1)/(1+1).
dated in both layers without affecting the metallic characterOnly at this special density does the superlattice become a
see Figs. 3 and 4. This will persist until the repulsive layer isMott insulator, since it is incompressible{/duw=0); see
half filled (n,=1), when it becomes Klott insulator. Recall  Fig. 4(b). Forn>n,, the free layer remains completely full,
that an insulating phase in one of the subsystems is signaleg that all added electrons go to the repulsive layer; the su-
in Fig. 4 by a horizontal plateau in the correspondmg) perlattice behaves again as a gapless insulator.

(i=1,2) plots. The system as a whole is thereforereu- At this point it is worth commenting that the phase dia-
lator, since it can be thought of as a series arrangement ajram of Fig. 3 differs in two aspects from the one found for
resistors. However, the unusual fact is theplessnature of  thin layers, obtained by means of Lanczos diagonalizations:
this insulating phase: charge can be accommodated in the Ref. 46 nogaplessnsulating phases were probed, and the
free layer at no energy cost, since the system is compressibiesulating phase fon=n. was found to extend down to any
(onlou#0) in this range oh; see Fig. 4. U,>0. The former difference is due to the fact that only

A. U;=0 case
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U2/t

) FIG. 6. The correlation exponeKt: as a function of the density
FIG. 5. The Mott-Hubbard gap at=n. as a function of the , for y,=0, U,/t=2, andI=0.5,2.

on-site coupling for both the homogeneous madelshed lingand

the superlatticéfull line). This behavior is the same for all The LL description of Sec. Il is only valid in the metallic

. . . regions of the phase diagram, where no gap is present in
gapped insulating phases were probed, while the latter can hiher the spin or the charge sectors. In these regions, we
traced back to finite-size effects.

Let us now fill in the details on how the lines and specialhave
points of Fig. 3 are determined. The dotted horizontal line at (1+1)
n=n. is obtained by setting both,=2 andn,=1. How- c = UF ,
ever, this condition can only be obtaineddt,>U_, where ? \/1+Aplv,:/u2,p+(IvF/uzvp)2
U, is determined implicitly by(see Fig. 4

ve(1+1)

m(BU)=pu(t,0n;=2)=2t. (45) Co= T
1+ IU E /UZYP

Since neither Eq(45) nor Eq.(42) depends o, this condi- ] . ) . ) )
tion yields the sam&J ~3.230 97 for any finite aspect ratio. Wherev is the Fermi velocity. When the insulating phase is

Besides, forU,<Up, the system is always gapless. For @PProached from the lower metallic regi¢see Fig. 3 c,
U,>U, andn=n,, the system shows a Mott-Hubbard gap —0 a@s a result oﬂzvp_—>0 in the interacting Iaye_r. In Fig. 6,
given by the energy difference between the highest occupie® show the effective exponemt; as a function of the
state, which is the upper edge of the noninteracting band 4tling n. For anyl, both metallic phases have ¥Xj,
2t, and the lowest unoccupied level, which is the higher<Kj, <1 and the charge and spin-correlation functions de-

chemical potential of the half filled Hubbard chain atcay faster than in the homogeneous system. This is a direct

mo(t,Uy) consequence of the “weighted average” character of the ef-
fective exponenl(;c . By the same token, for a givemon the
As=p(t,Ux)—2t=Up—2t—p _(t,Up). (46) lower metallic phaseK:; decreases ak increases. In the

For the one-dimensional Hubbard model, one h®s  upper metallic phas&} always tends to the noninteracting
~(8\tU/m)exp(=2mt/U) in weak coupling and\,«U in  Vvalue of 1 as the upper insulating region is approached; for
strong coupling. For the HSL, we found thAt is linear  the superlattice with IargérK: reaches 1 at a lower overall
with U, for largeU, and is always lower than the gap of the density.
corresponding homogeneous system; see Fig. 5.

The two metallic phases are characterizedigy<2,n, B. General case:U,=U;#0
<1 (lower ong andn;<2,n;>1 (upper ong The metal-
insulator transitionMIT) lines can therefore be obtained by
means of Eqs(40) and(41), the Lieb-Wu chemical potential
n(t,U,,n,) and Eq.(44). Therefore, in Fig. 3(i) n’ is the
line in which the lower Hubbard band of the interacting sub-
chain becomes fully occupiedi) n” is the one in which the
upper Hubbard band starts to fill, afid) n” is the line in
which the noninteracting subchain fills up. Thus

We now consider a more general HSL, with different non-
vanishing coupling constants on each laygy ¢ U>,), while
keeping the same hopping amplitudehroughout the lattice
[Fig. 2(@)]. Using once again the exact expression for the
chemical potential as a function of bothandn,®” we have
determined the charge profile of the superlattice system. The
charge tends to accumulate in the layer with the smaller cou-
pling, which we choose to call layer 1. This is rather intui-

- tive, since electrons decrease their mutual repulsion energy
n_(t,Uy,)=—2t cos{E[(1+l)n—l]), (47 by flowing into the less interacting layer.
The phase diagram for this HSL is very rich. We observe
- six different phases, three metallidg, M,, andM3) and
mi(tUg)=—2t cos(—[(1+l)n—|]), (48)  three insulating Iy, 1,, andls), each characterized by its
2 charge profile, as shown for three illustrative cases in Fig. 7.
The topology of the phase diagram is the same forlaayd
2t=,u( , (1“)”_2) (49) the limiting casedJ;—0 (Sec. lll A) andU;=U, (homoge-
e I ' neous chainare recovered. On each phase diagram of Fig. 7,
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FIG. 7. Phase diagram forla=1 (n.=1.5) Hubbard superlat-
tice withU,>0, and three different values bf,. In each case there

2.0

(@) U,t=3

1.6f

0 4 8 12 16

are three metallicM) phases, and thregaplessinsulating (1)
phasesgappedinsulating phases appear as horizontal dashed "nesresponsible for the insulating behavior of the system, the
In (8), U,=3t and U*~2.18 (see text in (b), U,=4t, U*
~2.3%, andU,~0.64; and in(c), U,=16t, U*~3.02, andU,

~12.2.

there are five MIT lines, labeled by throughn,,, which are
determined similarly to the cas#; =0 discussed beforsee

Table I). We get line I:

line I

line llI:

line IV:

(1+hHn—-1
M—(t,U1)=M<LU2,|—)

(1+hHn—-1
M+(t,U1)=M<LUz,|—)

p[t,Ug,(I+Dn—1]=pn_(t,Uy);

,u[t,Ul,(l—l—|)n—|]=,u+(t,U2);

(50

(51)

(52

(53

PHYSICAL REVIEW B 65 115115

TABLE |. This table lists the various metallio\(,, M,, and
M3) and insulating phased , 1,, andl3) of Fig. 7 with the cor-
responding subchain densities. The last column shows the nature of
the transition lines between the phases-f, in Fig. 7). LHB A
and UHBNA respectively stand for lower Hubbard band and upper
Hubbard band in layex =1,2.

Subchain densities Transition line
M, n;<1, n,<1
U LHB 1 fills up (n;)
| 1 n1: 1, n2< 1
l UHB 1 starts to fill f,)
M, n,;>1, n,<1
U LHB 2 fills up (ny;;)
I5 n>1, n,=1
U UHB 2 starts to fill f1y/)
M, n;>1, n,>1
U UHB 1 fills up (ny)
line V:

(1+1)n—-2

w(t,Up,n=2)=u_[t,U,, (54)

I
ForU,=0, the linesn,, , n,y, andny determine the phase
diagram of Sec. Il AEgs. (47)—(49)].4°

One of the consequences of a nonzerpis to push the
lower metallic phase of Fig. 3 to smaller densities, as shown
in Fig. 7 (M4). In addition to this phase, which spans all
values ofU,<U,, there are two other metallic regionsl§
andM3). And in between metallic phases, one finds insulat-
ing phases, one of whicH {) is now stable fon<1, unlike
the case folu,;=0. These insulating phases have eithgr
=1, \=1,2, orn;=2 (see Table). Once again, there is a
“division of labor” between the two types of subchains:
while one is gappe@Mott) or completely filledband, being

other remains gapless and so does the system as a whole.

Figure 7a) shows the phase diagram fdp=3t<U. (U,
is the same as for the casg=0). The HSL has a gap at the
densityn=1 for U;>U*~2.145608; thisn=1 line sepa-
rates thel; (i.e.,n;=1, n,<1) and thel, (n;>1, n,=1)
gapless insulating phases. Rd;<U* one goes through a
sequence of MIT’s, in which all insulating phases are gap-
less.

In Fig. 7(b), we show the phase diagram ftr,=4t
>U.. As the overall density is increased from 1 in the in-
terval U,<U,;<U*, where U,~0.6433 and U*
~2.39149, the system goes through a sequence of MIT’s
without ever being gapped. However, 10, <U,, the inter-
mediatel, (n;>1, n,=1) and thel; (n;=2, n,>1) gap-
less insulating phases are separated by the dashed line at the
densityn,=(2+1)/(1+1), where the system is fully gapped.
Similarly, another gap appears at the densityl for U,
>U*, which again separates gapless insulating phages
(n;=1, n,<1) andl, (n;>1, n,=1).

For U,=16t>U, [Fig. 7(c)] and U*<U;<U, (now
U*=3.01509 and U,=12.1724) the system is metallic
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12} U, =16
6 \
< 4 % 8l
= o
2F al
Oyl L L 1 Il c U*
0 2 4 6 8 10 4
Ut 0 U?/t 12 16
FIG. 8. Parametert)* and U, as functions ofU,. The two FIG. 9. The Mott-Hubbard gapa% andAg, at the densities
curves meet atJ,=6.252 61. n=1 andn,=(2+1)/(1+1), respectively. HerelU,=16t and |

=1.
only below linel, which approaches=1 for largeU,; also,
gapped behavior is again observed at densitied andncl functions ofn. The effective charge Ve|OCit§fU” line in Fig.
with all other insulating phases being gapless. For each ok0) vanishes upon approaching the insulating regions as a
the regiondJ;<U* andU;>U,, a “tipped” metallic phase result of the vanishing charge velocities of the individual
is observed. subchainsi, ,—0. Thusc, shows a re-entrant behavior as a
The above discussion indicates that there are special valunction of n (cf. Fig. 7). As in the homogeneous case, the
ues ofU;, U*, andU,, which respectively represent the effective spin velocity is always smaller than the Fermi ve-
“tip” positions of the low- and high-density metallic phases. locity and only vanishes in the upper insulating phase
Their dependence od, can be extracted from the solutions (dashed line in Fig. 10 The different behaviors af, andc,,
of can be traced back to the fact tHag is sensitive to the
superlattice structure, whil€* =1, sinceK,,=K,,=1 as a
My (tUg)=pu(t,Uy,n=2)=2t+U, (55  result of the S(2) symmetry being preserved.
and of The preservation of S@@) symmetry also leads t&,
=K% =1. Thus, from Eqs(26) and(29), the density-density
s (t,U*)=pu (t,U,), (56) and spin-spin correlation functions for the HSL are domi-

tTAN vy —1-K*
and are shown in Fig. 8. It should be noted that these valugdated by(0'0)~|x—y| o These terms correspond to
are independent of the aspect ratid\s Fig. 8 reveals, one 2Kr CDW and &g SDW in the homogeneous system. Here,

should not be misled by the different horizontal scales in FigK2,<K} <Ky, and the density-density and spin-spin corre-
7: the low-density tip does not recedelds increases, since lation functions for the HSL decay fasteslowe than for a
U* actually increases monotonically with,, saturating at "omogeneous system with=U, (U=U,). Similarly, pair-
U, asU,—oc. On the other hand, Fig. 8 shows tHag is  ing correlation functions aré0'0)~[x—y|~*~%». In spite
only defined above a certain thresholdi,=U,, reflecting  of the presence of effective exponem§ andK,, the con-
the fact that when the coupling in layer 2 is small, the situ-dition for superconducting quasi-long-range order is again
ation n;=2, np=1 is never realized; abovelc, U, in-  K*>1, analogous to the homogeneous case; this condition,
creases linearly withJ,. nonetheless, remains unsatisfied.

According to our previous analyses, these two curves |n Fig. 11, the correlation exponeit* of the HSL is
(which intersect atU,=6.25261) define regions in the shown as a function of band filling, for different 1 super-
(U;1,U,) plane characterized by the number of gaps in thdattices: HSL-1 withU,=4t andU,=2t; HSL-2 with U,

subunits for appropriate fillings, as specified in Fig. 8. =16t and U;=2t; HSL-3 with U,=16t and U,=8t. For
Similarly to the casdJ;=0, the gaps at the densities
=1 andn=n, are given, respectively, by Ut=4;U =2 S
L
-- C
A§:M+(t,ul)_M,(t1U2), (57) " °
°
Aga=p(tUz)=2t=Uy, (59 E
[
and, again, they do not depend lorThe gapsA§ andAs,, >
for U,=16t, are shown in Fig. 9 as functions 0f;. The gap
atn=1 [n=n.] increasegdecreasgslinearly with U; and
vanishes folJ;<U* [U;>U,]. 2.0

For the Hubbard model with repulsive interactions we

have u,<vg and u,>ve %% For U,=4t and U;=2t, the FIG. 10. The effective charge and spin velocitis(full line)
effective charge and spin velocities for tHe=1 one- andc, (dashed lingfor a Hubbard superlattice as a function rof
dimensional Hubbard superlattice are shown in Fig. 10 agor U,=2t, U,=4t andl=1.
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0.9
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TABLE II. This table lists the various metallicM;, M,, and
M3) and insulating phases I, I3, andl,) of Fig. 12 with the
corresponding subchain densities. The last column shows the nature
of the transition lines between the phases«{ny,, in Fig. 12. LHB

07l - Voo N\ and UHBA respectively stand for lower Hubbard band and upper
X bl Hubbard band in layex=1,2.
) h .' ‘l
| ¢
ey N i; :' '.I Subchain densities Transition line
v Tl \
ot il L Iy n,=0, n,<1
0.0 05 1,'10 15 20 U LHB 1 starts to fill (/)
_ _ M, n,<1, n,<1
FIG. 11. The correlation exponel; as a function of the band : /
- : LHB 1 fills up (n)})
filling n for =1 and several values of the coupling constants. _
I n;=1, n,<l
any |, all metallic phases are characterized by<1kz<1. ! UHB 1 starts to fill (1))
We note that HSL-1 has three metallic phases, HSL-2 haM, n;>1, n,<1
two metallic phases, and HSL-3 has only one metallic phase! LHB 2 fills up (n}y)
On the low-density sideK:; approaches 1/2 in contrast to the I3 ng>1,n,=1
caseU;=0 (Sec. Il A), in which K;‘ remains between 1/2 | UHB 2 starts to fill (1)
and 1. From Eq(27) one sees tha} interpolates mono- Ms ni>1, n,>1
tonically betweerK,, andK,, asl is varied from 0 tox, | UHB 1 fills up (ny,)
highlighting the possibility of a continuous “modulation” of 14 n=2,n>1

a physical parameter through the tuning of the superlattice

structure.

C. Two different hoppings: t,=t; and U,=U>0

pingst,>t; [Fig. 2Ab)].*® Initially, the charge tends to accu-
mulate in the layer with larger hoppiritayer 2, because its

We now consider two Hubbard chains arranged periodi_(:hemical potential is the smallest. Eventually, their chemical

cally with the same couplinty, =U>0, but different hop-

2.0

1.5

€1.0

(a) UL, =4

| M
0.5 1 m,
0 c L L I1 L
1 2 3 4
I"=12/t1
2.0
W (b) Uit =8

0.5

0.0

I‘=tz/ t,

potentials become equal at the special density deter-
mined byu(t, ,U,n*)=0. Then, fom>n*, the charge flow
is reversed and proceeds from layer 2 to layem*Lis inde-
pendent ofr=t,/t; andl, and decreases with (see Fig.
12).

It is interesting to plot a phase diagram in terms of the
density and the ratio between the two hopping amplitudes,
r=t,/t,. We then identify seven different phases, three me-
tallic (M, M,, andM3) and four insulatingl(;, I, 15, and
l,), as shown in Fig. 12 fo=4t, andU=8t; with I=1
and listed in Table Il. The value af* lies within the M,
phase. We mention that several different insulating and me-
tallic phases were also found inpamerized Hubbard chain
in a magnetic field®

Following the same reasonings as before, the lines in the
phase diagram in Fig. 12 are given by line I:

n,’(1+l))

| (59

M(t11U1n1:0)2M<t2,U1

line Il:

(60)

n,',(1+|)—1)
—

/L(tl,U)=M(tz,U,

FIG. 12. Phase diagram for a Hubbard superlattice with differentine I1I:
hoppingst; andt,, in terms of fillingn and hopping ratia, /t4; the

on-site coupling is homogeneous and setite 4t; in () andU
=8t, in (b). There are three metalliM) and four insulating(l)

n{,,(1+l)—l)

M+(t1,U)=M(tz,U, |

(61)

phases[I=1 and n,=(2+1)/(1+1)]. In (@), r*=1.94847,r,.

=2.26984 andr;=4.4227 and in (b), r*=3.818576, r,

line IV:

=1.577 35, and; =6.023 22. Besides, the valuesrtf are(see text

for definition) (a) n* =0.670511 andb) n* =0.594 067.

plt, Uy (1+D)=1]=pn_(t,U), (62
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100 contrast, ifr>r*, the system enters a metallic pha$é,)
8_‘\ —r bounded byn;, (r), andn|,, given by Eqgs.(61) and (62).
' - T ] When increasing the density above half filling, the sequence
6| \‘ Gapless ri_,/‘ of phases depends crucially on whethér is smaller or
o - larger than

r :Iu’(tlrurnlzz)

T ua(tpU)
which, accorﬂing to Fig. 13, occurs th=.h<U%4.41911
or whenU>U, respectively.

(67)

FIG. 13. Parametens®, r., andr; as functions olU/t,. Here, Let us first consideld <U, which is the situation of Fig.
U=4.4191,. 12(a). If r<r*<r., one goes through two transitions as
increasesl;— M3 at n|, [see Eq(63)], andM;—1, atn,,
line V: [Eq.(64)]. If r*<r<r, the sequence il ,-13-M3-1 4, until
the lattice is completely filled. Another regime is determined
plty,Uny(1+D)—11=p.(t3,U), (63 by
line VI u(ty,U,n;=2)
i (68)
ny(1+1)—-2 m-(t2,U)
u(ty,U,ni=2)=pu tz,U,l— ) (64)

whose dependence dd/t; is also shown in Fig. 13. If,
<r<r;, the system goes from a metalliM() to a gapless
einsulating phaselg), and then, ath=n., another Mott-
Hubbard gap opens, which is given by

Again, the topology of the phase diagrams in Fig. 12 is th
same for any.

At small densitiesI(; phase, charge accumulates in layer
2 while I_ayer lis emptymlzo_); _the system is therefore a A, =p(t,U)—u(t;,U,n;=2). (69)
gapless insulator. As the density increases, layer 1 only starts i ) o
being filled atn=n,(r), determined by Eq(59), which lo- For a fixed ratioU/ty, .Acvf bghaves as shovyn in F'g 14.
cates a transition to a metallic statél {); see Fig. 12. Fur- AP0venc, the gapless insulating stallgls again stabilized.
ther increase in the overall density leads to an increase iff Should also be noted that both gaps’(andA.,) display
both n, and n,. When layer 1 becomes half filled, which universal behavior in the sense that they do not depend on
occurs an=n/ (r) as determined from Eq60), the system NOte also that Eqs65), (67), and(68) do not depend oh so

re-enters a gapless insulating staltg) (If r <r*, where thatU is also universal.
We now consideld >U, an example of which is shown in
L et U) 65 Fig. 12b). For r<r.<r*, one finds the same sequence
Cp_(t,,U)’ I3-M3-l,4, with all insulating phases being gaplessrd&r

*, a gapped insulating phase is crossethamn.. Simi-

y, for r>r* one goes from a metallic to a gapless insu-
lating phase 1,—15), and again crossing the Mott-Hubbard
phase an..

A*=p . (t,U)—pu_(ty,U), (66) The effective charge and spin velocities are given by

<
upon increasing the density the system goes through %rrl
gapped phase at=1. The dependences of with U, and of
the gap an=1,

with r, are shown in Figs. 13 and 14, respectively; note that _ Uy, (1+1)
r*(U=4t,)=1.94847 and r*(U=8t,)=3.818576. By C= JIHFA N, Tyt (MU U, )2

(70)

which vanish fom<n* and are smaller than the velocities of
the homogeneous system,u,). Furthermoreg,, displays
re-entrant behavior as a function of

Finally, the effective interaction parameﬂé;f is

CVI+AJrug, fup,t+(rlug,/up,)

*
b L Lo, (7
Kl v KZ,Vr us,
2 r=tt, 3 4 In Fig. 15,K% is shown as a function of band filling, for

different couplings in superlattices with=1: HSL-A with
FIG. 14. The Mott-Hubbard gaps* and A, at densitesn =~ U=4t; andr=2; HSLB with U=8t; andr=2; HSL-C
=1 andn,=(2+1)/(1+1), respectively. Herel=8t, andl=1. with U=4t,; andr=4. Note that 1/ K:<1 for anyl in the
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1.1 862 L —1/2
— =2, U/t.=4 —
10k -2, U/!:=8 Kp— 1+ WKﬁUFInZ’JT_R , (72
-- r=4, U/l1=4
TN where k is the dielectric constant, arldandR are, respec-
E tively, the nanotube length and radius; typically one Kas
. =0.2-0.3. More recently, the growth of intramolecular junc-
- [\ tions of SWMN'’s with different radii has been achieved with
ﬂ . the introduction of a pentagon and a heptagon into the hex-

10 15 20 agonal carbon lattic®3%~*4so that the fabrication of a su-
perlattice made up of SWMN'’s with different coupling con-
FIG. 15. The effective correlation exponef; (I=1) as a stants has become a concrete possibility.
function of the band fillingn for different values ofU/t; andr. We therefore expect the phase diagram of this “nanotube
array” to share several features with the general Hubbard
metallic phases. The various cases depicted in Fig. 15 shoduperlattice. This is because the only ingredients that enter
three @), one B), and two(C) metallic phases. In the ho- into the phase determination are the thermodynamic equilib-
mogeneous Hubbard chain, the density-density and spin-spiflum condition and charge conservation. In the case of a
correlation functions decay faster when the hopping in-_uttinger liquid these can be easily written down if one
creases, sinck , increases with the ratitU. The effective  knows how the LL parameters depend on the density
correlation exponent of HSG is larger than in HSLA (see
Fig. 15, because of the larger hopping amplitude of sub-
chain 2 in HSLE and the “averaging” nature oK? . Sp= 5 0N,
We should stress that in the homogeneous system, the P

Luttinger liquid description breaks down at half filling, when 1, ;s the sequence of insulating and metallic phases that we
a gap opens in the charginough not in the spinsector. In a6 found in Hubbard superlattices should be present in
the superlattice, this .breakdown occurs in the insulatingyipar systems as wels they will reflect the phase diagram
phases, as a result either of umklapp procesbBst gap,  of the subunitswe hope this rich variety of behaviors will

lower phase of Fig. 3, phaségand|, of Fig. 7 and phases  giimylate further experimental work along the lines of care-
I, andl5 of Fig. 12), or of a band in one of the sublattices fully controlled nanotube arrays.

becoming completely full or emptyupper phase of Fig. 3,

hasel ; of Fig. 7 and phasek, andl, of Fig. 12),
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We have discussed in full generality the properties of Lut-
tinger liquid superlattices. We have seen how most feature
of a conventional Luttinger liquid description survive in the
superlattice structure. In particular, a few effective param-
eters, the spin and charge velocities, (@nd c,) and the APPENDIX: WEAK-COUPLING BOSONIZATION OF A

stiffnesses K* andK,), are all that is required for a com- HUBBARD SUPERLATTICE
plete description of the low-energy sector. These turn out to Here we consider a Hubbard superlattice in weak cou-

be combinations of the LL parameters of the superlatticeino ang show that it is possible to describe the low-energy

subunits combined in proportion to their spatial extent. ASyonerties in terms of a Luttinger liquid superlattice. The
we have stressed in the Introduction, this opens the way folﬁamiltonian of a Hubbard superlattice is

possible “engineering” of Luttinger liquids.
This framework was applied to the study of the general

phase diagram of Hubbard superlattices. It was then illus- H=-t>, (‘I’IU‘PJ+1U+ H.c)+ >, Ujnjn;,

trated how one can tune between different phases by an ap- lo ' ' i Y

propriate choice of superlattice modulation. It was found that

the superlattice display_s a variety of m_etallic and insulating _P«E \pjTYU\pJ.’U_ (A1)

phases, the most prominent feature being the appearance of Jo

gapless insulating phases, as a result of the one-dimensional _

character of the system; gapped insulating phases were al¥¥e focus on the low-energy modes near the Fermi surface,

found at some special densities. so that each fermion is written 4s
Single-wall metallic carbon nanotubé8WMN'’s) seem to o o
provide a promising route towards realizing these LLSL’s. \Ifj,,,we*'kF'a\If,,j’(,Jr e'kF'a\If+,j,(,, (A2)

Indeed, notwithstanding the fact that SWMN’s are, in gen-

eral, described by a less simplistic mo¢ebssibly even with  wherea is the lattice parameter, and the subscriptsand
more brancheé$®9), the LL coupling constant depends on its —, respectively, denote right and left movers. The kinetic
(true) aspect ratio through energy part is then linearized as in the homogeneous case
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N : where :..: denotes normal ordering, Jijo
Ho:—t% (Wi oWjs10T H-C-)—sza Vi Vo =wl, W, =(1Nm)ad. ,, and the umklapp terms
. ' have been neglected. Then

~vED, de[\lf‘:’g(x)ax\lf,,,,(x) 1
g Hint%af dXU(X);(ﬁxq)y)(&xd)l)Jraf dxU(x)

—WL (00, L(X)]. (A3)

L . . . 1 -
The Fermionic fields are given in terms of the Bosonic ones, < 2V (®1=®) Ly, (A7)
P, ,, as® (2ma)?

1 B where H.c. stands for Hermitian conjugate. In terms of
W, (X)= —=Ul e™2"m=. charge p) and spin ¢) fields we have
*, \/m =,

. . . dx
Here a is a cutoff parameter andJ. , is the Klein H. ~af—u O (9D )2+ (9D )2
factor>* Thus we get nt 7 JOOLO®, "4 (9D )]

1

2(ma)?

Homge 3 [ dd(3,0,7+(0,0,7, (A0 va [ deuo

27,55

cog /87w d,), (A8)

where®,=(d;=d)//2 and the last term corresponding to the spin backscattering inter-

L action, which is irrelevant in the RG sense. Finally, the low
energy Hamiltonian for the Hubbard superlattice is
0,=5[(@ =0 (@, 0 )] (A9) ¥ P

%

vEa ) U(x) )
We now work out the low-energy part of the on-site Hub- ~ H= 5| d%](60,)"+| 1+ e (0x®)
bard interaction. Again, we use E(A2) to get
U;:a 2 U(X) 2
+2—f dxi{ (8,0 ,)°+ 1—77— (0P,
Hint:; Uj:nj‘T::nj‘l:%; Uj[(J+yj,T+J*YI-YT)(J+Y]-YT m UF

(A9)

This has the same form as E{), which describes the Lut-
(A6)  tinger liquid superlattice.

T T
+‘]_,j,T)+(‘II‘F,J',T\P_nyqu—,j,lq}"'vjvl+H'C')]’
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