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Spin-Liquid Behavior in Electronic Griffiths Phases
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We examine the interplay of the Kondo effect and the RKKY interactions in electronic Griffiths phases
using extended dynamical mean-field theory methods. We find that sub-Ohmic dissipation is generated for
sufficiently strong disorder, leading to the suppression of Kondo screening on a finite fraction of spins, and
giving rise to universal spin-liquid behavior.
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Disorder induced non-Fermi liquid (NFL) behavior has
remained an important focus of study in heavy fermion
systems [1]. According to the ‘‘magnetic Griffiths phase’’
scenario [2], this behavior reflects the formation of rare
magnetic clusters with large susceptibilities, similarly as in
disordered insulating magnets [3]. Another approach fo-
cused on the interplay of disorder and the Kondo effect far
away from any magnetic ordering [4]. More recent work
[5,6] has demonstrated that such ‘‘electronic Griffiths
phases’’ are a generic feature of strongly correlated elec-
tronic systems with disorder. Neither picture, however,
seems satisfactory for the following key reason: in both
scenarios, the resulting NFL behavior is characterized by
power law anomalies, with nonuniversal, rapidly varying
powers. In contrast, most experimental data seem to show
reasonably weak anomalies, close to marginal Fermi liquid
behavior [1].

Physically, it is clear what is missing from the theory.
Similarly as magnetic Griffiths phases, the electronic
Griffiths phase is characterized [4–6] by a broad distribu-
tion P�TK� � �TK���1 of local energy scales (Kondo tem-
peratures), with the exponent ��W�2 rapidly decreasing
with disorder W. At any given temperature, the local mo-
ments with TK�i�< T remain unscreened. As disorder
increases, the number of such unscreened spins rapidly
proliferates. Within the existing theory [4–6] these
unscreened spins act essentially as free local moments
and provide a very large contribution to the thermody-
namic response. In a more realistic description, however,
even the Kondo-unscreened spins are not completely free,
since the metallic host generates long-ranged Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions even between
relatively distant spins. As the RKKY interaction has an
oscillatory character, the effective interactions between the
(randomly located) unscreened spins will be random in
magnitude and sign. In this Letter, we use an extended
dynamical mean-field formulation to examine the role of
such RKKY interactions within the electronic Griffiths
phase scenario.

Our main results are as follows: (a) for disorder W
weaker than a critical value Wc we find Fermi liquid
behavior, but for W >Wc the Kondo effect is suppressed
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on a finite fraction of spins, resulting in a spin-liquid phase
displaying (universal) marginal Fermi liquid behavior;
(b) the spins that remain screened are still characterized
by a power law distribution of (renormalized) energy
scales P�T�� � �T���

��1, but the exponent �� acquires a
universal value �� � 1=2 throughout the spin-liquid
phase; (c) the spin-liquid phase is unstable to spin glass
ordering at the lowest temperatures, but we find robust
marginal Fermi liquid behavior in a broad temperature
window above the freezing temperature.

We consider the disordered Kondo lattice model as given
by the Hamiltonian
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where the exchange couplings Jij between localized spins,
and site energies vi are distributed according to Gaussian
distributions, PJ�Jij� � exp��J2

ij=2J2� and PW�vi� �
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i����ci� represent a localized spin and the con-

duction electron spin density at site i, respectively. We
concentrate on the paramagnetic phase. Applying the stan-
dard procedure to average over disorder in the Jij couplings
[7] and taking the limit of infinite coordination z! 1 [8],
the local effective action assumes the form
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The local action of Eq. (2) describes the so-called
Bose-Fermi Kondo model [9,10], which describes a
Kondo spin interacting with both a fermionic bath of
conduction electrons and a bosonic bath of spin fluc-
tuations. For a disordered Kondo lattice, we must consider
an ensemble of such impurity models supplemented by
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following self-consistency conditions. The bosonic spin
bath ���� � hT�Sj��� 	 Sj�0�iAj

�
R
dvjPW�vj��

hT�Sj��� 	 Sj�0�iAj
and the conduction electron bath

Gc��� � Gcj��� � �hT�cj����c
y
j��0�iAj

are obtained by
appropriate disorder averaging [6], and for simplicity we
use a simple semicircular model density of states for
conduction electrons.

Destruction of the Kondo effect.—The presence of
RKKY interactions introduces a qualitative modification
in the dynamics of the Kondo spins, through the presence
of a dissipative bosonic bath of spin fluctuations. This
behavior depends crucially on the precise spectral form
of the bosonic bath, allowing for the destruction of the
Kondo effect in the presence of sub-Ohmic dissipation
[9,10]. For a spectrum of the form

��i!n� � ��0� � Cj!nj
1�";

Fermi liquid behavior is recovered for " � 0, but for " > 0
(sub-Ohmic dissipation), and for sufficiently small bare
Kondo temperature TK, the spin decouples from the con-
duction electrons. Within an electronic Griffiths phase,
however, the disordered Kondo lattice has a very broad
distribution of local Kondo temperatures P�TK� �
�TK���1. Therefore, for " > 0 and arbitrarily weak cou-
pling to the bosonic bath (i.e., weak RKKY interaction), a
fraction of the spins will decouple.

To obtain a sufficient condition for decoupling, we
examine the stability of the Fermi liquid solution by con-
sidering the limit of infinitesimal RKKY interactions. To
leading order we replace ���� ! �o��� 
 ���; J � 0�,
and the calculation reduces to the ‘‘bare model’’ of
Ref. [6]. The resulting bosonic bath, which is an average
over the site-dependent local dynamic spin susceptibility,
�o�i!n� �

R
dTKP�TK���TK; i!n�, has a Fermi liquid

form in the presence of weak disorder. However, for

stronger randomness, W >W� �
���������������
t2�cJK

p
=2 correspond-

ing to �< 2 (here, �c is the density of states for conduc-
tion electrons) [6], the power law distribution of energy
scales within a Griffiths phase produces sub-Ohmic dis-
sipation, corresponding to " � 2� �> 0. Note that the
estimate based on the bare theory sets an upper bound for
the true critical disorder strength, i.e., Wc <W� �

WNFL=
���
2
p

[here, WNFL �
��������������������
t2�cJK=2

p
is the threshold for

NFL behavior in the bare model [6], corresponding to
� � 1]. We emphasize that within the electronic Griffiths
phase, such decoupling emerges for W >Wc even for
arbitrarily small J, in contrast to the clean case [11] where
much stronger RKKY interactions (J > Jc � 10TK) [12]
are required to destroy the Kondo effect.

The spin-liquid phase.—For finite J, the actual value of
" has to be self-consistently determined as follows. For
W >Wc, the spins break up into two groups: the decoupled
spins and those that remain Kondo screened. Since the self-
consistent bosonic bath function ��i!n� is an algebraic
average over all spins, it is an additive function of the
16720
contributions from each fluid

��i!n� � n�dc�i!n� � �1� n��s�i!n�: (3)

Here, n is the fraction of spins in the decoupled phase. As
we shall see, the functions �dc�i!n� and �s�i!n� both
have a singular, non-Fermi liquid form characterized by
exponents "dc and "s, respectively. Deferring for a moment
the study of the critical region (infinitesimally small n),
we first examine the solution deep within the spin-liquid
phase. The first step in the self-consistent procedure
is computing "dc and "s for a given value of the bath
exponent ". The spin autocorrelation function in the
decoupled phase assumes the form [9,10] �dc��� �
hT�S��� 	 S�0�i � 1=�", a result valid to all orders in "
[10]. Since "dc is defined by �dc��� � 1=�2�"dc , we find

"dc�"� � 2� ": (4)

The nonanalytic part of �s�i!n� comes from the spins with
the smallest (renormalized) Kondo temperatures T�

(‘‘barely screened spins’’)

�bs�i!n� �
Z �

0
dT�P�T���bs�T�; i!n�: (5)

Here P�T�� is the distribution of renormalized Kondo
temperatures (local Fermi liquid coherence scales), and
�bs�T�; i!n� is the local dynamic susceptibility for a given
T�. Properties of the Bose-Fermi Kondo model in the
critical region of the decoupling transition have been ex-
tensively studied within renormalization group (RG) [9,10]
and large-N approaches [11], and we use these results
to calculate �bs. In particular, T� � ��JK�	 � ��TK�	,
which gives dT�=dTK � �T��1�1=	. Therefore, P�T�� �
P
TK�T

��� dTKdT� �
dTK
dT� � �T

��1=	�1. From scaling arguments
[9,10], �bs�T�; !� � �T��
�1��!=T��, where 
 is the
anomalous dimension, which is known to be exactly "
[10]. Performing the integration in Eq. (5), we find at low
frequencies �bs�i!n� � �bs�0� � C00j!nj


��1=	��1, or,
equivalently, at large times �bs��� � 1=�
��1=	�. By defi-
nition, �s��� � 1=�2�"s , which gives

"s�"� � 2� 
� 1=	: (6)

Since 
 � " and 	 > 0 (as the relevant eigenvalue at the
unstable fixed point), Eqs. (4) and (6) imply that "dc > "s.
Therefore, " � maxf"dc; "sg � "dc, and from Eq. (4) we
find that the self-consistent bath is characterized by the
exponent " � 1, as in the spin-liquid model of Sachdev and
Ye [13], producing a logarithmic divergence of the average
local dynamic susceptibility. Note that, in contrast to the
bare (J � 0) model of the electronic Griffiths phase, the
renormalized distribution P�T�� of local energy scales now
assumes a universal form characterized by an exponent
���"� � 1=	�"� � "=2 � 1=2 within the spin-liquid
phase. More work is needed to determine the behavior of
the uniform susceptibility, as well as the behavior of the
specific heat.
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FIG. 1 (color online). Local dynamic magnetic susceptibility.
(a) At low frequencies, the decoupled spins (dashed line) provide
the leading logarithmic dependence of the total averaged sus-
ceptibility (full line). For the values of the parameters used (JK�
0:8, J � 0:05, � � �0:1 in units of the half bandwidth, corre-
sponding to TK�vj � 0� � 0:1 and Wc � 0:1), there are n � 8%
of decoupled spins at W � 0:4. The bare model (J � 0) leads to
a stronger nonuniversal power law singularity (dash-dotted line).
(b) ��i!� for the disorder strength ranging from 0 to 0.4.
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Transport in the spin-liquid phase.—Although the re-
normalized Kondo coupling scales to zero for the de-
coupled spins, the precise form of the RG flows (scaling
dimension of ‘‘irrelevant operators’’) near the spin-liquid
fixed point still determines the finite frequency (or finite
temperature) corrections. To leading order, the contribu-
tion from decoupled spins scales as ��!� � 
J�K�!��

2,
while J�K�!� �!

1=	. To compute the appropriate exponent
at the spin-liquid fixed point we have used the "-expansion
approach of Ref. [10], and we find 	 � 2="�O�"3�.
From our self-consistent solution for the spin-liquid phase
(" � 1), we obtain 1=	 � 1=2, producing again a marginal
Fermi liquid correction to the resistivity ��dc�!� �!, or
at ! � 0 and finite temperature

��dc�T� � T:

Numerical results.—As an illustration of our analytical
predictions, and to obtain quantitative results, we proceed
to the numerical solution of our equations in the large-N
limit [11,13]. Introducing site-dependent slave boson pa-
rameters rj and "fj, and minimizing the local free energy,
we come to the following saddle-point equations [11]

1

�

X
!n

ei!n0�Gfj�i!n� �
1

2
; (7)

1

�

X
!n

Gfj�i!n��fj�i!n� � �
1

JK
: (8)

The local f-pseudo-fermion Green’s function, Gfj��� �

�hT�fj����f
y
j��0�i, is given by G�1

fj �i!n� � i!n � "fj �P
j�i!n� � r

2
j�fj�i!n�. The self-energy is equal toP

j��� � J2����Gfj���, and ��1
fj �i!n� � i!n ��� vj �

t2Gc�i!n�. Self-consistency requires ���� �
�Gfj���Gfj����, and Gc�i!n� � Gcj�i!n�, where
G�1
cj �i!n� � ��1

fj �i!n� � r2
j=
i!n � "fj �

P
j�i!n��.

These equations were solved on the imaginary axis at
T � 0 using fast Fourier transform methods. The total
average local dynamic susceptibility � together with the
contributions coming from Kondo screened �s and de-
coupled spins�dc is shown in Fig. 1(a). At low frequencies,
the contribution from Kondo screened spins saturates to a
constant, while the decoupled spins produce a logarithmic
divergence. A comparison with the bare model illustrates
how the strong power law divergence of � found for J � 0
is suppressed by the dynamical RKKY interactions.
Figure 1(b) shows how � evolves with the change of
disorder. Note that marginal Fermi liquid behavior persists
up to a crossover scale !sl � 0:1TK�vj � 0� which has
very weak dependence on the disorder strength.

Critical behavior.—Near the critical point the arguments
which followed Eq. (3) have to be modified since the
relative importance of the various contributions to the
average local susceptibility changes. First, we concentrate
on the contribution from the barely screened spins given by
16720
Eq. (5). As before, P�T�� � P
TK�T
���dTK=dT

�, but close
to the transition P�TK� is small and cannot be replaced by a
constant prefactor of order 1. Since P�TK� � P�TKc� �
�TKc�

��1, we find n �
RTKc

0 dTKP�TK� � �TKc�
�, where

TKc is the bare Kondo temperature at the site energy vc
at which the spins start to decouple. Therefore P�TK� �
n���1�=�. From the bare model, we know that (for small J)
� � 2 near the critical point. Now we are in a position to
write down the general form of the total bosonic bath at low
frequencies

��i!n� � �o � C1j!nj � C2n
1=2j!nj


��1=	��1

� C3n lnj!nj: (9)

The first two terms come from the well-screened spins
and have the Fermi liquid form. The third term is due to the
‘‘barely screened’’ spins and the last term is the contribu-
tion from the decoupled spins. The crucial point is that the
nonanalytic term from the barely screened spins, being
proportional to

���
n
p

, is much larger than the logarithmic
term due to the n decoupled spins, except at exponentially
small frequencies. Therefore, we can neglect the last term
in Eq. (9). Below the crossover frequency !� �
n�1=2�=
2�
��1=	��, the nonanalytic term in Eq. (9) is domi-
nant and close to the decoupling point, i.e., in the limit
"fj ! 0 and r2

j ! 0, Gf assumes the form Gf�i!� �

�iC sgn!=j!j1�"=2 for j!j<!�, and Gf�iw� � �i=w
for j!j>!�. The parameter " has to be self-consistently
determined from the equation 1� " � 
� 1

	� 1. Within
the large-N theory, 	 � 2=" which gives " � 4=5.
Inserting this expression into Eq. (8), we find the critical
site energy for decoupling vc �

�����������
j lnnj

p
. Since the number

of decoupled spins is equal to n �
R
1
vc
dvPW�v�, we have a
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FIG. 2 (color online). Phase diagram obtained for the same
values of parameters as in Fig. 1. The inset shows the fraction of
decoupled spins as a function of disorder. Note that the decou-
pling sets in already in the presence of moderate disorder.
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closed set of equations for n�W�, from which we find that
the number of decoupled spins is exponentially small in the
vicinity of the critical point

n� e�A=�W�Wc�; (10)

where A is a positive constant. The numerical results for
n�W� are shown in the inset of Fig. 2. Interestingly, no
precursors (vanishing coherence scale of the Fermi liquid)
arise as the critical point is approached from the FL side, in
contrast to what we have found by solving the same
equations in absence of disorder [11]. This indicates a
novel type of quantum critical behavior that has a character
of an essential singularity, a feature that appears specific to
quantum Griffiths phases.

Spin glass instability and phase diagram.—In this Letter
we have concentrated on the paramagnetic solution of our
model. However, the decoupled spins can be expected to
form a spin glass (SG) at low temperatures in the presence
of random intersite interactions [7]. For a rigorous treat-
ment of the spin glass phase, one needs to go beyond the
N � 1 limit, but a rough estimate of the temperature for
SG ordering [11] may be obtained by using the large-N
approach as an approximate theory for the considered N �
2 case. The spin glass instability criterion [7], as appropri-
ately generalized to the case of additional site randomness,
then reads

������
�2
j

q
J=

���
2
p
� 1: (11)

Figure 2 represents a generic phase diagram of our model.
For weak disorder the system is in the Fermi liquid phase,
while for W >Wc the marginal Fermi liquid phase
emerges. The crossover temperature (dashed line) delimit-
ing this regime can be estimated from the frequency up to
which the logarithmic behavior in ��i!� is observed [14].
The spin glass phase, obtained from Eq. (11), appears only
at the lowest temperatures, well below the marginal Fermi
liquid boundary [14]. Interestingly, recent experiments
have indeed found evidence of dynamical spin freezing
16720
in the milliKelvin temperature range for some Kondo
alloys [15].

To summarize, we have introduced and solved a disor-
dered Kondo lattice model with random intersite RKKY
interactions. Our solution, valid within extended dynami-
cal mean-field theory, illustrates how non-Ohmic dissipa-
tion arising from intersite RKKY interaction restores
universality for non-Fermi liquid behavior of electronic
Griffiths phases. Although considerably different in detail,
this dissipative mechanism is reminiscent of the processes
leading to dynamical freezing of droplets within magnetic
Griffiths phases [16], suggesting a generic role of RKKY
interactions in disordered heavy fermion systems.
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