PHYSICAL REVIEW B 69, 214411(2004

Phase diagrams and universality classes of random antiferromagnetic spin ladders
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The random antiferromagnetic two-leg and zigzag spin-1/2 ladders are investigated using the real space
renormalization group scheme and their complete phase diagrams are determined. We demonstrate that the first
system belongs to the same universality class of the dimerized random spin-1/2 chain. The zigzag ladder, on
the other hand, is in a random singlet phase at weak frustration and disorder. Otherwise, we give additional
evidence that it belongs to the universality class of the random antiferromagnetic and ferromagnetic quantum
spin chains, although the universal fixed point found in the latter system is never realized. We find, however,

a new universal fixed point at intermediate disorder.
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I. INTRODUCTION of long clusters with large total spins. For weak disorder, this
large spin(LS) phase is universal. The magnetic susceptibil-
One-dimensional spin systems have been extensivelyy diverges like a Curie law, and the specific heat vanishes
studied over the last several years and a fairly deep undefike T*|In T|, with 1/z~0.44. However, for strong disorder,
standing of their possible phases and corresponding physiceile LS phase is no longer universal: although the magnetic
behavior has emerged. Although actual realizations are resusceptibility is still Curie-like, the specific heat exponent
stricted to systems with a high degree of anisotropy, one ofaries continuously with disorder.
the main motivations for these studies is the possibility of More recently, following the discovery of spin ladder
cataloging their universality classes. This is specially temptmaterials’ attention has been drawn to coupled pairs of spin
ing in the case of disordered systems, since specially poweghains. The random two-leg and zigzag ladders are the most
ful methods can be employed in one dimension, which argtudied of then¥~° The two-leg ladder is known to possess
able to expose not only average values but full distributiontwo phase$:® a gapped phase, with vanishing spin suscepti-
functions. One of the most studied random one-dimensionability x(T), and a Griffiths phase, whepgT) diverges as a
spin systems is the random antiferromagneAg) spin-1/2  power law with continuously varying exponents &s-0.
chain:-* Making use of the real space renormalization groupThe zigzag ladder, on the other hand, is topologically equiva-
(RSRG method of Ma, Dasgupta, and Huif has been I|ent to single chains with both nearest-neighlson) and
shown that, for any amount of uncorrelated disofdéie  next-nearest-neighb@nnn) interactions. Initial studies were
low-energy physics of this system is governed by an infiniteconfined to fairly small systems and concluded in favor of
randomness fixed point.The approach to this fixed pointis the existence of only one phase of the Griffiths t§@Bub-
characterized by the formation at decreasing energy scales géquent investigations identified the presence of a small RS
random singlets between widely separated spins. In this rarphase for weak nnn interactioMsFurthermore, the forma-
dom singlet(RS) phase several physical properties are uni-jon of large effective spins, with FM and AF nn and vanish-
versal and known.For example, the spin susceptibilify  ing nnn couplings at the late stages of renormalization, were

~1/Tlog?T, and the spin-spin correlation f_u_nctioﬁy taken as an indication of a LS phade.
=(S-S)) is such that its mean valu€;~(-1)"7/[i-j[%, The main purpose of this work is to establish in detail the
while the typical ongCijly,~ exp(=v|i=j|). effective low-energy equivalence between the random two-

Other random systems have also been analyzed by thesgg and zigzag ladders with the three random spin chains
methods, among which two are of special interest to us. Onmentioned above. We do so by means of the RSRG method.
is the random dimerized AF chain with different distributions In particular, we will show that at low energies the random
for odd and even linké.The presence of a gap in the clean two-leg ladder is equivalent to the dimerized AF spin-1/2
version of this system provides protection against the intro€hain. In the course of this analysis, we will construct the full
duction of disorder. Therefore, for weak disorder, the systenphase diagram of this model and confirm the existence of
retains a gap(or a pseudoggpand a spin susceptibility only two possible phases. Moreover, we will show that there
which decreases to zero with decreasing temperature. Fare indeed two possible low-energy behaviors in the zigzag
strong enough disorder, however, the pseudogap is destroyéatider. For small and weakly disordered nnn couplings, it is
and the susceptibility diverges as a power law. The poweequivalent to a random AF spin-1/2 chain with its RS phase.
law exponent is nonuniversal and varies continuously withif the nnn interactions are stronger, however, the system pre-
the disorder strength, characterizing a Griffiths phase. Theents all the characteristic features of the LS phase of a ran-
other system of interest is the random chain with both AFdom chain with both AF and FM couplings. We thus confirm
and ferromagneti¢FM) interactions® It has been shown, the results of Ref. 10 by showing the same scaling of the
using a generalization of the RSRG procedure, that the loweffective cluster sizes and total spin values with energy as
energy behavior of this system is governed by the formatiorseen in those systems. However, the zigzag ladders can never
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exhibit the universal behavior observed in those systems at Two-leg ladder
weak disorder. This is demonstrated by an exhaustive inves- 1 - -
tigation of the dependence of the dynamical exporeoh
the shape and strength of the disorder distribution. Neverthe-
less, we do finddifferentuniversal regions where remains
fixed while the disorder is varied. The totality of our results
thus serves to show that the universality classes of random 06 L
spin ladders can already be found in simpler systems with nn
interactions only.

The paper is organized as follows. In Sec. Il we introduce 04
the models we studied. The numerical results of the RSRG
procedure of both the conventional two-leg and zigzag lad-

08

ders are presented in Sec. lll. The unexpected behavior of the 0.2

dynamical exponent of the zigzag ladders is explained in
Sec. IV. We end with some final conclusions in Sec. V. Ap- 0 ‘
pendix A discusses our method of calculation of the dynami- -4 0

cal exponent and a brief discussion of the case of correlated
disorder is given in Appendix B.
FIG. 1. The behavior of the fractions of nearest-neighbor, next-
Il. THE MODEL nearest-neighbor, and third-nearest-neighbor coupling constants, the
fraction of spins greater than 1/2, and the fraction of antiferromag-

We consider the following Hamiltonian, which describes netic couplings as functions of the energy sdaleThe initial num-

an AF spin-1/2 chain with nn and nnn interactions: ber of spins ifN=200 000, the disorder strengthds=0.3, and the
N-1 N-2 ratio A=1.0. The RSRG is iterated until only nearest-neighbor cou-
H=> JS S+ > KiS: - Siso, (1) plings are left. The data are averaged over 100 samples and the
i=1 i=1 relative error is less than 2%.

where S, is a spin-1/2 operatoi\ is the total number of
spins, and);>0 eK;>0 are the nn and nnn random coupling
constants, respectively. Jf=0 for eveni, this is the two-leg
ladder Hamiltonian; ifJ; is in general nonzero, we have the
zigzag ladder. The nonzero coupling constahtandK; are

in general independent random variabisee, however, Ap-
pendix B. We take them to be respectively distributed in a
power-law fashion(unless otherwise notgd

When there are initially only nn interactions, further
neighbor interactions are never generdtééBy contrast, in
our case, the range of effective couplings rapidly increases as
the RSRG is iteratedsee Sec. IV for more detajlsHow-
ever, as the fixed point is approached, interactions beyond
nearest neighbors become extremely weak. If we then ne-
glect interactions weaker than a certain upper bolag;,
~107200Q), (Ref. 11)] the effective range actually extends

l-afJ\® only as far as the nearest neighbors. Thus, at the final stages
P,(J) = Jo 7/ 0<JI<Jo (28 of the RSRG, the ladders renormalize to effective nearest
neighbor spin chains.
l-afKy\*
Pc(K) = K ? , 0<K<K,. (2b) I1l. NUMERICAL RESULTS
0

In this section we show the numerical results obtained

The exponenta (0$_a<1) is a measure of the disc_)rder from the iteration of the RSRG for the two-leg and the zig-
strength and the ratio of cutoff& =K,/J, gives the typical zag ladders.

relative strength between nnn and nn interactions.

In order to study these systems we employed the RSRG
method introduced by Ma, Dasgupta, and Hts decimation
steps consist in isolating the strongest bond of the system We first focus on the two-leg laddeld,=0). In our
(Q), keeping only the lowest energy level of the bond, andsimulations we used chain lengths upNe 200 000.
renormalizing the remaining interactions by perturbation In Fig. 1, we show the behavior of the fractions of nn,
theory. The new renormalized coupling constants can be einn, and third nn bonds as functions of the energy s@ale
ther ferromagnetic or antiferromagnetic. The details of thdn addition, this figure also shows the fraction of active spins
procedure have been extensively discussed in the publisheeater than 1/2 and the fraction of antiferromagnetic cou-
literature8-1%and will be skipped here. As the largest energypling constants as functions 6. The first thing to note is
scale is lowered from its initial valu€,=maxJy,Ky), an  that the only significant couplings at the lowest energy scales
effective distribution of coupling constants is generated(<1073° Q) are nn couplings. Furthermore, these remaining
which eventually flows towards a fixed point distribution. couplings are all antiferromagnetic. This has been verified
The low energy behavior of the system is governed by thdor all values ofe and A.
remaining “active” nondecimated spins at the scale of Another important feature of the approach to the fixed
interesth-2° point is the difference between the distributions of the odd

A. Two-leg ladders

214411-2



PHASE DIAGRAMS AND UNIVERSALITY CLASSES OF. PHYSICAL REVIEW B 69, 214411(2004

Two-leg ladder Two-Leg Ladder
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> 0.2 Disordered
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A=1.0
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0.5 : : Ratio A
1.5 2 25
X=(1—(l)_1 FIG. 3. Phase diagram of the random two-leg ladder. The disor-

dered Haldane phase is characterized by a “soft géam”

FIG. 2. Variation of the dynamical exponentvith the disorder ~ pseudogap whereas in the Griffiths phase, the disorder completely
strengtha for A=1.0.N=200 000 is the initial number of spins in destroys this remnant of the Haldane gap. In both phases the system
the ladder and the RSRG is iterated until there are only nearests dimerized. The data error is about the size of the symbols.
neighbor bonds left. The data are average over 5 samples and the
relative error is about 3%, comparable to the symbol size. From the inset of Fig. 3, we note that for< 10°2 the

system is always in the Griffiths phase. We can understand
bonds and the even ones. We have checked that, at the lowekts in the following manner. In the limit oA — 0, the sys-
energy scales, all the even bonds vanish while the odd ongem reduces to a collection of disconnected dimglse

are distributed according to “rungs” of the laddey, whose couplings are distributed ac-
cording to Eq.(2a). Therefore,z=(1-a)"*=1 and the sys-
Pioadd) ~ J1E, (3 temis always in a Griffiths phase. For smallthis behavior

is preserved. For 18<A <1.53, the Haldane-type gap of

where z is the dynamical exponeR#? Thus, the system the clean system gives rise to a soft gap upon the introduc-
renormalizes to a collection dfee effective random dimers tion of weak disorder. For large disorder, the Griffiths phase

The average magnetic susceptibility is then giveh‘y reemerges, with a diverging nonuniversal magnetic suscepti-
bility. For A>1.53, only the Griffiths phase exists. This be-
y~ Ti? havior smoothly connects with th& — oo limit of two dis-

connected random Heisenberg chains, which is governed by
. the infinite randomness fixed pohEormally, this limit cor-

e
and the system has a “soft gar a pseudogapThis is a |5esponds t@— . We note that for any value df, there are

only two types of phasés’
lreggjnalllt V?/f tt?]e I-][aldanel—lty{)e %épofd the 4 Cll_?aig two—ltra]g We stress the high degree of similarity between the disor-
adder. Ve therelore call It a disordered Haldane pnaseyq o two-leg ladder and the dimerized random antiferro-

Otherwise, the system shows no such suppression and is ina . . .
e ; netic chairt,which also shows analogous phases to the
gapless(Griffiths) phase: We have determined the value of onegs discussed here. Indeed, in both cgses E)he RSRG flow

2 for different disorder strengtisee Appendix A for details leads to a fixed point with nn antiferromagnetic interactions

on the method of computation &j. As shown in Fig. 2, far only but with different distributions for even and odd bonds.

A=1, a transition between these two .phases oceurs vuhen Thus, the two systems clearly belong to the same universal-
~0.3. In both phases the system is strongly dlmerlzedity class

Within the length scale of the size of the effective dimers, the
correlations decay as a power law. We believe this decay is
similar to the case of random Heisenberg chairg /r?),
since there are equal contributions coming from even and We now consider the zigzag ladders, with coupling con-
odd bond decimations. At larger length scales, the correlastants distributed according to E(). We studied ladders
tions are strongly(exponentially suppressed. This overall with initial lengths ofN=640 000.
behavior is apparent in Fig. 5 of Ref. 9. The crossover be- Yusuf and Yandf have calculated the ratio of the average
tween the two regimes is governed by the effective dimemnn interactions to that of further neighbor interactions in zig-
sizes, which are primarily determined By, not a. zag ladders with correlated disorder. They have shown that
Calculating the dynamical exponentfor various values this ratio increases tremendously as the energy scale is low-
of A and «, one can construct the phase diagram of theered. Indeed, if we plot the fraction of nn, nnn, and third-
two-leg ladder(Fig. 3). In the transition line, the dynamical nn interactions as functions 6, for «=0 andA =1 (see Fig.
exponent equals one and the low-energy density of states adg, we can see that only nn bonds survive at the lowest en-
the magnetic susceptibility 86— 0 are both constant. ergies (=1071° Q). This is similar to the case of two-leg

B. Zigzag ladders
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Zigzag Ladder Zigzag Ladder

1 4
n.n. 3t
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_____ NS>1/2/Nspin A | ---- log,, <S> T
0.2 1 T-20 15 S0 5 0
log,, Q/Q,
0 o e i .
-20 -15 -10 -5 0 FIG. 5. The average cluster sige and the average spin siz&)
log,, Q/Q, as functions of the energy scafe. From a direct fit we getl)

~ 0701 and (S~ 070989 The initial length of the system ibl
FIG. 4. The fraction of nearest-neighbor, next-nearest-neighborr 640 000,a=0, andA=1.0. The renormalization group is iterated
third-nearest-neighbor, the fraction of spins greater than 1/2, andntil only nearest-neighbor couplings are left. The data were aver-
the fraction of AF couplings for zigzag ladders as functions of theaged over 5 samples and the sample to sample variation is less than
energy scale). The initial number of spins isN=640 000, the 5%.
disorder strength i&=0, and the ratio\=1.0. The renormalization
group is iterated until all the bonds in the system are between near- _ _ _A-l+1E
est neighbors only. The data are averaged over 5 samples. For Par(4) =P(4) =P(A) ~ A ) 4)
Q/0e=10"1%the data relative error is less than 2%; otherwise, it isywherez is the same dynamical exponent obtained from the
less than 8%. relation betweerl) and Q) (see below for an explanatipn
An interesting feature of the zigzag ladders is the follow-

ladders, as shown in Sec. Il A, and was verified in our simu4ng. In general, the total fixed point distribution of link exci-

lations, irrespective of the values afand A. However, in  tation gaps is a linear combination of AF and FM contribu-

contrast to the two-leg ladder case, the nn bondshatall  tions, namely,

antiferromagnetic. The asymptotic number of ferromagnetic 1l x /0 \* 2 1-x/ Q \llzu

and antiferromagnetic bonds is about the same, as shown P(A):—[—(—) +—(—) }

also in Fig. 4. Finally, as also pointed out in Ref. 10, there is QL zae\ Aar Zem \Afm

a rapid proliferation of spins greater than 1/2. This is typical )

of the so-called large spi(LS) phase found in disordered :/_vhere_ th_e f|r_st and secon_d terms come from th_e AF and FM

Heisenberg chains with both FM and AF interactiéis we ink d_|str|but|ons, rgspecyvely, and is t.he fraction of AF
couplings. In our simulations, the fraction of AF bonds«is

will see, this similarity is not fortuitous. = . :
One of the distinguishing features of the disordered chaing n%‘?gelnertlgfg;sscgr;:?se'g;i_/r;izgijat'on between length scale
with both FM and AF interactions is the relation between the
average spin size and the average cluster length. The average dp
cluster size is related to the energy scale through the dynami- ——=P(A=Q)p. 5

cal exponent by (1)~ p~1~ Q17 and the average spin size do

grows with the lowering energy scale according (8  The coefficient in front ofP(A=0Q) is taken to be 1 because

~ 17", Both behaviors are observed in the zigzag ladders aghe main decimation process replaces 2 spins by 1. Solving

shown in Fig. 5. As first pointed out by Westerbegal.®  Eq. (5) we get

the two exponents are related byz£2« in random chains

with both FM and AF interactions. This follows from the fact p~ QO

that the main decimation process is not singlet formation but .

rather the formation of large spins from the random additionw'th

and subtraction of spin pairs. As a consequence, the cluster

growth is characterized by a random walk in “spin size

space.” Again, we find this relation also holds for the zigzagThis general relation seems to have been unnoticed in previ-

ladders(k=0.069 and 12=~0.14 for the chain of Fig. 6  ous studies. In particular, we note that weakly disordered

This is evidence that the zigzag ladders belong to the samehains with both AF and FM couplings havezty, = 0.56,

universality class of the disordered chains with FM and AF1/z,-~0.30, andx~0.63? so that 12~0.40 which is rea-

interactions. sonably close to the value of 0.44+0.02 found directly in the
Our simulations also show that the fixed point distribu-simulations of Ref. 5. In contrast, in the zigzag ladders, we

tions of FM and AF link excitation gaps are the same, with ahave foundz,r=z,, irrespective of the value ok (x

characteristic power law dependefice ~0.53 in the LS phageAs a resultzag=zry =z

1/z=xlIzpg + (1 = X)Zey. (6)
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Zigzag Ladder Zigzag Ladder
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Disorder a L . . )
FIG. 7. Variation of the dynamical exponentvith the ratioA

FIG. 6. Variation of the dynamical exponentvith the disorder  for initial “box distributions with a gap’(6=0.05, see text for de-
parameter for different values of\. From top to bottom, the solid tails). N=200 000 is the initial number of spins in the ladder and the
lines with circles correspond ta=1.0, 0.6, 0.4, 0.2, 0.1, 0.05, and renormalization group is iterated until the bonds in the system are
0.0025, whereas the dashed lines with stars ard f08.8°%, 0.6°1, nearest-neighbor only. The data relative error is less than 5%, about
0.41 0.2 0.171, 103 and 16. N=640 000 is the initial number of the symbol size.
spins in the ladder and the renormalization group is iterated until
the bonds in the system are nearest-neighbor only. The data relatisgrved by Yusuf and YaR@by direct calculation of. Hence,
error is less than 10%, about the size of the symbols. we conclude that the system presents two phases. In the

greater part of phase diagram it is in the LS phase, with a

Now, we would like to explore the disorder dependence ofnew universal fixed point in the region x0A <1/0.4 and
the dynamical exponet Figure 6 illustrates the behavior of «<0.6. In addition, there is a tiny region where the system is
z as a function of the disorder parametefor various values in a RS phase.
of A. Note that the smallest value »fs 1/0.15. Westerberg For «>0.6, all the curves converge to the point0.95
et al. have found that for a range of weak disorder strengthsand z=1/0.05. Note in this connection that=0.95 corre-
random chains with both FM and AF couplings are characsponds to an initial distribution which is the same as the
terized by a universal value af;=1/0.44.% Strongly singu- fixed point one ifz=1/0.05, cf. Eqs(2a) and(4). This is a
lar disorder distributions, however, show nonuniversalreflection of the inability of the decimation procedure, which
disorder-dependent values nfAs can be seen from Fig. 6, is dominated by first order perturbation theory steps, to gen-
for initial power-law distributions of couplings, zigzag lad- erate distributions which are more singular than the initial
ders always have>z; and are never in the basin of attrac- one.

tion of the universal behavior. One might think that the universal behavior of disordered
For «<0.6 the behavior of 1Zis linear in« chains with AF and FM interactions whee=z; could be
realized in zigzag ladders with disorder distributions which
l/iz=aa+bh. are not as singular as E). This is not the case, however,

as exemplified by the case of a “box distribution with a gap,”

Note that, forA=1.0,a=0 and for 1.6<A<1/0.4 the sys- where the initial distributions are uniform and have support
tem flows to anew universal fixed poinwhere 1z in Jy—8<J<J, and Ko—5<K <K, (we take mai{dy,Kg}
=0.15+0.02. This is similar to the random AF and FM cRain =1). We have explored several values&énd foundz to be
but the value of the dynamical exponents are different. Wealways greater tham,. This is seen, for example, in the
note from the general trend of the curves in Fig. 6 that theextreme case 06=0.05 in Fig. 7, where we plot ¥/as a
origin of this universal behavior seems to be the nonmonofunction of A. Note that there is a phase transition /at
tonic behavior oz as one goes from<1toA=1(see also =0.4. To the left of this point, the system is in a RS spin-1/2
Fig. 7 below. This behavior, on the other hand, can be un-phase and the dynamical exponent diverges-In Q. For
derstood from simple physical arguments as shown below i >0.4, the system is in the LS phase. The smallest value of
Sec. V. the dynamical exponent i5=1/0.22 (still greater than the

For A<0.4 all the lines have the same sloge universalz, found by Westerbergt al) and for A= 10, z
=0.039£0.001 and the interceiptvaries in a logarithm man-  saturates ax=1/0.11. We conclude that the LS phase of the
ner with A, i.e., b=by+b, In A, whereb;=0.12+0.01 and zigzag ladders is in the same universality class of random
b,=0.020+0.001. Thus, there is a phase transition at th&M and AF chains with strong disorder but it does not reach
value of o« where the dynamical exponent diverges, the universal region found in those chains when the disorder
=a(A)=—(by In A+by)/a. For a<ay(A), the system is is weak. It should be remembered that the clean system is
governed by an infinite randomness fixed point where theyapless ifA <0.24 but spontaneously dimerized and gapful
magnitude of the spins does not grow and the FM couplings A =0.2416 The topological nature of the dimerized state,
vanish. Indeed, the presence of such a RS phase was ohewever, makes it unstable with respect to any finite amount
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Zigzag Ladder
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0 FIG. 9. Schematic decimations at the earliest stages of the
0 3 RG.

Ratio A

FIG. 8. Phase di f th d . ladder. The | Let us start by writing down the effective couplings gen-
spin phase doﬁﬁn atfgr;?stoof tﬁerzgrgmefgzssacae _I?r:'ere ies nggirated by the decimation procedure in its earliest stages when
. ) all the spins are spin-1/2 and the couplings are(sée Fig.
versal regior(the shaded argdor 1<A <2.5 and 06 «<0.6 char- 9). Let uz assumepthat the couplin bgtwgen Sﬂgﬁand Sg
acterized byz=1/0.15. There is also a tiny region for very small > piing 4

values ofA (see the insgtwhere the system is in a random singlet IS th_e largest one |n_the system, i.8=Jz,. After the deci-
phase. mation step, both spins are removed from the system because

they are effectively frozen in a singlet state. The remaining
spins are coupled with renormalized interactions as follows.

of disorder and the random system is always gagiéss. The nn couplings are

Based on the behavior of the dynamical exporgnie
can determine the phase diagram of the random zigzag lad- ~ K1a(Joz— Koy
der, as shown in Fig. 8. The large spin phase is dominant in J12=J12- 20
most of the(a,A) parameter space. In this phase, the low-
energy physics of the system is governed by a fixed point o (Jps—Kop)(Jas— Kag)
where the mean size of the spin clusters grows when the Jpg= B2 35
energy scale is lowered, and they are weakly coupled. The 2Q
distribution of link excitations gaps is not universal except in
the shaded region. This universal region in the large spin
phase is characterized by a dynamical exporzenf /0.15.
The thermodynamic properties are well knoWwtie specific
heatC~ TY4In T| and there is a Curie-like magnetic suscep-the nnn ones are
tibility y~T. The average spin-spin correlation function Kya(Jas— Ksg)
decays in a logarithmic mann@in addition to this phase, Kis= e
there is a tiny region where the system is in a RS phase 20
(where z— o, see the inset of the Fig.).8Here, the low-
energy physics is governed by a universal infinite random- ~  _ Kyg(Ja3— Kad)
ness fixed point. The specific he@t~-1/In*T, the mag-
netic susceptibility y~1/(T In? T), the mean correlation . ] . ]
function C(r)~r~2 and the typical correlation function and a third-nearest-neighbor coupling between sfinand

C.(r)~exp{-r~¥2 2 This phase was previously identified in = IS 9enerated

Kag(Ja5— Kgs)

Js56=Js6— 20

Ref. 10, although its precise location differs somewhat from - KyaK g

our results. We attribute this difference to finite-size effects L= o0

and the different methods used for the characterization of RS

behavior. First, we analyze the limih < 1. In this case, it is easy to

see that the renormalized nn, nnn, and 3rd nn couplings are
of orderO(A%), O(AY), andO(A?), respectively. Thus, if we
neglect the 3rd nn coupling, the original form of the Hamil-
tonian is recovered, and the nn couplings remain stronger

An intriguing aspect of the data shown in Fig. 6 is the factthan the nnn ones. No FM coupling is generated and as the
thatz decreases as the initial disorder strengtis increased, €nergy scale is lowered the nnn couplings vanish faster than
for A<1 ande< 0.6 (solid lines of Fig. . This behavior is the nn ones. The system flows to a random AF spin-1/2
unexpected since the weaker the initial disorder is, the strorhain in a RS phase. This scheme breaks down when a nn
ger is the final effective one. As we will show, this anoma-FM coupling appears leading to frustration. Among the three
lous behavior can be simply understood by analyzing thean renormalized couplings,s is the most likely to be FM
limiting behavior asA — 0. with probability given by

IV. ANOMALOUS DISORDER DEPENDENCE OF zIN THE
ZIGZAG LADDERS
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P(oe < 0) = 2P(Jos < Ko )P(Jae > K ger_1era|ize them to the two-leg Iadder;. Furthermore, by ana-
(J25 < 0) = 2P(Jz5 < K20)P(Jas > Kso) lyzing the structure of odd and even links in the case of the
. A P.(J) A P (K)dK |dJ two-leg ladders and the scaling with energy of the large clus-

B 0 J J. K ters of spins in the case of the zigzag ladders, we have been

N N ?ble to ghowdthe Iow-denergy equir\]/alencedofhthesedsysterﬁs to
_ the random dimerized AF spin chain and the random chain
X{l JO PJ(J)[L PK(K)dK}d‘]} with AF and FM interactions, respectively. The low-energy
equivalence between random systems with further neighbor
- Al—a( 1- 1 Al—a>_ yet short-ranged interactions to systems with nearest neigh-
2 bor interactions only is likely to hold in general. However,
there remains the possibility that one-dimensional models
with longer ranged interactions are not decimated down to
tnearest neighbor spin chains in the process of the'RG.

As expected, this probability is greater, the greateiis,
sinceA governs the strength of frustration. But note also tha

it increases withe. As more FM couplings are produced, the ; : : "
RG flow tends to deviate from the RS phase. As a result, th%ﬁ%ﬁ SSCIhmsei:ﬁsrilfri] ga:i%r? %tggsmggt t:‘scﬁ:'tlcal range beyond

dynamical exponent will tend to be smaller. This explains the While the zigzag ladder could be related to the random

an?r:ntilgl:)s beh.?v'lc.)r \Q/[e\ Qal\;et];?unqt | hold chain with both AF and FM chains, we have shown that their
U ppOSIS T} =), TTIS PICHre o onaer N9'S:  phase diagrams do not completely overlap. Indeed, the latter
ppose thgﬂ Kss. In t.h|s case, the renormalized coupling system has a universal fixed point at weak disoiaéth z
between spins, and$, is now a nn one ~ 2.27)° which is inaccessible to the former. The zigzag lad-
J23(J45 = Jz4) der, on the other hand, has a region of parameter space with

Jos=Kyst a new universal behavior: for initial distributions less singu-

20 lar than P;(x) ~ Pk (x) ~X %, with a;~0.6, and for 1.e6s A
while the nnn coupling betwee®, and S, is =1/0.4, the dynamical exponent is always 6.7. This criti-
cal disorder strength, is comparable to the one found in the
’{(14: M_ random AF and FM chaih,although we see no other simi-
2Q) larities between these two regimes. We have been able to find

It is clear that in this case the nn coupling tends to increas rough expl_anatlon for t.h's unlyersal behavior by ascribing
. it to competing tendencies which create a shallow valley
and the nnn one has a better chance of becoming a FM cou- . . ; .
g ; .= .~ “Where z is approximately constant. It is possible that the
pling in the earliest stages of the RG flow. This will rapidly " . ) U e
; S universal regime of Ref. 5 has a similar origin.
enhance the frustration of the system and drive it away from
the RS phase. In this limit, we expect the RS phase only at
A1=0. ACKNOWLEDGMENTS
The competing tendencies at small and largé&ad to a

minimum value ofz (Figs. 6 and 7. The presence of this ) peap ihrogh grants 03/00774BA.H) and 01/00719-8
minimum partially explains the universal region wherés

approximately constant at6.7 (Fig. 6). (E.M.) and CNPq 301222/97-6.M.).

A similar type of reasoning can be used to analyze the
case of correlated disorder considered in Ref. 10. This i®\PPENDIX A: THE CALCULATION OF THE DYNAMICAL
discussed in Appendix B. EXPONENT z

In this appendix, we would like to comment on our
V. CONCLUSIONS method of calculation of the dynamical exponenA com-
: mon procedure, frequently used in the literature, is to deci-

We have studied random AF two-leg and zigzag spin-1/2mate the system until one pair of spins is left. One can then
ladders using the real space renormalization group method &Rliculate the excitation gap of this last dim@ne first gap
Ma, Dasgupta, and Hu. We have determined the completd1)- By repeating this procedure for different realizations of
phase diagrams of these two genera| models in great detajisorder one can obtain the distribution of first gaps. The
by Ca|cu|ating the dynamica| exponemtand the range of dynamical exponent is obtained by flttlng the behavior at
low-energy effective interactions. The two-leg ladders showsmallA; to the power law in E(3).88This is shown in Fig.

a gapped disordered Haldane region with a random dimetO(@). Another option is to calculate the density of “active”
nature and a gapless Griffiths phase, but no random singléPins p at the scaleQ). The dynamical exponert is then
phase. The zigzag ladder, on the other hand, can be either @ptained from its definition, through the relation between the
a random singlet phase or a large spin phase. length scald ~p™* and the energy scal@

One of our main findings is that throughout their phase p~ QY (A1)
diagrams these two models lead to effective low-energy '
models with nearest neighbor interactions only. This simpli- This second method is exemplified in Fig.(k) and the
fication had been noticed before in connection with the zig-agreement is excellent. While the methods are equivalent it
zag ladderd® Our calculations confirm those results andshould be pointed out that the second method is computa-

We would like to acknowledge financial support from
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This need for large sizes is due to the presence of long-range
correlations in these systefras opposed to the exponential
dependence of the two-leg laddérs.

APPENDIX B: ZIGZAG LADDERS WITH CORRELATED
DISORDER

Yusuf and Yang have also considered the case of zigzag
ladders with correlations between the random nn and nnn
couplings!® They have considered nn couplings distributed
according to Eq(2) and nnn couplings given by

Jidisa
Ki= A 0
Their analysis identified a RS phase 6 0.5, and a LS
phase for 0.5 A <1.0.

We can qualitatively analyze this case along the same
lines as in Sec. V. Suppoge=Jy,in Fig. 9. Using the above
definition of K; in the earliest stages of the RG flaqwhen
0 =0Qp), we have

Joadss

Jpe=(1-A)? ,
5= (1= 1)

= 31;25
Kis= A'"——=,
15 Q

FIG. 10. The calculation of the dynamical exponenta) The
distribution of first gapsA; using 50 000 realizations fdi=100,
150, and 200, is fitted to lggP(-log;oA;)=const+{1/z)log A4,
and (b) z is directly calculated from log p~ const+1/z)log;o (2,
where we used=200 000. The data are from the decimation of awhere A’=A/(1-A). Neglecting the 3rd nn coupling and
single chain. We verified that the variation with respect to otherthe renormalization o8, andJss, the new Hamiltonian has
realizations of disorder is less than 1%. the same form as the original one, except for the fact that the

anisotropy parameter fd€,5 andK,g has been renormalized.
tionally much faster, as singlerealization of a large chainis In the first RG decimations, no FM couplings can arise.
sufficient for the determination @ In our calculations, we However, in a second run there is a finite probability for FM
have chosen to use the second method. This was actualtyuplings to appear i\’ >1. This happens ifA >0.5. The
crucial in the case of the zigzag ladders, where theresence of FM couplings introduces frustration which is the
asymptotic behavior can only be obtained with very largemechanism that drives the system away from the RS phase
system size§, rendering the first method very inefficient. towards the LS phase.

- Jos]
KZGZA, 25 56’
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