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V. Dobrosavljevi¢' Elihu Abrahams;? E. Miranda!and Sudip Chakravarty
'National High Magnetic Field Laboratory, Florida State University 1800 E. Paul Dirac Drive, Tallahassee, Florida 32306
2Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08855-0849
3Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547
(Received 10 April 1997

We discuss the recently discovered two-dimensional metal-insulator transition in zero magnetic field
in the light of the scaling theory of localization. We demonstrate that the observed symmetry relating
conductivity and resistivity follows directly from the quantum critical behavior associated with such a
transition. In addition, we show that very general scaling considerations imply that any disordered two-
dimensional metal is perfect metalbut most likelynot a Fermi liquid. [S0031-9007(97)03673-9]

PACS numbers: 71.30.+h, 72.15.Rn

In an influential 1979 paper [1], simple scaling argu- However, it is important to emphasize that the last step
ments were put forward which have shaped much of ouin this analysis is validbnly for noninteracting electrons;
thinking about metal-insulator transitions (MITs) in disor- the scaling theory is only complete in the absence of
dered systems. Focusing on noninteracting electrons, theectron-electron interaction. In the following, we show
authors demonstrated that in two dimensions (2D) evethat the existence of a 2D transition does not contradict
weak disorder is sufficient to localize the electrons, and n@any general scaling principles. However, we argue that
true metallic behavior is possible @t = 0. Ever since, within the scaling theory such a transition has a number
it has been widely believed that two is the lower criti- of unusual features, many of which are already apparent
cal dimension for MITs in disordered systems, and thisn the existing data.
prompted much theoretical activity based on expansions No fundamental principle requires th&{ g) be mono-
around dimensio@d = 2. The scaling ideas were quickly tonic or, in fact, negative in 2D whegis large. Instead,
extended to interacting systems, but despite many yeaiswe assume that the leading behavior [5] at laggis
of painstaking effort no satisfying theoretical picture has . o
emperged forqche interacting fgasg,. Neverthelgss, the be- Blg)=(d =2) +A/g" + -, A=0, (@)
lief that all the states are localized éh= 2 has remained then it is clear that the beta function for all= 2 has to
largely unquestioned. change sign at some finite = g, leading, in particular,

Recently, a remarkable experiment [2] performed on do a metal-insulator transition in 2D. Alternatively, the
2D electron gas in zero magnetic field suggested that thexistence of a MIT in 2Drequiresthat B8(g) > 0 at g
conventional picture might be incomplete. In this work, large, where the exponent simply parametrizes how the
fairly convincing evidence was presented which supportsystem approaches the metallic limit@s— oo.
the existence of a true MIT in 2D. Despite the beauty This idea is not new. Such a scenario is realized
and elegance of the data, this work has met considerabfer noninteracting electrons in the presence of spin-
resistance, largely due to its apparent conflict with theorbit scattering [6]. In this caseq = 1 and a MIT
scaling theory of localization as well as its uniqueness. is expected in 2D. However, this behavior has never

The major assumption of [1] was based on an earliebeen taken too seriously in the context of real 2D
idea of Thouless [3] about the length (scale) dependencgystems because it is known that adding interactions
of the conductance. In [1] it is asserted that the “betdo the spin-orbit universality class results iaversing
function” B(g) = d[In(g)]/d[In(L)] is a function of the the sign of the first quantum correction [4] and all
conductanceg itself but not an explicit function of the the states again end up localized in 2D. A more
length scald.. Now B(g) is known in the two limits of complicated situation was found in the absence of spin-
very large and very small disorder, and it is reasonable torbit and time-reversal breaking perturbations. There, an
assume that it is continuous (smooth) in between. Fronnteraction driven enhancement of the conductivitgs
Ohm’s law, B(g) = (d — 2) for g — +o, while for g found at weak disorder, which was expected to overwhelm
small, one expects exponentially localized states, so thdhe localizing effects of coherent backscattering (weak
B(g) — —in this limit. Since the metallic behavior is localization) [7]. However, the analysis revealed that
possible only for8(g) > 0, the form of 8(g) at large the effective interaction strength diverges upon scaling,
g is sufficient to determine the stability of the metallic making it difficult to determine what will actually happen
phase. In particular, for noninteracting electrons, this haat long scales or low temperatures [7]. Nevertheless, in
aformpB(g) = (d — 2) — 1/g + ---[4], indicating that  that case, the relevant quantum corrections can, in fact,
the metallic phase is unstabledn= 2. reduce the resistivity as the temperature is lowered, so
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that the existence of a metallic state at low temperature ig.)/g. « o6n, wheren is the carrier concentration, and

a possibility in the theory of Ref. [7]. 8n = (n — n.)/n. measures the distance to the critical
At present, the above mentioned problems in the interpoint. Then from Eg. (5), we have for the conductance

action case make it difficult to determine the form of the . v

leading quantum corrections even at weak disorder. Rather g(L) = geexilasn(L/0)'"]. ©6)

than elaborating on this, we shalbsumethat interactions At nonzero temperature, the length schlis determined

lead to a positive8 at g large, so that the 2D metal exists. by the temperature through the dynamical exponent as

The first question that one can address is what is the low ~ L™¢ and we obtain the temperature dependence of

temperature form of the conductivity in the metallic phasethe conductance

Within the scaling theory this is determineahly by the . /v

form of B(g) atg large. Assuming a form of Eq. (1), and g(6n.T) = g explsgn(8mA[To(dn)/T]"*?),  (7)

integrating the beta function froh(mean free path) td. ~ where we have defined a crossover temperafyreorre-

(sample size), we find sponding to the inverse correlation time as

g(L) =[gf + AaIn(L/]". () To(8n) ~ |8n]". (8)

If we consider an infinite sample at finite temperature,yere A4 is an unknown dimensionless constant of order
then L ~ 7%, Here z is the dynamical exponent 1 | et us define the scaled conductance5&n, T) =
associated wi;h thenetallic. (g = o_o) fi>_<ed point. _One ¢(8n,T)/g.. From Eg. (7), we then immediately find a
expectsz = 2 in a conventional diffusive regime, in the gyriking symmetry relating the conductance on the metallic

a_lbsence of dangerously irrelgvant variabl_es [8]. We thugjqe ©n > 0) to the resistance on the insulating side
find that at low temperatures in the metallic phase (8n < 0) of the transition ag* = 1 (i.e., atdn = 0):

g(T) ~ InY*(1y/T). (3)

In other words, the conductance wiliverge i.e., the re-
sistance willvanishat T = 0 in the metallic phase, albeit
in a weak, logarithmic fashion. This should be true at su
ficiently low temperatures throughout the metallic phase
i.e., the temperature dependence should hauaieersal
form, as in Fermi liquid theory. However, we empha-
size that this isnot a Fermi liquid, not only because of
its unusual temperature dependence, but, more fundam
tally, since we expect the nature of these electronic stat
to change completely if the interactions are turned off: the;ﬁ
would localize.

Another experimentally relevant question is what is the®
temperature dependence of the conductance imtiaa-
tum critical region associated with the metal-insulator
transition. Within scaling theory, this question can be
answered very precisely as follows. In our formulation,
the transition occurs a¢ = g., where the beta function

g (6n,T) = 1/g"(=6n,T). 9)

Remarkably, precisely this behavior is clearly seen in the
f_experiments [2], as emphasized in Ref. [9].

In related work [10], a similar symmetry for the
tependence on electric field was found for the same 2D
system. If one uses the conventional electric field scaling
hypothesis [11], the preceding arguments carry over with
eW—e electric fieldE replacingT and 1 + z replacingz,

R0 that this symmetry too appears as a consequence of the
caling argument we have presented. In fact, the behavior
olds whatever the exponent relating the electric field to a
haracteristic length.

In order to fully appreciate the significance of these
findings, we should carefully qualify them and comment
on the range of their validity.

(1) In [9], the authors point out a similarity of this
symmetry with the one observed in the context of the

PR _ ; quantum Hall liquid-to-insulator (QHI) transitions [12].
insulting phass (e beta inctonagartmici ¢ 1) HOVEUEr we emphasize thatth theary described in [12)
It is thus plausible to introduce the quantity= In(g/g.) The symmetry found in a 2D MIT is restricted to the

as a natural scaling variable. To determine the critical be uantum critical regionwhich is defined by the crossover
havior it is sufficient to consider the linear approximationCI glohwhict y
temperature scale, i.e., it is expected to hold only for

to the beta function near its 0 at= 0. The slope of3(r) : '
atr = 0 determines the correlation length exponent r= To(8n). _In fact, the experiments completely confirm
this expectation, as the authors themselves point out [9].

B(t) = e _ lt + 0. (4) A careful examination of the data in [2] reveals that
d(nL) v the temperature at which a departure from symmetry is

I\ Fig. 3 of [9]. The same feature is clearly seen in also the

t(L) = ¢0<7> , (5) earlier data of [2], where in Fig. 4 the resistance is plotted

as a function of the reduced temperature= T /To(65n).
wherer, = In(go/g.) is determined by the starting value Here the obvious symmetry of the resistance and the
go of the conductance at scate In the critical region, conductance on the respective metallic and insulating
where we start with &, very close tog,, fo = (go — sides of the MIT is seen and it is violated below
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T = Ty(6n), as expected. The duality observed in QHIform of the beta function persists beyond the insulating
is thought to be a charge-flux duality that holds forlimit well into the critical regime. Further support for this
the full Chern-Simons Lagrangian, ignoring the roles ofidea can be found in the experimental findings of Hsu and
irrelevant operators, cutoffs, or disorder. If this is so,Valles [13] on ultrathin films. While no MIT was found,
it has little resemblance to the symmetry in MIT. On their data yield a beta function which is close to linear
the other hand, it may be that the data in QHI transitionin In(g) (“strong localization”) all the way to the stan-
can be understood from the present perspective, whedard crossover conductange= ¢2/2h. If it is generally
(B — B.) =« (1/v — 1/v.) is the control parameter that true, this feature could be used as a basis of approximate
tunes the system through a quantum critical point; tiere calculations of the critical exponents. In contrast to the
is the magnetic field and is the filling fraction. well-known 2 + & expansion, here one would try to ob-
(2) We emphasize that the above results were derivethin the form of the beta function in the critical region by
by linearizingthe beta function around the transition point an expansion around ttsrong disordedimit.
g = g.. The symmetry is then simply a consequence of (4) There are physical reasons which support our conjec-
the smoothness of the beta function in the critical regionture that the beta function must be a logarithmic function
However, without further knowledge about the form of theclose tog., if g. happens to fall in the regime of strong
beta function, the result is strictly speaking valid only for disorder, which the experiments discussed here indicate.
én < 1, i.e. it only defines the form of the leading high- The assumption of the scaling theory is that the conduc-
temperature correction in the quantum critical regimetanceg is the only important parameter at large distances
In other words, to be consistent, one should keep onland low energies. That is, the distribution of conductances
the leading term of the expansion of the exponential obf a hypercube of linear dimensidnis so sharply peaked
Eq. (7): that the most probable value is the only value, hence the
g(8n,T) = g.[1 + Adn/TV/"9]. (10) mean value. This assumption can be justified in the limit
This expression is generally expected to be valid onlyof weak disorder, where the sample-to-sample fluctuations
for |g(T) — gcl/g- < 1. On the other hand, if we of the physical properties are weak, but not when the dis-
assumethat the linearized expression for the beta func-order is strong and the distribution of the conductances is
tion [Eq. (4)] is a good approximation over an apprecia-broad. At strong disorder, it is more plausible to assume,
ble conductance rangguin < g < gmax, then the full if we still want to describe the problem with a single scal-
exponential behavior is valid in that range. The experiing variable, that the distribution is sharply peaked when
mental data reveal that the symmetry is found in a mucldescribed in terms of log [14], or more generally in terms
broader range than allowed by the form of Eq. (10). Inof afunctionIf¢(g)], wheree( g) is a smooth function of
fact, the data clearly display an exponential temperaturg that tends t&b_,/g + by + b1g + ---, asg — 0, but
dependence as in Eq. (7), which is particularly striking intends toay + a;/g + a2/g*---, asg — %. At strong
the metallic phase, where the resistance is found to drogisorder, it is natural to believe that Green’s function be-
almost by an order of magnitude within the “symmetry" tween two points can be computed in a hopping parameter
regime. The deviations from leading behavior are morexpansion [15]. It is plausible that the impurity averaged
clearly seen in Fig. (2b) of [9], where the conductancesquare of Green’s function fgr hops on an effective lat-
and the resistance are plotted at a fixed temperature, fortee of spacing: larger than the mean free path is
range of carrier concentrations. The two curves show per- (20) T
fect mirror symmetry which holds over an extended range |G2(p)| = [u} )
of concentrations, where the conductance shows a dra- ¢ (g)
matic exponential dependence on concentration, in agregr ¢ > ¢, the perturbation theory does not converge as
ment with Eq. (7). This should be contrasted with the,, —, «: this signals a failure of the localization assump-
leading correction given by Eqg. (10), where the densittion. Wheng < g., this is not so, and we can define a
dependence inear, as expected only fofn < 1. localization length. However, for a finite system of linear
(3) We conclude that the experimental results ofgimensionLZ, one can meaningfully use this equation for
[2,9,10] go beyond just confirming the expectations based|| ¢ becausep is restricted to be less thal/a). This

on general scaling arguments in the quantum critical rea|lows us to derive the beta function as follows. From
gion. They also provide striking evidence about the formEq. (11), the physical localization length is

of the beta function in the critical region. In particu-
lar, they indicate that in a wide range of conductances = 2—‘1_ (12)
1/4 < g/g. < 4 the beta function is well-approximated In[¢(g)/¢(gc)]

by the linear expression in= In(g/g.) as in Eq. (4). . , .
How can we rationalize this finding? Deep in the insulat—gc \;Vgnkeiﬁam: ggg}zafzﬂée(\j,v:s e\)/;/e vary the lattice
ing regime, ¢ < g.) the beta function iexactlygiven by P 9 ’ a ' 9

B(g) ~In(g). The above experimental result can thus _dlng(g) | [ ¢(g) }
be interpreted as evidence that the same slow logarithmic B = olna n d(g) ]

(11)

(13)
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To check that this is correct, consider the ligitg. — 0. behavior associated with such a transition. Furthermore,

We find that the fact that this symmetry is found over an extended
alng bo g range of conductances provides important information
Tina <1 to8 T ) In< —>, (14)  about the form of the beta function in the critical region.
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