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Magnetization plateaus and Luttinger liquid behavior in XXZ chains with superlattice structure
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We study spin superlattices composed of a repeated pattern of two Ioné ¥piA-chains with different
anisotropy parameters. They can be viewed as the limjt-oferized chains when the number of sites per
cluster is very large. Magnetization plateaus are found, with magnetization values that depend on the relative
sizes of the subchains. In certain regions of parameter space, the low-energy properties are described in terms
of a Luttinger liquid superlattice parametrized by an effective velocity and an effective compactification radius.
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Quantum magnetism in one dimensi@D) has revealed L L
a number of surprises in the last two decades that can be H=J> ('S, ,+SS +A, S, ,)—hY, &,
partly associated with an interplay of fluctuations and n=1 n=1
topology! One example is the conjecture due to Haldahe @
that isotropic Heisenberg half-integer spin chains are gaplesghere S, &, and S denote the spin- operators and.
whereas integer spin ones are gapful. Related to the Haldanen (L, +L,) is the superlattice size. Her, is the num-
gaps are the magnetization plateaus, which are essentialper of unit cells, each of which has a basis with+ L, sites.
macroscopic quantum phenomena in which the magnetizape assume the chain is subjected to periodic boundary con-
tion in an external magnetic field is quantized to fractions ofgjtions.
the saturated value. Following up on initial studies on or- |n the homogeneous situatiéf, = A, independent of the
ganic compound$; Oshikawa, Yamanaka, and Afflédlex-  position, the Hamiltonian(2) is exactly solvable by the
tended the Lieb-Schultz-Mattis theor€nto systems in a Bethe AnsatZ®~*'Furthermore, fon > — 1 and a range df

magnetic field, thus arriVing at a necessary condition for thQ/ajueS (See be|0\b/’ its |OW_energy properties can be de-
appearance of magnetization plateaus in 1D systems, nameljgribed in terms of a LL with velocity and interaction pa-

rameterK (or, equivalently, compactification radil with

p(S—m?) = (intege). (1) 27KR?=1).134243
We then take advantage of the fact teath subchain is a
Here,p is the number of sites in the unit cell of the magneticLL connected at its ends to reservoithe rest of the lattice
ground statesS is the magnitude of the spin, amd” is the  to describe the low-energy properties of the SS in terms of a
magnetization per sitétaken to be in the direction. The  LL superlattice(LLSL)*” with Hamiltonian
plateau state can be viewed as a spin gapped state with non-
zero magnetization, the Haldane systems being a special case
wherep=1 andm?=0. In the particular case of spin ladders
in a magnetic field, for example, the phase diagram has been ) )
thoroughly mapped and it has been discovered that the neélere, we have introduced the subchain-dependent param-
essary conditioril) becomes also sufficieft-* Moreover, ~ etersu(x) and K(x). For x on the sublattice\, one has
the existence of real dimerizEtand trimerizedf*” systems ~ K(X)=K(J,A,,h) and u(x)=u(J,A,,h), ie., the usual
has lent a great impetus to the studiespgﬁerized chains uniform LL parameters for each SUbChain, which can be ob-
and ladderd?1318-2"Despite the existence of considerable tained directly from the Bethe Ansatz solutibit*
theoretical insight, a satisfactory understanding of the experi- In the Hamiltonian(3), 9,6 is the momentum field con-
mental situation is still lacking. jugate to®: [®(x),d,0(y)]=16(x—y). ® and©O are dual
Thus motivated, we focus here on a different limit of the fields, since they satisfy both

problem of p-merized chains, namely, the case where the
repeated pattern consiststefo long anisotropic spiry XXZ G =Uu(x)K(x) 5O (4)

chains In this case, each uniform stretch of the chain can bgnq the equation obtained through the replacemebts
treated in the continuum limit and a Luttinger liqguilL) .9 o _.® and K—1/K. These equations can be un-
descriptior®3¢becomes possible in some parameter range%oup'md to yi,eld

We, therefore, view th@-merized spin chain as spin su-

perlattice (S and its description can then be framed in u(x)

terms of a LL superlatticé’ P — U(X)K(X)ﬁx(mé’x‘b) =0, ()
Consider a SS whose unit cell consists of {80 1/2 XXZ

chains with different anisotropy parameteérs and sized., and a dual equation fdd.

(N=1,2) (but the same planar couplino the presence of a The equations of motion are subject to the continuitybof

magnetic fieldh applied along the anisotropfz) axis. Its  and ©.**~*' This guarantees the continuity of the spin field.

Hamiltonian is Since the time derivatives of these functions are continuous,

H:%fdx[u(x)K(x)(axe)% %((?XCD)Z )
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the right-hand side of Eq4) and its dual yield, as additional 1.0
conditions, the continuity of (/K)d,® anduK¢,© atthe | === A=1
contacts. Physically, this reflects the conservation of the ~, 0.8 — A=2
z-axis magnetization current density=v20,®/7 at the in- = ———— A=A
terfaces between the subchains, see,(&Q. 5 o6 !
We diagonalize the HamiltoniafB) through a normal- 5 R /
mode expansion of the phase fi€itls £ 04 ; /
" 1 /
c ’ /
=] J /
¢p(x) ; ; S S e A.=5
d(x,t)=—iD, s b_e'“r'+bleiept =02 g 27
(xt)==i 2, sgrp) - Vo L0 pe '] =
— po(X) T nt, (6) 00 5 2 4
Magnetic field (h/J)
0,(x : :
6(x,t)=i2 p( )[b_peuwpt—bge"“’r’t]Jr Oo(X) — 7yt, FIG. 1. Magnetization curve of the spin superlattice with
P#0 2\ wy A,=5andA;=1,2,4(=1).

()

whereb] are boson creation operators*0). Plugging Eq.  (AFMR) at small fields and\>1 (see, e.g., Fig. 1 of Ref.
(6) into Eq. (5) we obtain an eigenvalue problem fe,(x) 13). In the AFMR, the system |s_descr|bed by a sme-G(_)rdon
with eigenvaluesw,, and similarly for6,(x). In Eqgs.(6)  theory and has a gap, whereas in the FMR the system is fully
and(7), ¢o(x) andéy(x) are the zero-mode functions which, magnetlzed and cannot be described by a Lorentz-invariant
in the homogeneous case, are given di(x)=N(7x/L), f|eld_theor)ﬁ‘3 o
6o(x)=J(mx/L), whereN andJ are the number and current ~ Figure 1 shows the magnetization of the 35S AL,=I
operators>3® Besides, in this casey=muKJ/L and r =1) as a function of the external magnetic field fo5=5
= m(u/K)N/L. In the superlattice case, there will be, in gen-andA;=1, 2, 4. We can see the existence of magnetization
eral, a nonuniform magnetization profile. This will be cap-Plateaus aM¢=0 andM¢=0.5=1/(1+1). The plateaus oc-
possible. Depending on the value af, the system may
exhibit one or both kinds of plateaus, as seen in Fig. 1. In
Fig. 2, we show the magnetization of the SS witf=5 and
A,=2 for different values of. There is a plateau witM

T\ X =0 for magnetic fields smaller tham.=0.3898), for anyl.
Go(X)=Bj\+ |- (9 For higher fields, another plateau is presentVai=1/(1

A +1), which corresponds taM;=1 (FMR) and M,=0

(AFMR). Thus, at this plateau, the SS exhibits a spatial
modulation of the magnetization. Note that, whereas the
width of the plateaus is always the same, the magnetization
value can vary continuously with [This feature is a macro-
scopic signature of the superlattice structure and is an ex-
treme limit of the magnetization plateaus systematized in
Ref. 10. Another feature also pointed out in the latter refer-

N
Bolx)= A+ T ®

A, andB; , are given by

A =(i—1)yml,| NN
j,)\_(J )7T 2 L2 Ll

(10

with an analogous expression fBf , obtained with the re-
placement olN, by J,. Here,j=1,2,3....labels the unit
cell. The ground state for a given magnetic fi¢lchasJ,

=0 andN, can be determined from the equation of state

1.0
obtained from the exact solutitir®—4
h=h(J,A;,M;)=h(J,A,,M,). (12) 20-8 __________
Note that hereM, =2mj=1-2N, /L, is the magnetization g 06l ’
per site of subchainn normalized to the saturation value. =
Then, the total magnetization of the SS is simply the %0_4
weighted average g
(1]
LMy +LoM, 1 = 02
S L;+L
1 2 0.0 Z=

We stress that Eq$11) and(12) are valid also in the regions
where the LL description no longer applies. These(aréhe
ferromagnetic regiofFMR) for A<—1 and for anyA at

2 4
Magnetic field (h/J)

FIG. 2. Magnetization curve of the spin superlattice with

high enough fields andii) the antiferromagnetic region =5 andA;=2 for different values of.
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1.0 3.0 —
—J=), A12=15
;E‘:. 0.8 -—_—“—_—- Jsz/Z =
c 20 |
O 0.6
b 2
N ,i' _____ (&) \
= 0.4
g / 10| \‘ p— g
g / a2 | [ — a=a
E 0.2 ’/ 1 ]
7 A2=5 :
---------- =1 !
0.0 < s . 0.0 .
5 4 3.0 35 |40 45 5.0
Magnetic field (h/J,) Magnetic field (h/J)
FIG. 3. Magnetization as a function of external figldor spin FIG. 5. The effective velocity of a spin superlattice as a function

superlattices with different exchange coupling ratios and fixed an®f magnetic fieldn for I =1, with A,=5 andA,=3 and 4.
isotropy parameters.

smaller fields, we have plateaus bit,=1/(1+1) for —1

ence is the field dependence of the magnetization as the pla-21<2-2182 and antiferromagnetism with ah;=0 pla-

teau is approachedd . Jh—hy], typical of this universal- teau forA,;>1. Therefore, in the interval 4A;<2.2182,

ity class**~°CIn this case, this is due to the weighted averagethere are two magnetization platedigt, Fig. 1). The other

nature ofM [Eq. (12)] and the individual square-root depen- regions in this phase diagram have magnetizatidgs:0, 1
dences of botM, and M, upon approaching their plateau and no plateaus. Furthermore, the phase diagram is valid

values. By contrast, however, here the gap is not the cons(—?—nly for A,>1. For —1<A,<A,<1, no plateaus are pos-

quence of a relevant perturbatidhas is usually the case, Sible due to the absencei)f subchain antiferro.magnetis_m.
since the ferromagnetically saturated subchain simply canngt Forp</(L,+L,), wp=cp|, and the effective velocity
be described by a field theoty. or the 5SS is

On the other hand, generalizing the model in E). by

allowing different values of the exchange constahtef the uy(1+1)
subchains, but keeping the anisotropies fixed, one can tune c= = (13
the width of the plateaughough not the magnetization val- I+ 7lugfuz+ (lug/up)

ueg, as can be seen in Fig. 3. This happens because, by

lowering the exchange couplingong-dashed curve in Fig. where n=K;/K,+K,/K;. Clearly,c—u, asl—, andc

3), one lowers the magnetic-field scale and the subchain car’U; asl—0. The effective velocity is shown in Fig. 5, in

then be more easily saturated. Likewise, by enhancing thdhe region where a LLSL description exists, namely, for mag-

scale, one can even get rid of the plateau altogetsieort-  netic fields betweenh(A,=5)=3.2182 and h/J=1

dashed curve in Fig.)3 +A;. The important feature to notice in E@L3) is the
The LLSL description is only possible away from the pla- spatial averaging of the velocities induced by the superlattice

teaus, since they reflect “spin incompressibility.” The phasestructure, a feature ubiquitous to LLSES.

diagram for a SS witth ; <A,+# 0 and anyl is shown in Fig. In terms of the bosonic fields, the spin operators tead

4. The LLSL description is possible only for magnetic fields

higher tharh (A,=5)=3.2182 (dashed line in Fig. ¥ For

M 1 1 _
f=—— —— 9, &+ —cog 2P (x)—2¢p(X)],
N S T g 042200~ 20()]
hiJ=1+A
5 \
< S, = ! exp[—ie(x)]{1+e2i5<x) cog2d(x)1}
% 40 1 hC(lAZ) LLSL P ma '
© [Plateau at _ . .
> 20 [M_=1/(1+]) where ¢(x)=k,:x—¢9(x)-, the Fermi momentunke is re-
S lated to the magnetization by=(1+M)#7/2 and « is a
g Plateau at cutoff parametei® Thus, the correlation functions of the SS
M,=0 (for well separatec andy) are given by
0.0 . .
1.0 1.0 3.0 5.0 _ o
A c exp(2i[ $(y) — ¢(x) ]}

(SIS~ 5

2 2
FIG. 4. Phase diagram for spin superlattice wity=5. [x=yl |x—y|2K*

(14)
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FIG. 6. The correlation exponeHKt* of a spin superlattice as a
function of magnetic fieldh with A,=5 andA,=4, for|=0.5, 1, 2.

B exp(2i[ f(y) — (X) ]}

(ST (y)S™ (x))~ 2 |x—y|K/2+2K*

x| ’
(15

where the LLSL effective exponent is

N1+ plug/up+(lug/up)?
B 1 1 up

K_l Kz Uy

K* Ef(Kl,Kz), (16)

K= f(1/K,,1/K,) andC is a function of system parameters
and the subchain lengtR5From Eqs.(14) and(15), we see
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independently, leading to the quantized magnetization
values'?132226Thjs s precisely what happens in the SS
case. Because we focus on the limit of very long subchains,
the boundary interactions between them is alwaywemk
perturbationand the strong coupling argument holds.

We note, in passing, that certain boundary conditions can
be frustrating and lead to important effects in small spin
chains. One example is a Heisenberg chain with an odd num-
ber of sites and periodic boundary conditio@BC).131*
Thus, anN-leg spin ladder with odd\ and transverse PB@&
“spin tube”) appears to have a gap at zero magnetic field
(with a corresponding plateguwhereas the same system
with open boundary condition®©BC) is gapless. In Ref. 13,
it was argued that even in thd—oco limit, this gap may
survive. The question of transverse boundary conditions does
not arise in our case and we have kept to PBC along the
chain. It does not appear that different boundary conditions
would modify our plateau results, specially since we restrict
ourselves to very long subchains. In particular, the condition
for a magnetization plateau we find, namely, that the sub-
chains are either in the AFMR or in the FMR should not
depend on whether we impose PBC or OBC along the chain.
We also do not expect the positions of these plateaus to
change.

The current description can be easily extended to higher
spin values, using the procedure introduced by Schulz,
where additional plateaus should occur. For half-integer
SS’s, there will be regions where a LLSL description is pos-

how the correlation functions of the homogeneous systen;,|e.

are recovered whel; =K, andu;=u,.

In summary, we have considered spin superlattices made

In Fig. 6, the correlation exponeKt* of a SS is shown as up of a periodic arrangement two loRXZ chains with dif-

a function of the magnetic field. We observe tKdt<1, as

ferent parameters and sizes. Due to the space-dependent

in the homogeneous case with anisotropy larger than ongygperties of the system, an inhomogeneous magnetization

Besides K* interpolates smoothly betwedf, andK, asl

profile ensues. The magnetization curve presents plateaus

increasegcf., Eq.(16)], another manifestation of the spatial \yhose magnetization value depends on the relative size of

averaging due to the superlattice structure.

subchaind and is given byM¢=1/(1+1). We also found a

It is interesting to relate the above treatment to previougpassiess region in which a description in terms of Luttinger
strong coupling analyses. It has been shown that the magngquid superlattices is possible.

tization plateaus can be easily understood in terms of
strongly coupled clusters of spins that are weakly coupled to The authors are grateful for financial support from the
each other. In this case, the clusters will tend to magnetiz8razilian Agencies CNPg and FAPESE. M.).
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