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Quantum anisotropic Heisenberg chains with superlattice structure: A DMRG study
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Using the density matrix renormalization group technique, we study spin superlattices composed of a
repeated pattern of two sp%]XXZ chains with different anisotropy parameters. The magnetization curve can
exhibit two plateaus, a nontrivial plateau with the magnetization value given by the relative sizes of the
subchains and another trivial plateau with zero magnetization. We find good agreement of the value and the
width of the plateaus with the analytical results obtained previously. In the gapless regions away from the
plateaus, we compare the finite-size spin gap with the predictions based on bosonization and find reasonable
agreement. These results confirm the validity of the Tomonaga-Luttinger liquid superlattice description of these
systems.
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[. INTRODUCTION of system is of potential interest in nanoelectronic applica-
tions, where nanowire superlattice structures have been built
The synthesis of materials which can be described irwith semiconducting carbon nanotutf8s TLLS would be
terms of spin chains or spin ladders has revived the study adbtained if the metallic analog could be manufactured.
guantum spin systems in one dimension in the last few In this work, it is our purpose to check numerically the
years! These systems are known to have surprising featuregnalytical predictions based on the Bethe ansatz and
such as the presence of a gap in isotropic Heisenberg chail®sonization using the density matrix renormalization group
of integer spins and its absence when the spins aréDMRG).52! In particular, we calculate the magnetization
half-integers~" More recently, many experimental and the- curve, characterize its plateaus, and determine the effective
oretical results have shown the presence of plateaus, iMomonaga-Luttinger liquid parameters for spin superlattices.
which the magnetization in an external magnetic field isThe unit cell of each SS consists of t\&g:% XXZ subchains
quantized to fractions of the saturated valu¥ . These sys- with different anisotropy parameters, and sized, (A\=1,
tems have special spatial structures, sucp-agerization or  2) (but the same planar couplingas shown schematically in
ladder geometry, which are responsible for the appearance @fg. 1. The Hamiltonian of the SS is written as a sum dvgr
the magnetization plateaus. Oshikawa, Yamanaka, andnit cell Hamiltonians
Affleck! derived the conditiorp(S—nv) =integer, necessary

for the appearance of the magnetization plateaus in 1D sys- N-1
tems. Herep is the number of sites in the unit cell of the Hss= > He(j,Aq,Lq,A5,Ly). (D
magnetic ground stat§is the magnitude of the spin, amaf j=0

is the magnetization per sitéaken to be in the direction. ) .

The plateau state can be viewed as a gapped state with nog@ch unit cell, on the other hand, consists of a total pf

zero magnetization, the integer spin chains being a specidll2~2=Lc bonds. The first, -1 bonds have anisotropy pa-

case where@=1 andn?=0. rameterA, and.the foIIQW|ngL2—1 bonds have anisotropy
Other types of spatial structures, such as quasiperiodifarametenl,, with Hamiltonian

couplingst® an inhomogeneous magnetic fiéfdor a super-

L-1 Lo-1
lattice structuré/ can also give rise to magnetization pla- . . . 2 .
teaus. The superlattice case with periodic boundary conditlell A Ly Aa, L) = nE_"l H(Le+nAy) + ni_"l H(Le*+Ly+n

tions was studied by two of us in a previous wéfKkThere,
we considered a spin superlatti€6S composed of a re- -1,A,),
peated pattern of two long and different séimxz chains.

This model can be viewed as the limit pfmerized chains Where

when the number of sites per unit cell is very large. Magne-

tization plateaus were found, with magnetization values that i=0 j=1
depend on the relative sizes of the subchains, in accordance [’_'_L'—T"'i."—"a"'_'TfT”L"—'é'"l
with the condition of Ref. 14. The determination of the width 1 2 1= 2"

o ) 4 7 11
and magnetization values of the plateaus relied on the Bethe 12z 3 5 6 & 9 10

ansatz exact solution of th&XZ chain!® The low-energy FIG. 1. Spin superlattice structure with two unit celld.=2),
properties in the gapless regions away from the plateaus, =4, andL,=3. The solid bonds correspond Aq and the dashed
however, could be described by bosonization in terms of @nes toA,. The total number of sites is=(L;+L,~2)N.+1=11
Tomonaga-Luttinger liquid superlatti¢d@LLS).*® This type  (open boundary conditiohs
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H(I'I,A) = stz+l+ SKS;+1+ AS§$+1' L9 A =05’ A =5
In the last expressiorg;, S, and S, are spin% operators at 0.8 LI/L =3/22
the nth site. The total number of sites in the SS is, for open 21 i
boundary conditionsl.=(L;+L,-2)N.+1 and, for periodic 06r N=3 N ol
boundary conditionsL=(L;+L,-2)N.. We have set the & 04t S
transverse coupling to 1 to set the energy scale. Since we will ’ P — Analytic
be interested in increasing bdth andL, while keeping their 02F .7 ... L=40
ratio fixed, we defind® as the greatest common divisorlof 5% --L=70
and L, and study the behavior of the system Rsggrows. 0.0 & : L . L .
Note that each subchain contains-1 bonds and., spins. 0 1 2 3 h 4 5 6
The spins at the boundaries of the subchains, however,
should be viewed as belonging to either subchake Fig. FIG. 2. Magnetization density of a spin superlattice with

1). Of course, in the limit of largé., in which we are inter-  A,=0.5,A,=5,L,=2P, L,=3P (¢=2), andN,=3. The short-dashed
ested, this ambiguity at the boundaries is immaterial. Finallyline is for P=3 (L=40), and the long-dashed one fdP=5
the total Hamiltonian has an external magnetic fielép-  (L=70). The solid line was obtained analytically for a spin super-

plied along the anisotropy axis lattice with long unit cellgP>1) (Ref. 17.
L
Hy=Hss~ > hS. (2)  the magnetization curve is fairly insensitive to the number
n=1 of unit cells. The sublattice sizes were chosen such that

. L2/le€:§. Two lattice sizes are shown in the figure:
ansatz, Yang and Yaigfound the exact solution of the one- with P=3 andP=5, respectively. For both sizes the magne-

: . . ) . tization density has a plateau at=0.4.
dimensionalS=3 anisotropidXX2) Heisenberg model. They o’ continuous line in Fig. 2 corresponds to the case

showed that the model may exhibit three phases, accordinghere we considemo longsublattices with a fixed size ratio
to the value of the Ising anisotropy. a ferromagneti¢FM)  (ps. 1) | this case, the magnetization density of the SS is
phase forA<-1, a Néel antiferromagnetiCAFM) phase given by’

with a spin gap forA>1, and a gaples&ritical) phase for
—-1<A<1. The low-energy properties of the gapless phase Lymy + Lomy
can be described in terms of a Tomonaga-Luttinger litfuid = T
with velocity u and interaction parametés.23 1h2

: 3

wherem, is the magnetization per site of subchainThe
Il. MAGNETIZATION PLATEAUS magnetization density of each sublattice was obtained from
the Bethe ansatz solution in Ref. 17.

In the Hamiltonian(2), the magnetic field couples to a |t can be seen that the three curves have a magnetization
conserved quantit,=>,S,. Thus, to obtain the magneti- plateau atm=0.4. This has been shown to correspond to
zation curve we only need the ground state energy=?, m,;=1 (FM phas¢ andm,=0 (AFM phasg in Eq. (3).17 The
E(S,.h=0), in each of the subspaces with fixed total spinplateau is a result of the “spin incompressibility” of both
projectionS;€{0,1,...,L/2}. Then, we can readily obtain subchains: subchain 1 is magnetized at saturation, whereas
the energy in a finite magnetic field through the relation subchain 2 has a spin gap. However, the magnetic field width
E(S,.h) =E(S,;, 00 —hS,, from which we can construct the of the plateau is dependent on the subchain dizeandL,.
magnetization curvét In fact, the fields at each end of the plateau are approached

Since the DMRG is more precise and computationallyasymmetrically as the system grows. The critical fibld
faster with open boundary conditions, the magnetizatior{right-hand side of the plateawshows a larger finite size
curve was calculated this way. We considered lattice sizes ugrror than the saturation field, (left-hand side of the pla-
to 160 sites, keeping up tm=150 states per block. The teau.
discarded weight was kept around 30 On the other hand, The behavior of the saturation fieftd, the critical fieldh,,
in order to compare with the analytical predictions of theand the width of the platealiyr=h.—hs as a function of the
Tomonaga-Luttinger liquid parameters, which were obtainedattice sizeL is shown in Table I. Again we focus on the
with periodic boundary conditions, we have also analyzeplateau atm=0.4 and€:§ (L;=2P, L,=3P, and N.=3),

SS’s with the latter boundary conditions. In order to obtain aA;=0.5, andA,=5. We have found the thermodynamic limit
comparable accuracy, we considered chains with up to 100f these quantities through numerical extrapolation using the
sites with up tom=600 states per block. The truncation er- Vanden Broeck—SchwartZVBS) algorithm?> which is
rors were below 10. shown in the bottom line. The saturation field increases with

Figure 2 shows the magnetization densitymagnetiza- the lattice size, but slowly at large, as seen in the first
tion per site normalized to the saturation valoéa SS as a column of Table |. Extrapolation to infinite yields the value
function of the external magnetic field fo;=0.5 hg=1.495. As we have seen in connection with E3), we
and A,=5. We setN.=3, since we have observed that havem;=1, i.e., the sublattice 1 is totally magnetized. As
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TABLE |. The saturation fielch, the critical fieldh;, and the 3
width of plateaul’yt at m=0.4 as a function of lattice size. For all 1
sizesA;=0.5,A,=5,L,=2P, L,=3P (€=§), andN.=3. The second
to last line is the VBS extrapolation and the last one is the predic-
tion of Ref. 17.

L=58,L =6, L,=15

L hs he Int

10 0.67719 5.17056 4.49336 3

40 1.35468 3.90474 2.55006

70 1.44854 3.51944 2.07089 FIG. 4. The width of nontrivial pIatea]]NT asa functloml In

100 1.47166 3.36001 1.88835 this caseA,=5, L;=6, L,=15 [(_- m=(1+¢)1= ] N.=3, and

130 1.48329 3.27965 1.79635 L=58.

160 1.48900 3.23373 1.74473
extrapolated 1.495 3.146 1.667 atm=1/(1+¢), in which one subchain is fully saturated with
prediction 15 3.121 1.621 m,=1, whereas the other is in a spin-gapped AFM phase

with m,=0.17:26
The width of the plateau of a SS with,=5 is shown

shown in Ref. 17, the saturation field is the field at which the Fig. 4 as a function of the anisotropy paramenelr
corresponding homogeneous chain with the same anlsotropp/he other parameters areL,=2P, L,=5P [f=>
parameter reaches saturation. Por=0.5, this happens at 1 P 1= 2~ T2
h=1+A,=1.5, very close to the numerical value nfand ~ M=(1+6)" 71, P=3,N.=3, andL=58. We observe that the
compatible with our interpretation. Wldth of the plateau decreases linearly with and vanishes
In the second column of Table I, it can be seen that thét A;=2.741. The magnetization curve of this SS does not
critical field h, decreases with the lattice size. The conver-have plateaus fod,>2.741. This linear dependence is ex-
gence is slower than fdn, due to the smaller derivative of pected As we have seen, the plateau width is given by
the magnetization as a functlon of the field as the plateau |ENT—h (A,=5)-1-A,, Whereh is the gap of the corre-
approached from above, as is apparent in the analytical resigponding homogeneous spin chaln in the AFM pHésghe
of Fig. 2. The extrapolated infinite size value of the critical slope of the line in Fig. 4 is —0.966, close to the expected
field ish,=3.146. This should be compared with the gap of avalue of —1.
homogeneous lattice with anisotropy parametgr 5, which The magnetization curve in Fig. 2 has one nontrivial pla-
is h=3.121. This value is close to the numerically deter-teau atm=0.4 for the parameterd;=0.5 andA,=5. When
mined critical field. This agreement is again consistent withboth A;>1 and A,>1, however, a new plateau at=0
sublattice 2 with anisotropy parametd,=5 being in an emerges. In this casepth subchains 1 and 2 are in a spin-
AFM spin-gapped phase. The width of plateBy=h.—h,  gapped AFM phas¥. For a SS with parameters;=2, A,
as a function ofL is shown in the third column of Table I. =5, andezg (Ly=2P, L,=3P, andN.=3), the width of the
The extrapolated infinite size limit of the plateau width is plateau atm=0 is shown in Fig. 5 as a function of L/
I'y=1.667. Using the VBS algorithm, we determined the infinite size
In Fig. 3, the magnetization profile at the plateau oflimit of the plateau width to bd'+=0.198. According to the
m=0.4 is shown. The parameters used harel00 (L,=2P, analysis of Ref. 17, this value should be given by the gap of
L,=3P, P=7, andN.=3), =3, A;=0.5, andA,=5. We can

see that, mdee.d, in the sublatthes with anisotropy parameter 0.8 [ o—Homogeneous (A =2) i
A;=0.5, the spins are fully polarized, whereas the sublattices | a_a Superlatti
with anisotropy parameteA,=5 are antiferromagnetically uperiatiice
0.6 .
ordered. e
The overall picture resulting from Figs. 2 and 3 and Table ~
| is thus compatible with the SS having a nontrivial plateau 04 r i
06 L=100,L,=14,L =21 0.24 7
04f
A2} 0.0
Nrn_' 0.00 002 004 006 008 0.10
7 001 1/L
02}
04F FIG. 5. The width of the plateau at zero magnetization as a
-0.6 L L . L function of the lattice size for a SS with;=2, A,=5, andezg (
0 20 40 i 60 80 100 L,=2P, L,=3P, andN.=3) (closed triangles For comparison, we

also show the size dependence of the spin gap of a homogeneous
FIG. 3. The magnetization profile of a spin superlattice at thechain with anisotropy parametér=2 (open diamonds The ex-
magnetization plateau ah=0.4. The parameters ar;=0.5, A, trapolated infinite size limits of the two curvéslosed circles co-
=5,L,=14, andL,=21 (€=§, L=100. incide within the numerical error.
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a homogeneous spin chain with anisotropy paraméter2. 22
For comparison, we also show in Fig. 5 the value of the latter A=0.4,A,=0.8
gap as a function of system size. The extrapolated gap size is N =4 e
I't=0.196, while the value obtained from the exact solution 20 c -7
is I't=0.19842. Indeed, the extrapolated values coincide *;ﬁ -7
within the numerical error. I3}

ll. GAPLESS REGION: THE EFFECTIVE TOMONAGA- '8 — Bosonization

LUTTINGER PARAMETERS o -« DMRG
The low-energy properties of the S$8vay from the pla- 16, 1 5 3 4

teauscan be described in terms of a TLESThe Hamil- L2/L1

tonian of TLLS is given by
FIG. 6. c/K" as a function¢ for a SS with A;=0.4 and

Hils = 1 J dX( U(X)K(X)(8,0)2 + M@(@)Z)' (4) A,=0.8. The continuous line was obtained using bosonizdtef.
2m K(x) 17). The closed dots correspond to the DMRG results.
where 4,0 is the momentum field conjugate to ) ) ) .
O:[D(x),d,0(y)]=i8(x~y). The fields® and© can be re- Figure 6 shows the numerically determined rati¢&X” for

lated to the spin density operatdfsin the Hamiltonian(4), @ SS WithA;=0.4 andA,=0.8 as a function of. We used
we have introduced the subchain-dependent parametePy=4 ~and_L=100, 76, 100, 52, 76, 100, for
u(x) and K(x). For x in the subchain\, one has €=3%.3:2:2:2:2 res.p(.actlvely.. For comparison, we also
K(x)=K(J,Ay,h) and u(x)=u(J,A,,h), i.e., the usual show theTLLS prediction obtained from the ratio of Ed®.
uniform Tomonaga-Luttinger parameters for each subchair?nd (6) and from the known values ofi, and K, for
which can be obtained directly from the Bethe ansatZ'®mogeneous chains. We can see that there is reasonable
solution1022Of course, this effective low-energy description 2greement, with slightly larger discrepancies at laigerhe

is valid asymptotically in the limit of very long subchains. ratio u/K for homogeneous chains with anisotropy param-
Using periodic boundary conditions and diagonalizing®ters A1=0.4 andA,=0.8 are equal tou,/K;=1.57 and
the Hamiltonian(4), we find that the low energy properties U2/K2=2.33, respectivelyc/K" interpolates smoothly be-
of the SS are determined by just a few effective tWeenu,;/K; andu,/K; as¢ increases, a manifestation of the

parameterd’1° These parameters are the effective velocity SPatial averaging due to the superlattice structure. We believe

and the effective correlation exponeits andK. which are the small discrepancies between the curves in Fig. 6 are
given by-719 P ’ due to the finite sizes of the subchains. We recall that the

TLLS predictions are expected to hold asymptotically for
uy(1+4) very long subchains. For a gapless phase, the inhomogene-
(5) ities created by the boundaries between subchains will give
rise to Friedel oscillations which die out only as power
laws?” These disturbances are expected to give rise to finite-
size corrections to the TLLS predictions. We stress, however,

- \”/1 + 7]€U1/U2 + (€U1/U2)2 ,

K* _ \’1 + 7]€U1/U2 + (€U1/U2)2

1,14 = 1Ky K, ®  that although the TLLS analysis predicts a sort of weighted
Ko TRtk average for the dependenceaK" on ¢, the detailed form
_ of this average is highly nontrivial. Yet, precisely this non-
K=1f(1/K4,1/K5), (7) linear dependence is strikingly confirmed by the numerical
— data. We consider this as a stringent test of the predictions of
where 1=K/ K+ K,/ Ky, Clearly, (c,K",K)  the theory.

—(Up,K5,1/K,) as¢—o, and(c,K",K)— (uy,K;,1/K;) as
¢—0, as expected. The important feature to notice in Egs.
(5)«7) is the fact that the effective SS parameters represent a IV. CONCLUSIONS
certain weighted average of the individual subchain veloci- |, summary, we have used the finite size DMRG method
ties and correlation exponents. This weighted average is ing;p open and periodic boundary conditions to study spin
duced by the superlattice structure and is a feature “biqunous%perlattices made up of a periodic arrangement ofX¥@
n TL_LS’S'lT’lg o chains with different parameters and sizes. We confirmed
It is straightforward to extract from the Hamiltonidd)  ,eyious analytical predictions of a nontrivial plateau in the
the finite-size spin gap of the system. Itis given by magnetization curve an=1/(1+¢), where? is the relative
s size of the subchains. When both anisotropies are larger than
E(Soi= 11h:0)_E(Stzot:Orh:0):ﬂ- (8) 1, we have also confirmed the expected trivial plateau at
m=0. The nontrivial plateau width was shown to approach
Thus, from the scaling of the spin gap with the system sizethe asymptotic value of a superlattice with long subchains.
we can verify the predictions of Eq¢5) and (6) for the  Moreover, the magnetization profile was seen to be in accord
effective Tomonaga-Luttinger parameters. with the analytical predictions of one subchain being satu-
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