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Using the density matrix renormalization group technique, we study spin superlattices composed of a
repeated pattern of two spin-1

2 XXZ chains with different anisotropy parameters. The magnetization curve can
exhibit two plateaus, a nontrivial plateau with the magnetization value given by the relative sizes of the
subchains and another trivial plateau with zero magnetization. We find good agreement of the value and the
width of the plateaus with the analytical results obtained previously. In the gapless regions away from the
plateaus, we compare the finite-size spin gap with the predictions based on bosonization and find reasonable
agreement. These results confirm the validity of the Tomonaga-Luttinger liquid superlattice description of these
systems.
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I. INTRODUCTION

The synthesis of materials which can be described in
terms of spin chains or spin ladders has revived the study of
quantum spin systems in one dimension in the last few
years.1 These systems are known to have surprising features,
such as the presence of a gap in isotropic Heisenberg chains
of integer spins and its absence when the spins are
half-integers.2–7 More recently, many experimental and the-
oretical results have shown the presence of plateaus, in
which the magnetization in an external magnetic field is
quantized to fractions of the saturated value.8–13 These sys-
tems have special spatial structures, such asp-merization or
ladder geometry, which are responsible for the appearance of
the magnetization plateaus. Oshikawa, Yamanaka, and
Affleck14 derived the conditionpsS−mzd=integer, necessary
for the appearance of the magnetization plateaus in 1D sys-
tems. Here,p is the number of sites in the unit cell of the
magnetic ground state,S is the magnitude of the spin, andmz

is the magnetization per sitestaken to be in thez directiond.
The plateau state can be viewed as a gapped state with non-
zero magnetization, the integer spin chains being a special
case wherep=1 andmz=0.

Other types of spatial structures, such as quasiperiodic
couplings,15 an inhomogeneous magnetic field,16 or a super-
lattice structure,17 can also give rise to magnetization pla-
teaus. The superlattice case with periodic boundary condi-
tions was studied by two of us in a previous work.17 There,
we considered a spin superlatticesSSd composed of a re-
peated pattern of two long and different spin-1

2 XXZ chains.
This model can be viewed as the limit ofp-merized chains
when the number of sites per unit cell is very large. Magne-
tization plateaus were found, with magnetization values that
depend on the relative sizes of the subchains, in accordance
with the condition of Ref. 14. The determination of the width
and magnetization values of the plateaus relied on the Bethe
ansatz exact solution of theXXZ chain.18 The low-energy
properties in the gapless regions away from the plateaus,
however, could be described by bosonization in terms of a
Tomonaga-Luttinger liquid superlatticesTLLSd.19 This type

of system is of potential interest in nanoelectronic applica-
tions, where nanowire superlattice structures have been built
with semiconducting carbon nanotubes.20 A TLLS would be
obtained if the metallic analog could be manufactured.

In this work, it is our purpose to check numerically the
analytical predictions based on the Bethe ansatz and
bosonization using the density matrix renormalization group
sDMRGd.6,21 In particular, we calculate the magnetization
curve, characterize its plateaus, and determine the effective
Tomonaga-Luttinger liquid parameters for spin superlattices.
The unit cell of each SS consists of twoS= 1

2 XXZsubchains
with different anisotropy parametersDl and sizesLl sl=1,
2d sbut the same planar couplingd, as shown schematically in
Fig. 1. The Hamiltonian of the SS is written as a sum overNc
unit cell Hamiltonians

HSS= o
j=0

Nc−1

Hcs j ,D1,L1,D2,L2d. s1d

Each unit cell, on the other hand, consists of a total ofL1
+L2−2=Lc bonds. The firstL1−1 bonds have anisotropy pa-
rameterD1 and the followingL2−1 bonds have anisotropy
parameterD2, with Hamiltonian

Hcs j ,D1,L1,D2,L2d = o
n=1

L1−1

Hs jLc + n,D1d + o
n=1

L2−1

Hs jLc + L1 + n

− 1,D2d,

where

FIG. 1. Spin superlattice structure with two unit cellssNc=2d,
L1=4, andL2=3. The solid bonds correspond toD1 and the dashed
ones toD2. The total number of sites isL=sL1+L2−2dNc+1=11
sopen boundary conditionsd.
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Hsn,Dd = Sn
xSn+1

x + Sn
ySn+1

y + DSn
zSn+1

z .

In the last expression,Sn
x ,Sn

y, andSn
z are spin-12 operators at

the nth site. The total number of sites in the SS is, for open
boundary conditions,L=sL1+L2−2dNc+1 and, for periodic
boundary conditions,L=sL1+L2−2dNc. We have set the
transverse coupling to 1 to set the energy scale. Since we will
be interested in increasing bothL1 andL2 while keeping their
ratio fixed, we defineP as the greatest common divisor ofL1
and L2 and study the behavior of the system asP grows.
Note that each subchain containsLl−1 bonds andLl spins.
The spins at the boundaries of the subchains, however,
should be viewed as belonging to either subchainssee Fig.
1d. Of course, in the limit of largeLl in which we are inter-
ested, this ambiguity at the boundaries is immaterial. Finally,
the total Hamiltonian has an external magnetic fieldh ap-
plied along the anisotropyz axis

HT = HSS− o
n=1

L

hSn
z. s2d

Let us first recall some known results on theXXZ model,
which is the basic building block of the SS. Using the Bethe
ansatz, Yang and Yang18 found the exact solution of the one-
dimensionalS= 1

2 anisotropicsXXZd Heisenberg model. They
showed that the model may exhibit three phases, according
to the value of the Ising anisotropyD: a ferromagneticsFMd
phase forD,−1, a Néel antiferromagneticsAFMd phase
with a spin gap forD.1, and a gaplessscriticald phase for
−1,D,1. The low-energy properties of the gapless phase
can be described in terms of a Tomonaga-Luttinger liquid22

with velocity u and interaction parameterK.23

II. MAGNETIZATION PLATEAUS

In the Hamiltonians2d, the magnetic field couples to a
conserved quantityStot

z =onSn
z. Thus, to obtain the magneti-

zation curve we only need the ground state energy ath=0,
EsStot

z ,h=0d, in each of the subspaces with fixed total spin
projectionStot

z P h0,1,… ,L /2j. Then, we can readily obtain
the energy in a finite magnetic fieldh through the relation
EsStot

z ,hd=EsStot
z ,0d−hStot

z , from which we can construct the
magnetization curve.24

Since the DMRG is more precise and computationally
faster with open boundary conditions, the magnetization
curve was calculated this way. We considered lattice sizes up
to 160 sites, keeping up tom=150 states per block. The
discarded weight was kept around 10−12. On the other hand,
in order to compare with the analytical predictions of the
Tomonaga-Luttinger liquid parameters, which were obtained
with periodic boundary conditions, we have also analyzed
SS’s with the latter boundary conditions. In order to obtain a
comparable accuracy, we considered chains with up to 100
sites with up tom=600 states per block. The truncation er-
rors were below 10−9.

Figure 2 shows the magnetization densitym smagnetiza-
tion per site normalized to the saturation valued of a SS as a
function of the external magnetic field forD1=0.5
and D2=5. We set Nc=3, since we have observed that

the magnetization curve is fairly insensitive to the number
of unit cells. The sublattice sizes were chosen such that
L2/L1;,= 3

2. Two lattice sizes are shown in the figure:
L=40 andL=70. They correspond toL1=2P and L2=3P,
with P=3 andP=5, respectively. For both sizes the magne-
tization density has a plateau atm=0.4.

The continuous line in Fig. 2 corresponds to the case
where we considertwo longsublattices with a fixed size ratio
sP@1d. In this case, the magnetization density of the SS is
given by17

m=
L1m1 + L2m2

L1 + L2
, s3d

whereml is the magnetization per site of subchainl. The
magnetization density of each sublattice was obtained from
the Bethe ansatz solution in Ref. 17.

It can be seen that the three curves have a magnetization
plateau atm=0.4. This has been shown to correspond to
m1=1 sFM phased andm2=0 sAFM phased in Eq. s3d.17 The
plateau is a result of the “spin incompressibility” of both
subchains: subchain 1 is magnetized at saturation, whereas
subchain 2 has a spin gap. However, the magnetic field width
of the plateau is dependent on the subchain sizesL1 andL2.
In fact, the fields at each end of the plateau are approached
asymmetrically as the system grows. The critical fieldhc
sright-hand side of the plateaud shows a larger finite size
error than the saturation fieldhs sleft-hand side of the pla-
teaud.

The behavior of the saturation fieldhs, the critical fieldhc,
and the width of the plateauGNT=hc−hs as a function of the
lattice sizeL is shown in Table I. Again we focus on the
plateau atm=0.4 and,= 3

2 sL1=2P, L2=3P, and Nc=3d,
D1=0.5, andD2=5. We have found the thermodynamic limit
of these quantities through numerical extrapolation using the
Vanden Broeck–SchwartzsVBSd algorithm,25 which is
shown in the bottom line. The saturation field increases with
the lattice size, but slowly at largeL, as seen in the first
column of Table I. Extrapolation to infiniteL yields the value
hs=1.495. As we have seen in connection with Eq.s3d, we
have m1=1, i.e., the sublattice 1 is totally magnetized. As

FIG. 2. Magnetization density of a spin superlattice with
D1=0.5,D2=5, L1=2P, L2=3P s,= 3

2
d, andNc=3. The short-dashed

line is for P=3 sL=40d, and the long-dashed one forP=5
sL=70d. The solid line was obtained analytically for a spin super-
lattice with long unit cellssP@1d sRef. 17d.
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shown in Ref. 17, the saturation field is the field at which the
corresponding homogeneous chain with the same anisotropy
parameter reaches saturation. ForD1=0.5, this happens at
h=1+D1=1.5, very close to the numerical value ofhs and
compatible with our interpretation.

In the second column of Table I, it can be seen that the
critical field hc decreases with the lattice size. The conver-
gence is slower than forhs due to the smaller derivative of
the magnetization as a function of the field as the plateau is
approached from above, as is apparent in the analytical result
of Fig. 2. The extrapolated infinite size value of the critical
field is hc=3.146. This should be compared with the gap of a
homogeneous lattice with anisotropy parameterD2=5, which
is h=3.121. This value is close to the numerically deter-
mined critical field. This agreement is again consistent with
sublattice 2 with anisotropy parameterD2=5 being in an
AFM spin-gapped phase. The width of plateauGNT=hc−hs
as a function ofL is shown in the third column of Table I.
The extrapolated infinite size limit of the plateau width is
GNT

` =1.667.
In Fig. 3, the magnetization profile at the plateau of

m=0.4 is shown. The parameters used areL=100 sL1=2P,
L2=3P, P=7, andNc=3d, ,= 3

2, D1=0.5, andD2=5. We can
see that, indeed, in the sublattices with anisotropy parameter
D1=0.5, the spins are fully polarized, whereas the sublattices
with anisotropy parameterD2=5 are antiferromagnetically
ordered.

The overall picture resulting from Figs. 2 and 3 and Table
I is thus compatible with the SS having a nontrivial plateau

at m=1/s1+,d, in which one subchain is fully saturated with
m1=1, whereas the other is in a spin-gapped AFM phase
with m2=0.17,26

The width of the plateau of a SS withD2=5 is shown
in Fig. 4 as a function of the anisotropy parameterD1.
The other parameters areL1=2P, L2=5P f,= 5

2,
m=s1+,d−1= 2

7g, P=3, Nc=3, andL=58. We observe that the
width of the plateau decreases linearly withD1 and vanishes
at D1=2.741. The magnetization curve of this SS does not
have plateaus forD1.2.741. This linear dependence is ex-
pected. As we have seen, the plateau width is given by
GNT=hc

PsD2=5d−1−D1, where hc
P is the gap of the corre-

sponding homogeneous spin chain in the AFM phase.17 The
slope of the line in Fig. 4 is −0.966, close to the expected
value of −1.

The magnetization curve in Fig. 2 has one nontrivial pla-
teau atm=0.4 for the parametersD1=0.5 andD2=5. When
both D1.1 and D2.1, however, a new plateau atm=0
emerges. In this case,both subchains 1 and 2 are in a spin-
gapped AFM phase.17 For a SS with parametersD1=2, D2

=5, and,= 3
2 sL1=2P, L2=3P, andNc=3d, the width of the

plateau atm=0 is shown in Fig. 5 as a function of 1/L.
Using the VBS algorithm, we determined the infinite size
limit of the plateau width to beGT=0.198. According to the
analysis of Ref. 17, this value should be given by the gap of

TABLE I. The saturation fieldhs, the critical fieldhc, and the
width of plateauGNT at m=0.4 as a function of lattice size. For all
sizesD1=0.5,D2=5, L1=2P, L2=3P s,= 3

2
d, andNc=3. The second

to last line is the VBS extrapolation and the last one is the predic-
tion of Ref. 17.

L hs hc GNT

10 0.67719 5.17056 4.49336

40 1.35468 3.90474 2.55006

70 1.44854 3.51944 2.07089

100 1.47166 3.36001 1.88835

130 1.48329 3.27965 1.79635

160 1.48900 3.23373 1.74473

extrapolated 1.495 3.146 1.667

prediction 1.5 3.121 1.621

FIG. 3. The magnetization profile of a spin superlattice at the
magnetization plateau ofm=0.4. The parameters areD1=0.5, D2

=5, L1=14, andL2=21 s,= 3
2, L=100d.

FIG. 4. The width of nontrivial plateauGNT as a functionD1. In
this caseD2=5, L1=6, L2=15 f,= 5

2, m=s1+,d−1= 2
7g, Nc=3, and

L=58.

FIG. 5. The width of the plateau at zero magnetization as a
function of the lattice size for a SS withD1=2, D2=5, and,= 3

2 s
L1=2P, L2=3P, andNc=3d sclosed trianglesd. For comparison, we
also show the size dependence of the spin gap of a homogeneous
chain with anisotropy parameterD=2 sopen diamondsd. The ex-
trapolated infinite size limits of the two curvessclosed circlesd co-
incide within the numerical error.
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a homogeneous spin chain with anisotropy parameterD1=2.
For comparison, we also show in Fig. 5 the value of the latter
gap as a function of system size. The extrapolated gap size is
GT=0.196, while the value obtained from the exact solution
is GT=0.19842. Indeed, the extrapolated values coincide
within the numerical error.

III. GAPLESS REGION: THE EFFECTIVE TOMONAGA-
LUTTINGER PARAMETERS

The low-energy properties of the SSaway from the pla-
teauscan be described in terms of a TLLS.19 The Hamil-
tonian of TLLS is given by

HLLSL=
1

2p
E dxSusxdKsxds]xUd2 +

usxd
Ksxd

s]xFd2D , s4d

where ]xU is the momentum field conjugate to
F : fFsxd ,]yUsydg= idsx−yd. The fieldsF and U can be re-
lated to the spin density operators.17 In the Hamiltonians4d,
we have introduced the subchain-dependent parameters
usxd and Ksxd. For x in the subchain l, one has
Ksxd=KsJ,Dl ,hd and usxd=usJ,Dl ,hd, i.e., the usual
uniform Tomonaga-Luttinger parameters for each subchain,
which can be obtained directly from the Bethe ansatz
solution.10,23Of course, this effective low-energy description
is valid asymptotically in the limit of very long subchains.
Using periodic boundary conditions and diagonalizing
the Hamiltonians4d, we find that the low energy properties
of the SS are determined by just a few effective
parameters.17,19These parameters are the effective velocityc

and the effective correlation exponentsK* and K̄, which are
given by17,19

c =
u1s1 + ,d

Î1 + h,u1/u2 + s,u1/u2d2
, s5d

K* =
Î1 + h,u1/u2 + s,u1/u2d2

1
K1

+ , 1
K2

u1

u2

; fsK1,K2d, s6d

K̄ = fs1/K1,1/K2d, s7d

where h=K1/K2+K2/K1. Clearly, sc,K* ,K̄d
→ su2,K2,1 /K2d as,→`, andsc,K* ,K̄d→ su1,K1,1 /K1d as
,→0, as expected. The important feature to notice in Eqs.
s5d–s7d is the fact that the effective SS parameters represent a
certain weighted average of the individual subchain veloci-
ties and correlation exponents. This weighted average is in-
duced by the superlattice structure and is a feature ubiquitous
in TLLS’s.17,19

It is straightforward to extract from the Hamiltonians4d
the finite-size spin gap of the system. It is given by

EsStot
z = 1,h = 0d − EsStot

z = 0,h = 0d =
pc

2K*L
. s8d

Thus, from the scaling of the spin gap with the system size,
we can verify the predictions of Eqs.s5d and s6d for the
effective Tomonaga-Luttinger parameters.

Figure 6 shows the numerically determined ratioc/K* for
a SS withD1=0.4 andD2=0.8 as a function of,. We used
Nc=4 and L=100, 76, 100, 52, 76, 100, for
,= 1

2 , 3
4 , 5

4 , 3
2 , 5

2 , 7
2, respectively. For comparison, we also

show the TLLS prediction obtained from the ratio of Eqs.s5d
and s6d and from the known values oful and Kl for
homogeneous chains. We can see that there is reasonable
agreement, with slightly larger discrepancies at larger,. The
ratio u/K for homogeneous chains with anisotropy param-
eters D1=0.4 and D2=0.8 are equal tou1/K1=1.57 and
u2/K2=2.33, respectively.c/K* interpolates smoothly be-
tweenu1/K1 andu2/K2 as, increases, a manifestation of the
spatial averaging due to the superlattice structure. We believe
the small discrepancies between the curves in Fig. 6 are
due to the finite sizes of the subchains. We recall that the
TLLS predictions are expected to hold asymptotically for
very long subchains. For a gapless phase, the inhomogene-
ities created by the boundaries between subchains will give
rise to Friedel oscillations which die out only as power
laws.27 These disturbances are expected to give rise to finite-
size corrections to the TLLS predictions. We stress, however,
that although the TLLS analysis predicts a sort of weighted
average for the dependence ofc/K* on ,, the detailed form
of this average is highly nontrivial. Yet, precisely this non-
linear dependence is strikingly confirmed by the numerical
data. We consider this as a stringent test of the predictions of
the theory.

IV. CONCLUSIONS

In summary, we have used the finite size DMRG method
with open and periodic boundary conditions to study spin
superlattices made up of a periodic arrangement of twoXXZ
chains with different parameters and sizes. We confirmed
previous analytical predictions of a nontrivial plateau in the
magnetization curve atm=1/s1+,d, where, is the relative
size of the subchains. When both anisotropies are larger than
1, we have also confirmed the expected trivial plateau at
m=0. The nontrivial plateau width was shown to approach
the asymptotic value of a superlattice with long subchains.
Moreover, the magnetization profile was seen to be in accord
with the analytical predictions of one subchain being satu-

FIG. 6. c/K* as a function, for a SS with D1=0.4 and
D2=0.8. The continuous line was obtained using bosonizationsRef.
17d. The closed dots correspond to the DMRG results.
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rated and the other one being AFM ordered. Finally, we
found fairly good agreement in the gapless region with the
results of a Tomonaga-Luttinger liquid theory as applied to a
superlattice structure. This agreement confirms the nontrivial
prediction of this theory for the way the individual subchain
properties are averaged over in the effective low-energy de-
scription of the superlattice.
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