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Magnetization plateaus and Luttinger liquid behavior in XXZ chains with superlattice structure
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~Received 17 August 2001; published 19 December 2001!

We study spin superlattices composed of a repeated pattern of two long spin-1
2 XXZ chains with different

anisotropy parameters. They can be viewed as the limit ofp-merized chains when the number of sites per
cluster is very large. Magnetization plateaus are found, with magnetization values that depend on the relative
sizes of the subchains. In certain regions of parameter space, the low-energy properties are described in terms
of a Luttinger liquid superlattice parametrized by an effective velocity and an effective compactification radius.
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Quantum magnetism in one dimension~1D! has revealed
a number of surprises in the last two decades that can
partly associated with an interplay of fluctuations a
topology.1 One example is the conjecture due to Haldane2–7

that isotropic Heisenberg half-integer spin chains are gapl
whereas integer spin ones are gapful. Related to the Hald
gaps are the magnetization plateaus, which are essen
macroscopic quantum phenomena in which the magne
tion in an external magnetic field is quantized to fractions
the saturated value. Following up on initial studies on
ganic compounds,8,9 Oshikawa, Yamanaka, and Affleck10 ex-
tended the Lieb-Schultz-Mattis theorem11 to systems in a
magnetic field, thus arriving at a necessary condition for
appearance of magnetization plateaus in 1D systems, nam

p~S2mz!5~ integer!. ~1!

Here,p is the number of sites in the unit cell of the magne
ground state,S is the magnitude of the spin, andmz is the
magnetization per site~taken to be in thez direction!. The
plateau state can be viewed as a spin gapped state with
zero magnetization, the Haldane systems being a special
wherep51 andmz50. In the particular case of spin ladde
in a magnetic field, for example, the phase diagram has b
thoroughly mapped and it has been discovered that the
essary condition~1! becomes also sufficient.12–14 Moreover,
the existence of real dimerized15 and trimerized16,17 systems
has lent a great impetus to the studies ofp-merized chains
and ladders.12,13,18–27Despite the existence of considerab
theoretical insight, a satisfactory understanding of the exp
mental situation is still lacking.

Thus motivated, we focus here on a different limit of t
problem of p-merized chains, namely, the case where
repeated pattern consists oftwo long anisotropic spin-1

2 XXZ
chains. In this case, each uniform stretch of the chain can
treated in the continuum limit and a Luttinger liquid~LL !
description28–36becomes possible in some parameter rang
We, therefore, view thep-merized spin chain as aspin su-
perlattice ~SS! and its description can then be framed
terms of a LL superlattice.37

Consider a SS whose unit cell consists of twoS51/2 XXZ
chains with different anisotropy parametersDl and sizesLl

(l51,2) ~but the same planar coupling! in the presence of a
magnetic fieldh applied along the anisotropy~z! axis. Its
Hamiltonian is
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ySn11

y 1DlSn
zSn11

z !2h(
n51

L

Sn
z ,

~2!

where Sx, Sy, and Sz denote the spin-1
2 operators andL

5Nc(L11L2) is the superlattice size. Here,Nc is the num-
ber of unit cells, each of which has a basis withL11L2 sites.
We assume the chain is subjected to periodic boundary c
ditions.

In the homogeneous situation~Dl5D, independent of the
position!, the Hamiltonian~2! is exactly solvable by the
Bethe Ansatz.38–41Furthermore, forD.21 and a range ofh
values ~see below!, its low-energy properties can be de
scribed in terms of a LL with velocityu and interaction pa-
rameterK ~or, equivalently, compactification radiusR, with
2pKR251!.13,42,43

We then take advantage of the fact thateach subchain is a
LL connected at its ends to reservoirs~the rest of the lattice!
to describe the low-energy properties of the SS in terms o
LL superlattice~LLSL!37 with Hamiltonian

H5
1

2p E dxH u~x!K~x!~]xU!21
u~x!

K~x!
~]xF!2J . ~3!

Here, we have introduced the subchain-dependent par
eters u(x) and K(x). For x on the sublatticel, one has
K(x)5K(J,Dl ,h) and u(x)5u(J,Dl ,h), i.e., the usual
uniform LL parameters for each subchain, which can be
tained directly from the Bethe Ansatz solution.13,42

In the Hamiltonian~3!, ]xU is the momentum field con
jugate toF: @F(x),]yU(y)#5 id(x2y). F andU are dual
fields, since they satisfy both

] tF5u~x!K~x!]xU ~4!

and the equation obtained through the replacementsF
→U, U→F, and K→1/K. These equations can be un
coupled to yield

] ttF2u~x!K~x!]xS u~x!

K~x!
]xF D50, ~5!

and a dual equation forU.
The equations of motion are subject to the continuity ofF

andU.44–47 This guarantees the continuity of the spin fiel
Since the time derivatives of these functions are continuo
©2001 The American Physical Society43-1
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the right-hand side of Eq.~4! and its dual yield, as additiona
conditions, the continuity of (u/K)]xF and uK]xU at the
contacts. Physically, this reflects the conservation of
z-axis magnetization current densityj 5&] tF/p at the in-
terfaces between the subchains, see, Eq.~4!.

We diagonalize the Hamiltonian~3! through a normal-
mode expansion of the phase fields37

F~x,t !52 i (
pÞ0

sgn~p!
fp~x!

2Avp

@b2peivpt1bp
†e2 ivpt#

2f0~x!1glt, ~6!

U~x,t !5 i (
pÞ0

up~x!

2Avp

@b2peivpt2bp
†e2 ivpt#1u0~x!2tlt,

~7!

wherebp
† are boson creation operators (p.0). Plugging Eq.

~6! into Eq. ~5! we obtain an eigenvalue problem forfp(x)
with eigenvaluesvp , and similarly forup(x). In Eqs. ~6!
and~7!, f0(x) andu0(x) are the zero-mode functions which
in the homogeneous case, are given byf0(x)5N(px/L),
u0(x)5J(px/L), whereN andJ are the number and curren
operators.35,36 Besides, in this caseg5puKJ/L and t
5p(u/K)N/L. In the superlattice case, there will be, in ge
eral, a nonuniform magnetization profile. This will be ca
tured by a subchain-dependent number operatorNl . Intro-
ducing also subchain-dependent currentsJl , we have

f0~x!5Aj ,l1
pNlx

Ll
, ~8!

u0~x!5Bj ,l1
pJlx

Ll
. ~9!

Aj ,l andBj ,l are given by

Aj ,l5~ j 21!pL2S N2

L2
2

N1

L1
D ~10!

with an analogous expression forBj ,l obtained with the re-
placement ofNl by Jl . Here, j 51,2,3, . . . . labels the unit
cell. The ground state for a given magnetic fieldh has Jl

50 and Nl can be determined from the equation of sta
obtained from the exact solution13,38–41

h5h~J,D1 ,M1!5h~J,D2 ,M2!. ~11!

Note that here,Ml52ml
z5122Nl /Ll is the magnetization

per site of subchainl normalized to the saturation value
Then, the total magnetization of the SS is simply t
weighted average

Ms5
L1M11L2M2

L11L2
. ~12!

We stress that Eqs.~11! and~12! are valid also in the region
where the LL description no longer applies. These are~i! the
ferromagnetic region~FMR! for D,21 and for anyD at
high enough fields and~ii ! the antiferromagnetic region
02444
e

-

~AFMR! at small fields andD.1 ~see, e.g., Fig. 1 of Ref
13!. In the AFMR, the system is described by a sine-Gord
theory and has a gap, whereas in the FMR the system is f
magnetized and cannot be described by a Lorentz-invar
field theory.43

Figure 1 shows the magnetization of the SS (L2 /L1[ l
51) as a function of the external magnetic field forD255
andD151, 2, 4. We can see the existence of magnetizat
plateaus atMs50 andMs50.551/(11 l ). The plateaus oc-
cur when the subchain magnetizations are either z
~AFMR! or one~FMR!, where the LLSL description is no
possible. Depending on the value ofD1 , the system may
exhibit one or both kinds of plateaus, as seen in Fig. 1.
Fig. 2, we show the magnetization of the SS withD255 and
D152 for different values ofl. There is a plateau withMs
50 for magnetic fields smaller thanhc50.3898J, for any l.
For higher fields, another plateau is present atMs51/(1
1 l ), which corresponds toM151 ~FMR! and M250
~AFMR!. Thus, at this plateau, the SS exhibits a spa
modulation of the magnetization. Note that, whereas
width of the plateaus is always the same, the magnetiza
valuecan vary continuously with l. This feature is a macro
scopic signature of the superlattice structure and is an
treme limit of the magnetization plateaus systematized
Ref. 10. Another feature also pointed out in the latter ref

FIG. 1. Magnetization curve of the spin superlattice w
D255 andD151, 2, 4 (l 51).

FIG. 2. Magnetization curve of the spin superlattice withD2

55 andD152 for different values ofl.
3-2
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ence is the field dependence of the magnetization as the
teau is approached:Ms}Auh2hcu, typical of this universal-
ity class.48–50In this case, this is due to the weighted avera
nature ofMs @Eq. ~12!# and the individual square-root depe
dences of bothM1 and M2 upon approaching their platea
values. By contrast, however, here the gap is not the co
quence of a relevant perturbation,10 as is usually the case
since the ferromagnetically saturated subchain simply can
be described by a field theory.43

On the other hand, generalizing the model in Eq.~2! by
allowing different values of the exchange constantsJl of the
subchains, but keeping the anisotropies fixed, one can
the width of the plateaus~though not the magnetization va
ues!, as can be seen in Fig. 3. This happens because
lowering the exchange coupling~long-dashed curve in Fig
3!, one lowers the magnetic-field scale and the subchain
then be more easily saturated. Likewise, by enhancing
scale, one can even get rid of the plateau altogether~short-
dashed curve in Fig. 3!.

The LLSL description is only possible away from the pl
teaus, since they reflect ‘‘spin incompressibility.’’ The pha
diagram for a SS withD1,D2Þ0 and anyl is shown in Fig.
4. The LLSL description is possible only for magnetic fiel
higher thanhc(D255)53.2182J ~dashed line in Fig. 4!. For

FIG. 3. Magnetization as a function of external fieldh for spin
superlattices with different exchange coupling ratios and fixed
isotropy parameters.

FIG. 4. Phase diagram for spin superlattice withD255.
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smaller fields, we have plateaus atMs51/(11 l ) for 21
,D1,2.2182 and antiferromagnetism with anMs50 pla-
teau for D1.1. Therefore, in the interval 1,D1,2.2182,
there are two magnetization plateaus~cf., Fig. 1!. The other
regions in this phase diagram have magnetizationsMsÞ0, 1
and no plateaus. Furthermore, the phase diagram is v
only for D2.1. For 21,D1,D2,1, no plateaus are pos
sible due to the absence of subchain antiferromagnetism

For p!p/(L21L1), vp>cupu, and the effective velocity
for the SS is

c5
u1~11 l !

A11h lu1 /u21~ lu1 /u2!2
, ~13!

whereh5K1 /K21K2 /K1 . Clearly, c→u2 as l→`, andc
→u1 as l→0. The effective velocity is shown in Fig. 5, in
the region where a LLSL description exists, namely, for ma
netic fields betweenhc(D255)53.2182J and h/J51
1D1 . The important feature to notice in Eq.~13! is the
spatial averaging of the velocities induced by the superlat
structure, a feature ubiquitous to LLSL’s.37

In terms of the bosonic fields, the spin operators read31

Sx
z5

M

2
2

1

A2p
]xF1

1

pa
cos@2F~x!22f̄~x!#,

Sx
15

1

A2pa
exp@2 iU~x!#$11e2i f̄~x! cos@2F~x!#%,

where f̄(x)5kFx2f0(x), the Fermi momentumkF is re-
lated to the magnetization bykF5(11M )p/2 and a is a
cutoff parameter.36 Thus, the correlation functions of the S
~for well separatedx andy! are given by

^Sz~y!Sz~x!&;
C

2p2ux2yu2 1A
exp$2i @f̄~y!2f̄~x!#%

ux2yu2K*

~14!

-

FIG. 5. The effective velocity of a spin superlattice as a funct
of magnetic fieldh for l 51, with D255 andD153 and 4.
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^S1~y!S2~x!&;
B1

ux2yuK̄/2
1B2

exp$2i @f̄~y!2f̄~x!#%

ux2yuK̄/212K*
,

~15!

where the LLSL effective exponent is

K* 5
A11h lu1 /u21~ lu1 /u2!2

1

K1
1 l

1

K2

u1

u2

[ f ~K1 ,K2!, ~16!

K̄5 f (1/K1,1/K2) and C is a function of system paramete
and the subchain lengths.37 From Eqs.~14! and~15!, we see
how the correlation functions of the homogeneous sys
are recovered whenK15K2 andu15u2 .

In Fig. 6, the correlation exponentK* of a SS is shown as
a function of the magnetic field. We observe thatK* ,1, as
in the homogeneous case with anisotropy larger than o
Besides,K* interpolates smoothly betweenK1 and K2 as l
increases@cf., Eq. ~16!#, another manifestation of the spati
averaging due to the superlattice structure.

It is interesting to relate the above treatment to previo
strong coupling analyses. It has been shown that the ma
tization plateaus can be easily understood in terms
strongly coupled clusters of spins that are weakly couple
each other. In this case, the clusters will tend to magne

FIG. 6. The correlation exponentK* of a spin superlattice as
function of magnetic fieldh with D255 andD154, for l 50.5, 1, 2.
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independently, leading to the quantized magnetizat
values.12,13,22,26 This is precisely what happens in the S
case. Because we focus on the limit of very long subcha
the boundary interactions between them is always aweak
perturbationand the strong coupling argument holds.

We note, in passing, that certain boundary conditions
be frustrating and lead to important effects in small sp
chains. One example is a Heisenberg chain with an odd n
ber of sites and periodic boundary conditions~PBC!.13,14

Thus, anN-leg spin ladder with oddN and transverse PBC~a
‘‘spin tube’’! appears to have a gap at zero magnetic fi
~with a corresponding plateau!, whereas the same syste
with open boundary conditions~OBC! is gapless. In Ref. 13
it was argued that even in theN→` limit, this gap may
survive. The question of transverse boundary conditions d
not arise in our case and we have kept to PBC along
chain. It does not appear that different boundary conditio
would modify our plateau results, specially since we rest
ourselves to very long subchains. In particular, the condit
for a magnetization plateau we find, namely, that the s
chains are either in the AFMR or in the FMR should n
depend on whether we impose PBC or OBC along the ch
We also do not expect the positions of these plateaus
change.

The current description can be easily extended to hig
spin values, using the procedure introduced by Schul51

where additional plateaus should occur. For half-inte
SS’s, there will be regions where a LLSL description is po
sible.

In summary, we have considered spin superlattices m
up of a periodic arrangement two longXXZ chains with dif-
ferent parameters and sizes. Due to the space-depen
properties of the system, an inhomogeneous magnetiza
profile ensues. The magnetization curve presents plate
whose magnetization value depends on the relative siz
subchainsl and is given byMs51/(11 l ). We also found a
massless region in which a description in terms of Lutting
liquid superlattices is possible.

The authors are grateful for financial support from t
Brazilian Agencies CNPq and FAPESP~E. M.!.
s.:

sa,
oc.

.

1See, for example, J. Phys. Soc. Jpn.69, ~2000!, Special issue on
Frontiers in Magnetism-Nanoscale, Glassy and Quantum M
netism, edited by Y. Miyako, H. Takayama, and S. Miyashita

2F. D. M. Haldane, Phys. Lett.93A, 464 ~1983!.
3F. D. M. Haldane, Phys. Rev. Lett.50, 1153~1983!.
4T. Ziman and H. J. Schulz, Phys. Rev. Lett.59, 140 ~1987!.
5M. Takahashi, Phys. Rev. Lett.62, 2313~1989!.
6S. White, Phys. Rev. Lett.69, 2863~1992!.
7K. Hallberg, X. Q. G. Wang, P. Horsch, and A. Moreo, Phys. R

Lett. 76, 4955~1996!.
8K. Hida, J. Phys. Soc. Jpn.63, 2359~1994!.
9K. Okamoto, Solid State Commun.98, 245 ~1996!.

10M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett.78,
1984 ~1997!.
-

.

11E. H. Lieb, T. Schultz, and D. J. Mattis, Ann. Phys.~N.Y.! 16, 407
~1961!.

12D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. Lett.79, 5126
~1997!.

13D. C. Cabra, A. Honecker, and P. Pujol, Phys. Rev. B58, 6241
~1998!.

14R. Citro, E. Orignac, N. Andrei, C. Itoi, and S. Qin, J. Phy
Condens. Matter12, 3041~2000!.

15W. Shiramura, K. Takatsu, B. Kurniawan, H. Tanaka, H. Ueku
Y. Ohashi, K. Takizawa, H. Mitamura, and T. Goto, J. Phys. S
Jpn.67, 1548~1998!.

16Y. Ajiro, T. Asano, T. Inami, H. Aruga-Katori, and T. Goto, J
Phys. Soc. Jpn.63, 859 ~1994!.
3-4



n

P

on

on

ys.:

or.

MAGNETIZATION PLATEAUS AND LUTTINGER LIQUID . . . PHYSICAL REVIEW B 65 024443
17D. D. Swank, C. P. Landee, and R. D. Willet, J. Magn. Mag
Mater.15, 319 ~1980!.

18W. Chen, K. Hida, and H. Nakano, J. Phys. Soc. Jpn.68, 625
~1999!.

19W. Chen, K. Hida, and B. C. Sanctuary, Phys. Rev. B63, 134427
~2001!.

20D. C. Cabra and M. D. Grynberg, Phys. Rev. Lett.82, 1768
~1999!.

21D. C. Cabra and M. D. Grynberg, Phys. Rev. B59, 119 ~1999!.
22A. Honecker, Phys. Rev. B59, 6790~1999!.
23D. C. Cabra and M. D. Grynberg, Phys. Rev. B62, 337 ~2000!.
24R. M. Wiessner, A. Fledderjohann, K.-H. Mu¨tter, and M. Kar-

bach, Eur. Phys. J. B15, 475 ~2000!.
25D. C. Cabra, A. de Martino, M. D. Grynberg, S. Peysson, and

Pujol, Phys. Rev. Lett.85, 4791~2000!.
26D. C. Cabra, A. de Martino, A. Honecker, P. Pujol, and P. Sim

Phys. Lett. A268, 418 ~2000!.
27D. C. Cabra, A. de Martino, A. Honecker, P. Pujol, and P. Sim

Phys. Rev. B63, 094406~2001!.
28J. M. Luttinger, J. Math. Phys.4, 1154~1963!.
29D. C. Mattis and E. H. Lieb, J. Math. Phys.6, 304 ~1965!.
30D. C. Mattis, J. Math. Phys.15, 609 ~1974!.
31A. Luther and I. Peschel, Phys. Rev. B12, 3908~1975!.
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