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Scaling Theory of Two-Dimensional Metal-Insulator Transitions
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We discuss the recently discovered two-dimensional metal-insulator transition in zero magnetic field
in the light of the scaling theory of localization. We demonstrate that the observed symmetry relating
conductivity and resistivity follows directly from the quantum critical behavior associated with such a
transition. In addition, we show that very general scaling considerations imply that any disordered two-
dimensional metal is aperfect metal, but most likelynot a Fermi liquid. [S0031-9007(97)03673-9]
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In an influential 1979 paper [1], simple scaling argu
ments were put forward which have shaped much of o
thinking about metal-insulator transitions (MITs) in disor
dered systems. Focusing on noninteracting electrons,
authors demonstrated that in two dimensions (2D) ev
weak disorder is sufficient to localize the electrons, and
true metallic behavior is possible atT ­ 0. Ever since,
it has been widely believed that two is the lower crit
cal dimension for MITs in disordered systems, and th
prompted much theoretical activity based on expansio
around dimensiond ­ 2. The scaling ideas were quickly
extended to interacting systems, but despite many ye
of painstaking effort no satisfying theoretical picture ha
emerged for the interacting case. Nevertheless, the
lief that all the states are localized ind ­ 2 has remained
largely unquestioned.

Recently, a remarkable experiment [2] performed on
2D electron gas in zero magnetic field suggested that
conventional picture might be incomplete. In this work
fairly convincing evidence was presented which suppo
the existence of a true MIT in 2D. Despite the beau
and elegance of the data, this work has met considera
resistance, largely due to its apparent conflict with th
scaling theory of localization as well as its uniqueness.

The major assumption of [1] was based on an earl
idea of Thouless [3] about the length (scale) dependen
of the conductance. In [1] it is asserted that the “be
function” bs gd ­ dflns gdgydflnsLdg is a function of the
conductanceg itself but not an explicit function of the
length scaleL. Now bs gd is known in the two limits of
very large and very small disorder, and it is reasonable
assume that it is continuous (smooth) in between. Fro
Ohm’s law, bs gd ­ sd 2 2d for g ! 1`, while for g
small, one expects exponentially localized states, so t
bs gd ! 2` in this limit. Since the metallic behavior is
possible only forbs gd . 0, the form of bs gd at large
g is sufficient to determine the stability of the metalli
phase. In particular, for noninteracting electrons, this h
a form bs gd ­ sd 2 2d 2 1yg 1 · · · [4], indicating that
the metallic phase is unstable ind # 2.
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However, it is important to emphasize that the last st
in this analysis is validonly for noninteracting electrons;
the scaling theory is only complete in the absence
electron-electron interaction. In the following, we sho
that the existence of a 2D transition does not contrad
any general scaling principles. However, we argue th
within the scaling theory such a transition has a numb
of unusual features, many of which are already appar
in the existing data.

No fundamental principle requires thatbs gd be mono-
tonic or, in fact, negative in 2D wheng is large. Instead,
if we assume that the leading behavior [5] at largeg is

bs gd ­ sd 2 2d 1 Ayga 1 · · · , A . 0 , (1)

then it is clear that the beta function for alld $ 2 has to
change sign at some finiteg ­ gc, leading, in particular,
to a metal-insulator transition in 2D. Alternatively, th
existence of a MIT in 2Drequires that bs gd . 0 at g
large, where the exponenta simply parametrizes how the
system approaches the metallic limit asg ! `.

This idea is not new. Such a scenario is realiz
for noninteracting electrons in the presence of sp
orbit scattering [6]. In this case,a ­ 1 and a MIT
is expected in 2D. However, this behavior has nev
been taken too seriously in the context of real 2
systems because it is known that adding interactio
to the spin-orbit universality class results inreversing
the sign of the first quantum correction [4] and a
the states again end up localized in 2D. A mo
complicated situation was found in the absence of sp
orbit and time-reversal breaking perturbations. There,
interaction driven enhancement of the conductivitywas
found at weak disorder, which was expected to overwhe
the localizing effects of coherent backscattering (we
localization) [7]. However, the analysis revealed th
the effective interaction strength diverges upon scalin
making it difficult to determine what will actually happen
at long scales or low temperatures [7]. Nevertheless,
that case, the relevant quantum corrections can, in fa
reduce the resistivity as the temperature is lowered,
© 1997 The American Physical Society 455
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that the existence of a metallic state at low temperatur
a possibility in the theory of Ref. [7].

At present, the above mentioned problems in the int
action case make it difficult to determine the form of th
leading quantum corrections even at weak disorder. Ra
than elaborating on this, we shallassumethat interactions
lead to a positiveb at g large, so that the 2D metal exists
The first question that one can address is what is the
temperature form of the conductivity in the metallic phas
Within the scaling theory this is determinedonly by the
form of bs gd at g large. Assuming a form of Eq. (1), an
integrating the beta function from, (mean free path) toL
(sample size), we find

gsLd ­ f ga
0 1 Aa lnsLy,dg1ya . (2)

If we consider an infinite sample at finite temperatu
then Leff , T 21yz. Here z is the dynamical exponen
associated with themetallic (g ­ `) fixed point. One
expectsz ­ 2 in a conventional diffusive regime, in th
absence of dangerously irrelevant variables [8]. We th
find that at low temperatures in the metallic phase

gsTd , ln1yasT0yT d . (3)

In other words, the conductance willdiverge, i.e., the re-
sistance willvanishat T ­ 0 in the metallic phase, albei
in a weak, logarithmic fashion. This should be true at s
ficiently low temperatures throughout the metallic pha
i.e., the temperature dependence should have auniversal
form, as in Fermi liquid theory. However, we emph
size that this isnot a Fermi liquid, not only because o
its unusual temperature dependence, but, more fundam
tally, since we expect the nature of these electronic sta
to change completely if the interactions are turned off: th
would localize.

Another experimentally relevant question is what is t
temperature dependence of the conductance in thequan-
tum critical region associated with the metal-insulato
transition. Within scaling theory, this question can
answered very precisely as follows. In our formulatio
the transition occurs atg ­ gc, where the beta function
changes sign, i.e.,bs gcd ­ 0. We recall that deep in the
insulating phase the beta function islogarithmic in g [1].
It is thus plausible to introduce the quantityt ­ lns gygcd
as a natural scaling variable. To determine the critical
havior it is sufficient to consider the linear approximatio
to the beta function near its 0 att ­ 0. The slope ofbstd
at t ­ 0 determines the correlation length exponentn:

bstd ­
dt

d sln Ld
ø

1
n

t 1 Ost2d . (4)

By integrating this equation from, to L, we find

tsLd ­ t0

µ
L
,

∂1yn

, (5)

wheret0 ­ lns g0ygcd is determined by the starting valu
g0 of the conductance at scale,. In the critical region,
where we start with ag0 very close togc, t0 ø s g0 2
456
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gcdygc ~ dn, where n is the carrier concentration, and
dn ­ sn 2 ncdync measures the distance to the critica
point. Then from Eq. (5), we have for the conductance

gsLd ­ gc expfAdnsLy,d1yng . (6)

At nonzero temperature, the length scaleL is determined
by the temperature through the dynamical exponent
T , L2z and we obtain the temperature dependence
the conductance

gsdn, T d ­ gc expssgnsdndAfT0sdndyTg1ynzd , (7)

where we have defined a crossover temperatureT0 corre-
sponding to the inverse correlation time as

T0sdnd , jdnjnz. (8)

Here A is an unknown dimensionless constant of orde
1. Let us define the scaled conductance asgpsdn, T d ­
gsdn, T dygc. From Eq. (7), we then immediately find a
striking symmetry relating the conductance on the metall
side (dn . 0) to the resistance on the insulating side
(dn , 0) of the transition atgp ­ 1 (i.e., atdn ­ 0):

gpsdn, T d ­ 1ygps2dn, Td . (9)

Remarkably, precisely this behavior is clearly seen in th
experiments [2], as emphasized in Ref. [9].

In related work [10], a similar symmetry for the
dependence on electric field was found for the same 2
system. If one uses the conventional electric field scalin
hypothesis [11], the preceding arguments carry over wi
the electric fieldE replacingT and 1 1 z replacingz,
so that this symmetry too appears as a consequence of
scaling argument we have presented. In fact, the behav
holds whatever the exponent relating the electric field to
characteristic length.

In order to fully appreciate the significance of thes
findings, we should carefully qualify them and commen
on the range of their validity.

(1) In [9], the authors point out a similarity of this
symmetry with the one observed in the context of th
quantum Hall liquid-to-insulator (QHI) transitions [12].
However, we emphasize that the theory described in [1
is fundamentally different from that of the present pape
The symmetry found in a 2D MIT is restricted to the
quantum critical region, which is defined by the crossover
temperature scale, i.e., it is expected to hold only fo
T . T0sdnd. In fact, the experiments completely confirm
this expectation, as the authors themselves point out [9
A careful examination of the data in [2] reveals tha
the temperature at which a departure from symmetry
observed isT ø T0sdnd, with T0 shown in the inset of
Fig. 3 of [9]. The same feature is clearly seen in also th
earlier data of [2], where in Fig. 4 the resistance is plotte
as a function of the reduced temperaturet ­ TyT0sdnd.
Here the obvious symmetry of the resistance and th
conductance on the respective metallic and insulatin
sides of the MIT is seen and it is violated below
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T ø T0sdnd, as expected. The duality observed in QH
is thought to be a charge-flux duality that holds fo
the full Chern-Simons Lagrangian, ignoring the roles
irrelevant operators, cutoffs, or disorder. If this is so
it has little resemblance to the symmetry in MIT. O
the other hand, it may be that the data in QHI transitio
can be understood from the present perspective, wh
sB 2 Bcd ~ s1yn 2 1yncd is the control parameter that
tunes the system through a quantum critical point; hereB
is the magnetic field andn is the filling fraction.

(2) We emphasize that the above results were deriv
by linearizing the beta function around the transition poin
g ­ gc. The symmetry is then simply a consequence
the smoothness of the beta function in the critical regio
However, without further knowledge about the form of th
beta function, the result is strictly speaking valid only fo
dn ø 1, i.e. it only defines the form of the leading high
temperature correction in the quantum critical regim
In other words, to be consistent, one should keep on
the leading term of the expansion of the exponential
Eq. (7):

gsdn, T d ø gcf1 1 AdnyT s1ynzdg . (10)
This expression is generally expected to be valid on
for jgsT d 2 gcjygc ø 1. On the other hand, if we
assumethat the linearized expression for the beta fun
tion [Eq. (4)] is a good approximation over an appreci
ble conductance rangegmin , gc , gmax, then the full
exponential behavior is valid in that range. The expe
mental data reveal that the symmetry is found in a mu
broader range than allowed by the form of Eq. (10).
fact, the data clearly display an exponential temperatu
dependence as in Eq. (7), which is particularly striking
the metallic phase, where the resistance is found to d
almost by an order of magnitude within the “symmetry
regime. The deviations from leading behavior are mo
clearly seen in Fig. (2b) of [9], where the conductanc
and the resistance are plotted at a fixed temperature, fo
range of carrier concentrations. The two curves show p
fect mirror symmetry which holds over an extended ran
of concentrations, where the conductance shows a d
matic exponential dependence on concentration, in agr
ment with Eq. (7). This should be contrasted with th
leading correction given by Eq. (10), where the densi
dependence islinear, as expected only fordn ø 1.

(3) We conclude that the experimental results
[2,9,10] go beyond just confirming the expectations bas
on general scaling arguments in the quantum critical r
gion. They also provide striking evidence about the for
of the beta function in the critical region. In particu
lar, they indicate that in a wide range of conductanc
1y4 , gygc , 4 the beta function is well-approximated
by the linear expression int ­ lns gygcd as in Eq. (4).
How can we rationalize this finding? Deep in the insula
ing regime, (g ø gc) the beta function isexactlygiven by
bs gd , lns gd. The above experimental result can thu
be interpreted as evidence that the same slow logarithm
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form of the beta function persists beyond the insulati
limit well into the critical regime. Further support for thi
idea can be found in the experimental findings of Hsu a
Valles [13] on ultrathin films. While no MIT was found
their data yield a beta function which is close to line
in lns gd (“strong localization”) all the way to the stan
dard crossover conductanceg . e2y2h. If it is generally
true, this feature could be used as a basis of approxim
calculations of the critical exponents. In contrast to t
well-known 2 1 ´ expansion, here one would try to ob
tain the form of the beta function in the critical region b
an expansion around thestrong disorderlimit.

(4) There are physical reasons which support our conj
ture that the beta function must be a logarithmic functi
close togc, if gc happens to fall in the regime of stron
disorder, which the experiments discussed here indic
The assumption of the scaling theory is that the cond
tanceg is the only important parameter at large distanc
and low energies. That is, the distribution of conductanc
of a hypercube of linear dimensionL is so sharply peaked
that the most probable value is the only value, hence
mean value. This assumption can be justified in the lim
of weak disorder, where the sample-to-sample fluctuatio
of the physical properties are weak, but not when the d
order is strong and the distribution of the conductances
broad. At strong disorder, it is more plausible to assum
if we still want to describe the problem with a single sca
ing variable, that the distribution is sharply peaked wh
described in terms of logg [14], or more generally in terms
of a function lnffs gdg, wherefs gd is a smooth function of
g that tends tob21yg 1 b0 1 b1g 1 · · ·, asg °! 0, but
tends toa0 1 a1yg 1 a2yg2 · · ·, as g °! `. At strong
disorder, it is natural to believe that Green’s function b
tween two points can be computed in a hopping parame
expansion [15]. It is plausible that the impurity averag
square of Green’s function forp hops on an effective lat-
tice of spacinga larger than the mean free path is

jG2spdj ­

∑
fs gcd
fs gd

∏p

. (11)

If g . gc, the perturbation theory does not converge
p °! `; this signals a failure of the localization assum
tion. Wheng , gc, this is not so, and we can define
localization length. However, for a finite system of line
dimensionL, one can meaningfully use this equation fo
all g becausep is restricted to be less thansLyad. This
allows us to derive the beta function as follows. Fro
Eq. (11), the physical localization length is

j ­
2a

lnffs gdyfs gcdg
. (12)

If we keep the physicalj fixed as we vary the lattice
spacing, that is, setdjyda ­ 0, we get

b ­
≠ ln fs gd

≠ ln a
­ ln

∑
fs gd
fs gcd

∏
. (13)
457
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To check that this is correct, consider the limitg, gc °! 0.
We find that

≠ ln g
≠ ln a

­

µ
1 1

b0

b21
g 1 · · ·

∂
ln

µ
g
gc

∂
, (14)

which is precisely the locator expansion [115]. The diffi
cult task is to be able to computefs gd from a microscopic
model. Note, however, that local electron-electron inte
actions should not pose any special problems in the loca
expansion.

(5) The symmetry associated with the quantum critic
region is specific to 2D systems. In particular, standa
arguments suggest that in general dimension, the cond
tivity as a function of reduced concentration and temper
ture should assume the scaling form

ssdn, T d , T sd22dyzfsdnyT1ynzd . (15)

Herefsxd is a universal scaling function such thatfs0d ­
1, in the absence of dangerously irrelevant variables. As
result of the extra temperature prefactor present whend .

2, the conductivity will vanish at the transition (dn ­ 0,
T ­ 0), ruining the reflection symmetry of the quantum
critical region. This fact would make it very difficult, if
not impossible, to extract the information about the detai
of the beta function from the temperature dependence
the quantum critical region whend . 2.

(6) The samples showing the 2D MIT are distinguishe
from those in previous work, as pointed out by the autho
of [2], by the fact that the densityn is so low that
the Coulomb interactionU ~

p
n is immense, almost an

order of magnitude greater than the Fermi energyEF ~ n.
Furthermore, for smalln, high mobility m is required
to reach the critical conductancegc ­ ncem . e2y3h.
This also leads to the conclusion thatkFl & 1 for the
samples showing MIT. Thus it is misleading to assum
that because the mobilities are high they are weak
disordered. These conditions both lead to the conclusi
that the one-electron picture of [1] cannot be expected
be valid and may explain why the MIT is not observed i
some samples.

In summary, we have discussed the recently discover
2D metal-insulator transition in zero magnetic field in th
light of the scaling scenario for localization. We have
shown that very general scaling considerations imply th
any disordered 2D metal is aperfect metal, but most likely
not a Fermi liquid. In addition, we have demonstrate
that the observed symmetry relating conductivity an
resistivity follows directly from the quantum critical
458
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behavior associated with such a transition. Furthermor
the fact that this symmetry is found over an extende
range of conductances provides important informatio
about the form of the beta function in the critical region.
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