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Abstract We study the low temperature transport charac-
teristics of a disordered metal in the presence of electron—
electron interactions. We compare Hartree—-Fock and dy-
namical mean field theory (DMFT) calculations to inves-
tigate the scattering processes of quasiparticles off the
screened disorder potential and show that both the local
and non-local (coming from long-ranged Friedel oscilla-
tions) contributions to the renormalized disorder potential
are suppressed in strongly renormalized Fermi liquids. Our
results provide one more example of the power of DMFT to
include higher order terms left out by weak-coupling theo-
ries.
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1 Introduction

Transport in dirty metals has been investigated for many
years, with a substantial theoretical and experimental un-
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derstanding being achieved in the case of weak disorder
and moderate electron—electron interaction [1, 2]. However,
much less is known about situations with strong electronic
correlations, where much of our understanding relies on
the application of numerical methods like quantum Monte
Carlo [3] or exact diagonalization [4], which are never-
theless severely limited in temperature range and system
sizes. A more flexible approach to investigate the interplay
of strong correlations and disorder is provided by the dy-
namical mean field theory (DMFT) [5]. In its original for-
mulation, the DMFT treatment of disordered systems does
not include Anderson localization effects [6], a limitation
which was quickly resolved by the introduction of the sta-
tistical DMFT (statDMFT) [7, 8]. The statDMFT approach
has already led to some novel effects like a strong disorder
screening by interactions [6, 9], energy-resolved spatial in-
homogeneities [9], and the emergence of an Electronic Grif-
fiths phase in the vicinity of the disordered Mott transition
[10, 11].

To partially elucidate the mechanism behind the rich
physics uncovered through the statDMFT method, a recent
work [12] provided analytical insights into the scattering off
a weak random disorder potential in an otherwise uniform
strongly interacting paramagnetic metal. While the analy-
sis is most straightforward and transparent in this regime,
this general issue is of key relevance also for the diffusive
regime. Here, we revisit this problem, explicitly compar-
ing the statDMFT results with those of the Hartree—Fock
(HF) approximation. Our analytical results highlight the
non-perturbative nature of the statDMFT and show that pro-
cesses left out by HF generate vertex corrections to the im-
purity potential, which ultimately lead to enhanced screen-
ing [6].
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2 Model and Methods

We study the paramagnetic phase of the disordered Hubbard
model
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where f;; are the hopping matrix elements between nearest-
neighbor sites, c;d (cis) is the creation (annihilation) opera-
tor of an electron with spin projection o at site i, U is the
on-site Hubbard repulsion, n;, = cja Cio 18 the number oper-
ator, and ¢; are the site energies (bare disorder potential). We
consider here its paramagnetic phase at half-filling (chemi-
cal potential u = U/2) and a particle-hole symmetric lattice.
Below we discuss two different routes to treat this model.

2.1 Hartree—Fock (HF)

To solve model (Eq. 1), we first consider the HF approach,
as described, for example, in [13, 14]. Here, we simply de-
couple the interaction term in Eq. 1 as n;yn; | ~ (n;4)n;, +
nip{niy) — (niy){(n;,). We restrict ourselves to the paramag-
netic solution, (n;4) = (n; ) = (n;), and the self-consistency
condition is obtained from

1
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where T is the temperature, G;; (w,) is the local part of the
lattice Green’s function, w, are the Matsubara frequencies,
Hy is the clean (¢; = 0) and non-interacting (U = 0) lattice
Hamiltonian, v is a site-diagonal matrix [v];; = v;J;;, whose
entries

vi=6+2i0) —p=e+Uni)—n 3

are the renormalized HF disorder potential, and X;(0) =
Yi(w) = U{n;) is the frequency-independent HF electronic
self-energy. We note that the HF approximation can be re-
garded as the static (weak-coupling) limit of the statDMFT
and that it already contains one of its most important fea-
tures: a self-energy which is local, but which varies from
site to site reflecting spatial disorder fluctuations. As we will
show later, the statDMFT contains all the HF diagrams, but
it also re-sums many higher order terms left out by HF.

In general, we have to solve the self-consistency equation
in Eq. 2 numerically. However, for a weak disorder potential
(lei| < D, where D is the bare half bandwidth), we can ex-
pand it around the uniform solution, and, to leading order in
the disorder potential, we have

e(q)

v(q) = 1_—

2
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Fig. 1 Diagrammatic representation of the electron—impurity interac-
tion: (a) the bare electron—impurity interaction vertex; (b) the first term
of the Hartree—Fock theory, which is equivalent to the RPA re-summa-
tion of “bubbles”; (c) the first vertex correction to the electron—impu-
rity interaction, absent in Hartree—Fock theory, but included in the stat-
DMFT/slave boson solution. The inclusion of these and higher-order
vertex corrections is essential for the phenomenon of perfect disorder
screening. Here, the wavy line corresponds to the local on-site Hub-
bard-type electron—electron interaction

where ¢(q) is the inverse lattice Fourier transform of the dis-
order potential &;. ITq is the usual static Lindhard polariza-
tion function [15].

As U — 0, the renormalized disorder potential reads
v; ~¢; +UII;je;, where I1;; is the lattice Fourier transform
of ITq, showing that the electrons scatter not only off the
bare impurities, but also off the long-ranged potential gener-
ated by the Friedel oscillations (encoded in I7;;). This result
contains another general feature of the statDMFT: the renor-
malized disorder potential acquires non-local terms, which
are absent in the original DMFT formulation [6].

We can easily interpret Eq. 4 in terms of the usual dia-
grammatic perturbation theory if we rewrite it as

v(q) HF

M 1+ U, 5

e(qQ)  «rea(qQ) Vet (@1 ®)
U U
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where we have defined the dielectric function
kreA(q) =1 — Ullg, @)

which in this approximation is given by the RPA expres-
sion [15]. It is then clear that the HF approximation dresses
the electron—impurity vertex by a “chain of bubbles”, as in
the standard RPA screening theory [15], Fig. 1b.

2.2 Slave-Bosons (SB)

To investigate the strongly correlated regime, we implement
the statDMFT using the slave-boson (SB) mean-field the-
ory of Kotliar and Ruckenstein [16] (which is equivalent
to the Gutzwiller variational approximation [17]) as impu-
rity solver [9, 11]. This theory is mathematically equivalent
to applying directly the original formulation of Kotliar and
Ruckenstein to the Hubbard model in Eq. 1, as discussed
in [9].
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As in the previous HF calculation, we consider a weak
disorder potential and expand the relevant mean-field equa-
tions [9, 11] around their uniform solution. For particle-hole
symmetry Z; = Zo + O(¢?) and we have, at 7 =0 [12]

_ e(q)
v@) =T
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where u = U/ U, and

~ u 1
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Equation 8 implies the following dielectric function

ksp(q) = 1 —u? — Uy (10)

The relation n(q) = 1/2 + I1qv(q) also holds, as expected.
It is instructive to consider the limits of weak and strong
interactions. If U <« U,,

ksp(q) ~ 1 —Ullg = krpa(qQ), (1)

and we recover the HF result. In contrast, as U — U,
U
ksp(@) > —7—— g, (12)

leading to

vi = —(1=U/UU; A e (13)
As the system approaches the Mott transition, the renormal-
ized disorder potential goes to zero at all lattice sites, a sit-
uation that was dubbed “perfect disorder screening” in [6].
Its spatial structure is also very interesting, since v; is just as
non-local as for small U, but the non-local term is governed
not by the Lindhard function, but by its inverse. The spatial
structure of the charge disturbance in this limit is given by

$ni=[(1-U/U)/UcJei + O((1 = U/ U.)). (14)

Thus, although the charge fluctuations are suppressed ev-
erywhere, its non-local part, coming from the Friedel os-
cillations, is much more strongly suppressed (O(1 — u)3)
and the electronic density is significantly disturbed only in
the immediate vicinity of the impurities. The suppression of
the slow spatial decay in dn; reflects the fundamental ten-
dency of quasiparticles to become localized as the system
approaches the Mott insulator. Therefore, density fluctua-
tions are healed very effectively in the strongly correlated
limit.

Additional insight into these results can be obtained by
noting that the second term on the right-hand side of Eq. 10
is unimportant both in the weakly and in the strongly cor-
related limits, cf. Eqs. 11 and 12. Neglecting this term in

Eq. 10, we can follow the same procedure as in Eq. 5 and
rewrite Eq. 8 as

vK; 1+ USB(q) . (15)
U
Vst @ =15 - 16)
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The approach to Mott localization in this language can thus
be described by the replacement U — U, cf. Egs. 5 and 6.
This replacement, in turn, may be viewed as a local field cor-
rection coming from vertex corrections in the polarization
function [15, 18] (see Fig. 1(c) and the discussion in Sect. 3
below). Close to the Mott transition U ~ U/ (1 — u) diverges
and this strong correlation effect is seen to fall completely
outside the scope of the HF theory. In fact, whereas HF pre-
dicts a gradual decrease of the dielectric function with in-
creasing U, signaling the suppressed screening, see Eq. 7,
the statDMFT/SB approach predicts precisely the opposite:
the dielectric function diverges as U — U,, see Eq. 12, and
the screening becomes asymptotically perfect.

3 Beyond Weak-Coupling

Comparing the renormalized disorder potential in Egs. 4
and 8, we see that the interaction corrections left out by HF
generate vertex corrections to the impurity potential which
are contained in the effective interaction U (q) in Eq. 16.
Since the HF approximation is the first term 1n expanding the
electronic self-energy in U, we expand our solutions Eqs. 4
and 8 in powers of U, in order to track down which terms are
left out of HF. As we have seen, to first order in U, the stat-
DMFT/SB and HF solutions agree. At second order, a dif-
ference emerges already

V(@
e(q)

(2) 2
Usp@ _ 00 <U) < 3 )
o = =Ug+ () (14500, (18)

— v, (17)

To gain insight into the leading correction beyond HF,
we combine the statDMFT procedure with usual perturba-
tion theory. First, we recall that in the statDMFT approach
the electronic self-energy is local, albeit site-dependent. The
only contribution to a local self-energy which is of second
order in the interactions is given by [19]

P i) = UT Y G (iwn + iva) ITii (ivn), (19)
Vn

where

H,l(zv,,)—TZG(O) (iv,)GY (v, — ivy) (20)
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is the local contribution of the dynamical Lindhard po-
larization, calculated using the local Green’s function
G (iwy) = [(iwy — & —Ho) ™' 1i; with &;; = &;8;;. We are
interested only in the leading w,, behavior of Eq. 19, since
our statDMFT/SB approach is itself a low-energy one [20].
Ultimately, this low-energy approximation provides a lo-
cal Fermi-liquid description of the auxiliary impurity prob-
lem [21]. For example, the uniform contribution (g; = 0)
of Eq. 19 is 5P (iwp) ~ (1 — 1/2)iw, + O(w?), with
a1-1/ Z(()z)) o« —U?, for a particle-hole symmetric lattice.

We now expand Egs. 19 and 20 to linear order in the im-
purity potential. There are three identical contributions, each
with one of the three Green’s function lines with an impu-
rity vertex inserted in it, as shown in Fig. 1(c). We focus on
Z‘i(z) (0) since this defines the renormalized disorder poten-
tial. Qualitatively, it is very easy to see how the extra terms
in Eq. 18 are generated. Consider, for simplicity, that we es-
timate I7;; (iv,) in Eq. 19 through the clean and static limit
IT;; (ivy) ~ Mp(0) = —p(0) &~ —U". In this case, we sim-
ply have Z‘i(z) O)y= U/ UC)ZUCH,‘jej, which has the same
structure as the last term in Eq. 18. Based on these argu-
ments, we stress that the difference which exists already at
order U? between Egs. 17 and 18 is an interaction-generated
vertex correction of the electron—impurity vertex, which is
absent in HF/RPA screening theory, but which is re-summed
to all orders within statDMFT/SB.

4 Conclusions

We presented a detailed analytical calculation of the effects
of weak disorder scattering in a correlated host. Compar-
ing the results obtained within HF and statDMFT, we high-
lighted the fact that statDMFT incorporates important vertex
corrections to all orders, a task which is difficult, or more
likely, even impossible to perform using weak-coupling di-
agrammatic approaches. A physical consequence of the in-
clusion of these vertex corrections is the phenomenon of dis-
order screening by interactions.

An analogous example of this dichotomy can be observed
in the familiar Migdal-Eliashberg (ME) strong coupling the-
ory describing the electron—phonon problem [15]. Indeed,
the ME theory neglects the momentum dependence of the
electronic self-energy and may thus be regarded as a weak-
coupling approximation to DMFT. Like the HF/RPA screen-
ing described above, it also neglects vertex corrections. The
full DMFT solution, however, not only contains all the ME
diagrams, but it also re-sums many higher order terms left
out by the ME approach, including vertex corrections [22],
in close analogy with the statDMFT treatment of disorder
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and interactions. In both models, these strong coupling ef-
fects reflect non-perturbative Kondo-like processes [6, 22],
which cannot be described by weak-coupling approaches.
In the future, it will be interesting to study the behavior of
a finite concentration of impurities, considering for instance
non-trivial impurity configurations (e.g., stripes [23]). In the
context of high temperature cuprate superconductors, a non-
trivial self-organization of dopants was recently observed to
be associated with the onset of high-quality superconductiv-
ity [24, 25], pointing once more to the significant effects of
spatial inhomogeneities in strongly correlated phases [26].
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