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We present simple analytical arguments explaining the universal emergence of electronic Griffiths phases as
precursors of disorder-driven metal-insulator transitions in correlated electronic systems. A simple effective
model is constructed and solved within dynamical mean field theory. It is shown to capture all the qualitative
and even quantitative aspects of such Griffiths phases.
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I. INTRODUCTION

The recent discovery of a number of heavy fermion ma-
terials with non-Fermi liquid(NFL) thermodynamic and
transport properties has been followed by a significant theo-
retical effort to understand the origin of the NFL behavior.1

In the cleaner systems, the proximity to a quantum critical
point appears to dominate many of the observed
properties.2–10 In other heavy fermion systems disorder
seems to play a more essential role and appears to be crucial
for understanding the NFL behavior.11–17 Many experiments
can be explained by the disordered Kondo model,11 which
has recently been put on a much stronger microscopical
foundation.18–20

The emergence of electronic Griffiths phases in models of
correlated electrons has been established18–21 as a universal
phenomenon, within a class of extended(“statistical”) Dy-
namical mean field theory(DMFT) approaches.21 This
statDMFT method provides an exact(numerical) treatment
of localization in the absence of interactions, and reduces to
the standard DMFT equations22 in the absence of disorder.
When both interactions and localization are present, non-
Fermi liquid behavior emerges universally,18 as a precusor of
a disorder-driven metal-insulator transition, due to a very
broad distributionPsTKd of local Kondo temperatures. This
distribution has a low-TK tail of the form PsTKd,TK

a−1, in-
dependent of the microscopic details or the specific form of
disorder. The exponenta=asWd is found to be a smooth,
monotonically decreasing function of the disorder strength
W, and the NFL behavior emerges forW greater than the
critical valueWNFL corresponding toaø1, whenPsTKd be-
comes singular at smallTK. As in other Griffiths phases, the
thermodynamic and transport properties in this NFL region
are dominated by rare events, which in this model corre-
spond to sites with the lowest Kondo temperatures.

In this paper, we show that the same behavior is found in
a simpler, standard DMFT version of the model with a judi-
cious choice of bare disorder. We should emphasize that lo-
calization is not present in this effective model, but the Grif-
fiths phase emerges in qualitatively the same fashion as in
the above more realistic calculations. We discuss how the
specific disorder distribution which is hand-picked in the ef-
fective model is dynamically generated by fluctuation effects
within the statDMFT formulation, elucidating the origin of
the universality of the Griffiths phase behavior. In addition,

the simplicity of this DMFT effective model makes it pos-
sible to describe all the qualitative features of the solution
using simple analytical arguments, thus eliminating the need
for large scale numerical computations in the description of
the electronic Griffiths phase. This may be crucial in order to
address more complicated issues, such as the role of addi-
tional Ruderman-Kittel-Kasuya-Yosida(RKKY ) interactions
in disordered Kondo alloys.23

This paper is organized as follows. Section II introduces
the effective model for the electronic Griffiths phase as a
DMFT model with a Gaussian distribution of random site
energies. This model is solved analytically in the Kondo
limit in Sec. III, and numerically in Sec. IV. The arguments
explaining the universal aspects of the form of the renormal-
ized disorder are presented in Sec. V. Section VI establishes
a connection with the Griffiths phase in a single band Hub-
bard model, and Sec. VII contains our conclusions.

II. MODEL

We consider the Anderson lattice model where the disor-
der is introduced by random site energies«i in the conduc-
tion band, as given by the Hamiltonian

H = − t o
ki j ls

scis
† cjs + H.c.d + o

js

s« j − mdcjs
† cjs

+ Vo
js

scjs
† f js + H.c.d + o

js

Ef f js
† f js + Uo

j

f j↑
† f j↑f j↓

† f j↓,

s2.1d

where f js and cjs are annihilation operators forf and con-
duction electrons, respectively.V is the hybridization param-
eter, andEf is the f-electron energy. We assumeU→`, and
choose a Gaussian distribution of random site energies for
the conduction band

Ps«id = s2pW2d−1/2 exph− 1
2«i

2/W2j . s2.2d

In Sec. V we will explain how this particular disorder distri-
bution comes out naturally from the more genericstatDMFT
approach.

To solve these equations, we use the DMFT approach,22

which is formally exact in the limit of large coordination. We
concentrate on a generic unit cellj , containing af site and its
adjoining conduction electron Wannier state. After integrat-
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ing out the conduction electron degrees of freedom, we ob-
tain the effective action for thef electron on sitej

Simps jd = o
s
E
0

b

dtE
0

b

dt8f js
† stdfdst − t8ds]t + Efd

+ D f jst − t8dgf jsst8d. s2.3d

Here, the restriction of no doublef-site occupancy is im-
plied. The hybridization functionD f j between thef electron
and the conduction bathDc is given by

D f jsivnd =
V2

ivn − « j + m − Dcsivnd
. s2.4d

The self-consistency condition for the conduction bath(cav-
ity field) assumes a simpler form for the semicircular model
density of states,22 which we use for simplicity. All the quali-
tative features of our solution are independent of the the
form of the lattice, and the quantitative results depend only
weakly on the details of the electronic band structure. For
this modelDcsivnd= t2Gcsivnd, whereGcsivnd is the disorder-
averaged Green’s function of the conduction electrons, and
the self-consistency is enforced by

Gcsivnd = kfivn − « j + m − t2Gcsivnd − F jsivndg−1l,

s2.5d

where

F jsivnd =
V2

ivn − Ef − S f jsivnd
, s2.6d

andS f j is the f-electron self-energy derived from the impu-
rity action of Eq. (2.3). From a technical point of view,
within DMFT the solution of the disordered Anderson lattice
problem reduces to solving an ensemble of a single impurity
problems supplemented by a self-consistency condition.

We will solve the system of Eqs.(2.3)–(2.6) at zero tem-
perature using the slave boson mean field theory
approach.24,25This approximation is known18–20to reproduce
all the qualitative and even most of the accurately quantita-
tive features of the exact DMFT solution atT=0. It intro-
duces renormalization factors(quasiparticle weights) Zj and
renormalizedf-energy levels« f j, which are site-dependent
quantities in the case of a disordered lattice. These param-
eters are determined by the saddle-point slave boson equa-
tions (see Ref. 26 for more details) which, on the real fre-
quency axis, assume the form

−
1

p
E
−`

0

dv ImF 1

v − « f j − ZjD f jsvdG =
1

2
s1 − Zjd, s2.7d

1

p
E
−`

0

dv ImF D f jsvd
v − « f j − ZjD f jsvdG =

1

2
s« f j − Efd. s2.8d

Eq. (2.6) in this case becomes

F jsvd =
ZjV

2

v − « f j
. s2.9d

III. ANALYTICAL SOLUTION
IN THE KONDO LIMIT

Before presenting a numerical solution of the slave boson
Eqs. (2.7) and (2.8) supplemented by the self-consistency
condition of Eq.(2.5), we will solve these equations analyti-
cally in the Kondo limit for agivenconduction bath. A com-
parison with the numerical solution will show that the self-
consistency does not qualitatively change the analytical
results.

The slave boson equations simplify in the Kondo limit
Zj →0. The integral in Eq.(2.7) is dominated by the low-
frequency region, and the frequency dependence inDc and
D f j can be neglected. Therefore, after integration

« f j < − Zj RefD f js0dg, s3.1d

where, for simplicity, we took a semicircle conduction bath
with m=0. In the integral of Eq.(2.8), the frequency depen-
dence ofD f j can also be neglected. Introducing the energy
cutoff D and using Eq.(3.1) we obtain

Zj < D
« j

2 + spt2rod2

pt2roV
2 e−p2t2ro/Je−« j

2/t2roJe« j/2t2ro

= Zo

« j
2 + spt2rod2

spt2rod2 expF−
« j

2

t2roJ
S1 −

J

2« j
DG . s3.2d

Here, ro is the density of states(DOS) of the conduction
electrons at the Fermi level,J=2V2/ uEfu, and Zo=Zs« j =0d.
The Kondo temperature is proportional to the quasi-particle
weight,TKj =pV2roZj. In the limit « j @J/2 and neglecting a
weak site-energy dependence in the prefactor, we obtain

TKj < TK
0e−1/l j , s3.3d

where the site dependent coupling constant is

l j =
t2roJ

« j
2 , s3.4d

and TK
0 is the Kondo temperature in the clean limit(for « j

=0). From these equations, we can immediately find the de-
sired distribution of local Kondo temperaturesPsTKd
=Pf«sTKdgud« /dTKu, which (up to a negligible logarithmic
correction) is given asymptotically by

PsTKd ~ sTK/TK
0da−1, s3.5d

with

asWd =
t2roJ

2W2 . s3.6d

This expression is one of the central results of this paper. It
has exactly the form expected for a Griffiths phase, where
the exponent characterizing the local energy scale distribu-
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tion assumes a parameter-dependent(tunable) form.
To show how the NFL behavior appears due to the singu-

larity in PsTKd, we use the standard expression due to Wilson
for the magnetic susceptibility27

xsT,TKd =
C

T + aTK
, s3.7d

which is an excellent approximation for a single Kondo
impurity. HereC anda are constants. In the disordered case,
we can split the average susceptibilityxsTd
=e0

`PsTKdxsT,TKddTK in a regular “bulk” part

xrsTd =E
L

`

PsTKdxsT,TKddTK, s3.8d

and a potentially singular part

xssTd = C1E
0

L

TK
a−1

T + aTK
dTK, s3.9d

coming from the tail with low Kondo temperatures(L is a
crossover scale). At weak disorder, the exponenta is large
and the distributionPsTKd is regular,xs0d=xo+C2/ sa−1d,
but NFL behavior emerges onceaø1, which corresponds to

Wù Wnfl = Ît2roJ/2. s3.10d

For a=1 the magnetic susceptibility has a logarithmic diver-
gence,xsTd~ lns1/Td, characteristic of marginal Fermi liquid
behavior,28 while for a,1 a power law divergence is ob-
tained,xsTd~Ta−1 asT→0. The same singularity also leads
to an anomalous behavior in the transport properties, as
shown in detail in Refs. 26 and 29.

IV. NUMERICAL RESULTS

In the above derivation we ignored the fact that the con-
duction bathDc has to be self-consistently determined. This
will also produce particle-hole asymmetry and an asymmet-
ric distribution of Kondo temperaturesTKj. A nonzero chemi-
cal potential will further increase this asymmetry. However,
the numerical solution we obtained using the slave boson
approximation at zero temperature shows that the essential
physics described by Eqs.(3.3)–(3.6) remains qualitatively
correct. The distribution of local Kondo temperatures in the
asymptotic limit is indeed a power law,PsTKd,TK

a−1, where
the exponenta is a decreasing function of disorder.

Figure 1 shows the distributionPsTKd for several values
of the disorder distribution strengthW. For the parameters
that we here use, the system is close to the Kondo limit, and
the Kondo gap of the clean system is approximately 0.04(in
energy units of the half bandwidth of bare DOS). The NFL
behavior appears forW*0.14. We note that in the NFL re-
gime the power law behavior appears already for the site
energies« j which deviate only moderately from the mean
(zero) value. In other words, the asymptotic behavior is es-
tablishedwell beforewe attain very rare realizations of« j

which belong to the tail of the Gaussian distribution. For
example, forW=0.3, sites with« j *0.4 (which correspond to
Z&0.01) are already in the power-law regime.

According to the simplified derivation from Sec. III, the
exponenta is inversely proportional toW2. The numerical
results shown in Fig. 2 confirm such behavior for weak and
moderate disorder. For strong disorder there appear some
deviations from this formula, which can be ascribed to the
dependence of the DOS at the Fermi level on the disorder
strength.

Before we present arguments which justify our effective
DMFT model approach, let us make a direct comparison
with the statDMFT results from Ref. 20. In this approach,
very broad distributions of local Kondo temperatures are
generated forarbitrary distributions of bare disorder. In par-
ticular, even if the bare distribution is bounded, sites with
arbitrarily small Kondo temperatures will exist, and their dis-
tribution will have a power law tail. This is a consequence of
the spatial fluctuations of the conduction electron cavity
field, as we discuss in detail in the next section. In Fig. 3 we
compare the values of the exponenta for the effective model
with Gaussian disorder of varianceW2, and thestatDMFT
results obtained for aboundeduniform distribution of bare
disorder with the same variance. Remarkably, not only does
the electronic Griffiths phase emerge in the same fashion, but
the numerical values of disorder strength determining the
onset of NFL behavior are also almost the same. The com-

FIG. 1. Distribution of the local Kondo temperatures. The dis-
order ranges from moderateW=0.1 to strongW=0.4. We usedV
=0.5, Ef =−1, andm=−0.1.

FIG. 2. Inverse power law parametera−1 as a function ofW2.
For weak and moderate disorder this dependence is linear. HereV
=0.5, Ef =−1, andm=−0.2.
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parison is made for two different values of the chemical po-
tential. As we move further away from half filling by chang-
ing the chemical potential, the critical valueWNFL decreases.
That is expected sincea should be proportional to the bare
(noninteracting) DOS at the Fermi level.

V. ROLE OF SPATIAL FLUCTUATIONS AND THE FORM
OF RENORMALIZED DISORDER

In this section we explain the universal aspects of the
emergence of the electronic Griffiths phase within the more
generic statistical DMFT. In particular, we show how the
Gaussian tails in the distribution of renormalized disorder
appear for an arbitrary form of the bare disorder. Moreover,
we present arguments showing that the Griffiths phase ap-
pears generically as a precursor of the Mott-Anderson metal-
insulator transition.

A. Universality of the renormalized disorder distribution

In the above DMFT formulation, we had to choose a spe-
cial form of disorder distribution in order to obtain the de-
sired power-law distribution of Kondo temperatures. Had we
chosen a different distribution, the results would not have
held. For example, for a bounded distribution of site ener-
gies, there would always be a minimum value of the Kondo
temperature, and thus no power-law tail. On the other hand,
from numerical simulations of lattices with finite coordina-
tion, it has been established that the emergence of the Grif-
fiths phase is a universal phenomenon.20 Why? To under-
stand the reason for this, we note that for finite coordination
(as opposed to the DMFT limit) the cavity bathDc is not
self-averaging, but is a site-dependent, random quantityDcj.
In this statDMFT formulation, the local conduction electron
Green’s function is given by

Gcjsivnd =
1

ivn − « j + m − Dcjsivnd − F jsivnd
, s5.1d

where F j describes the local scattering of the conduction
electrons off thef shell at sitej , and is given as before by
Eq. (2.6).

For weak disorder, the corresponding fluctuations are
small, and we can separate

Dcj = Dc
av + dDcj. s5.2d

In the following, we compute the distribution function for
the fluctuations of the cavity field, which will lead to the
renormalized form of the disorder distribution function. The
renormalized site energies can be defined as

«̃ j = « j + dDcj
R , s5.3d

wheredDcj
R =RefdDcjsv=0dg. We stress that the cavity fluc-

tuations are present for a general finite coordination elec-
tronic system in the presence of disorder of any kind. In
particular, the disorder in hybridization parametersVj, or lo-
cal f-energy levelsEf j, will induce fluctuations in the local
DOS even if random site energies« j in the conduction band
are absent. Furthermore, as we argue in the next section, the
renormalized distributionPs«̃ jd will have universal Gaussian
tails even if the bare distributionPs« jd is bounded. Note that
dDcj has a real as well as an imaginary partdDcj

I , due to the
fact that fluctuations locally violate particle-hole symmetry.
However, we show in Appendix A thatdDcj

I fluctuations, at
least when treated to leading order, do not produce singular
behavior inPsTKd and therefore can be neglected when ex-
amining the emergence of the electronic Griffiths phase.

B. Gaussian nature of the renormalized distribution

From detailed numerical studies it has become clear that
the onset of the Griffiths phase in disordered Anderson lat-
tices generally occurs already for a relatively moderate
amount of disorder. In this limit, the relevant distributions
are determined essentially by the central limit theorem,
therefore resulting in a Gaussian form of the tails forPs«̃ jd.
This is precisely what is needed to justify the DMFT effec-
tive model, where such Gaussian tails are assumed from the
outset.

Before engaging in more precise computations of these
distributions, it is worth pausing to comment on the physical
validity of the assumed Gaussian statistics, i.e., the relevance
of the central limit theorem in the cases of interest. Quite
generally, if a certain quantity can be represented as a sum of
a large number of independent random variables, then the
central limit theorem tells us that the resulting distribution
will be Gaussian, irrespective of the specific form of the
distributions of the individual terms in the sum. In our case,
the fluctuations of the local cavity field result from Friedel
oscillations of the electronic wave functions, induced by
other impurities which may lie at a relatively long distance
from the given site. This is a result of the slows,R−dd decay
of the amplitude of the Friedel oscillations ind dimensions,
whereR is the distance from the impurity site. The situation
is very reminiscent of the Weiss molecular field of an itiner-
ant magnet, where the RKKY spin-spin interactions have a
long-range character for the very same reason, being as they
are a reflection of similar Friedel oscillations. Furthermore,
as we will explicitly show, the leading corrections[to order
OsW2d] at weak disorder take the form of a linear superpo-
sition of contributions from single impurity scatterers, and

FIG. 3. Power law exponenta as a function of disorder strength
measured by the standard deviationW. Full lines are the effective
model results, and dashed lines are thestatDMFT results. The hy-
bridizationV is taken to be 0.5 andEf =−1. The chemical potential
is m=−0.1 (upper lines), and −0.5(lower lines). The onset of NFL
behavior occurs ata=1.
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thus of a sum of independent random numbers, for which we
expect the central limit theorem to hold.

To obtain the precise form of this distribution, it therefore
suffices to compute the variance

sR
2 = ksdDcj

Rd2l, s5.4d

to leading order in disorder strength. To compute the fluctua-
tions dDcj at weak disorder, we note that the cavity fieldDcj
can be computed if we consider a particular site with« j =0
(call it site 0), and compute its Green’s function in a random
medium. At zero frequency for this site

Dco = m − 1/Goo. s5.5d

The corresponding variation is

dDco = dGoo/sGood2. s5.6d

We still need to compute the fluctuationdGoo, which can be
expanded in powers of the random potential« j. In doing this,
we have ignored the interaction renormalizations of the ran-
dom potential for conduction electrons. We will return to
reexamine this effect in Appendix B. Note, however, that in
the absence of interactions in the environment of a given site,
the following expressions provide the exact leading contri-
butions at weak disorder.

To leading order, we can write

dGoo = o
j

« jsGojd2 + Os«2d. s5.7d

This gives

sR
2 = CW2 + OsW4d, s5.8d

where

C = o
j

s jÞ0d

FRe
sGojd2

sGood2G2

. s5.9d

The Green’s function sumC will numerically depend on the
lattice geometry, but will generally be a dimensionless num-
ber of order one.

The distribution of renormalized disorder«̃=«+dDc
R is

given by a convolution of the distributionsP1s«d and
P2sdDc

Rd

Ps«̃d =E
−`

`

dv P1s«̃ − vdP2svd. s5.10d

If the bare distribution is bounded,(e.g., a standard “box”
distribution), then Gaussian tails will emerge due to the fluc-
tuations indDc

R, and the “size” of the tails will be determined
by an effective disorder corresponding toWeff

s0d=WÎC. Here,
the superscripts0d indicates that we ignored the interaction
renormalizations. In Appendix B, we argue that the effective
scattering potentialsF j will further renormalize the disorder
distribution, but the Gaussian tails will remain as its generic
feature.

Now we present numerical results which provide strong
evidence for the universality of the renormalized disorder.

Figure 4 shows the results obtained within thestatDMFT
(Ref. 18) for uniform and binary disorder distributions with
the same standard deviationW=0.1. As anticipated by Eq.
(5.8), the fluctuations of the cavity bath acquire an approxi-
mately Gaussian form with the same variance for both bare
disorder distributions, panel(b). The renormalized disorder
distribution Ps«̃d exhibits long tails, panel(c), although the
bare distributions are bounded, panel(a). These Gaussian-
like tails are the main universal feature of the renormalized
disorder, and they are crucial for the appearance of the sin-
gular behavior inPsTKd which leads to the formation of the
Griffiths phase.

StatDMFT results in Fig. 5 provide further illustration of
the universality. The upper panel shows that the distributions
of Kondo temperatures for uniform and binary bare disorder
distributions with the same standard deviationW are qualita-
tively the same. The exponenta, which determines the slope
of the distribution tails, is shown at the lower panel as a
function ofW. It depends very weakly on the particular form
of disorder distribution.

C. Localization effects

In the strict DMFT formulationa< t2roJ/2W2, where
ro;rav is simply the(algebraic) average DOS of the con-
duction electrons, which therefore remains finite even at the
localization transition.30 If J is chosen to be large enough, the
above seems to suggest that the Griffiths phase may not
emerge before the electrons localize atW=Wc,1/rav. How-
ever, in a theory that includes localization, the Kondo spins
do not see the average, but rather thetypical DOS of the
conduction electrons.21,31 Thus, in the NFL criterion, Eq.
(3.10), one should actually replacero→rtyp, a quantity that

FIG. 4. StatDMFT results for the disorder distributions. Univer-
sal Gaussian-like tails appear in the cavity field fluctuations, panel
(b), and the renormalized disorder distributions, panel(c), even
though the bare disorder distributions are bounded(uniform and
binary), panel(a). We usedV=0.5, Ef =−1, andm=−0.5.
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becomes very small(and eventually vanishes) as the Ander-
son transition is approached, viz.

rtyp = AsWc − Wdb, s5.11d

whereA andb are constants. We thus get

WNFL
2 =

1

2
At2JsWc − WNFLdb. s5.12d

This transcendental equation cannot be solved in closed form
in general, but an approximate solution can be found for
Wc

2−b /At2J!1. In this case, the quantitydW=1−WNFL/Wc
will be small, and to leading order indW

WNFL = Wc − sAt2J/2d−1/bWc
2/b , Wc. s5.13d

Therefore, the Griffiths phase emerges strictlybefore the
transition is reached.

VI. ELECTRONIC GRIFFITHS PHASE IN THE VICINITY
OF THE METAL-INSULATOR TRANSITION

Previous work21 has shown that the electronic Griffiths
phase appears also in a single band Hubbard model, as a
precursor to the Mott-Anderson metal-insulator transition
(MIT ). Since the Hubbard model at half filling is equivalent
to the charge-transfer model32 of the MIT, we examine in this
section the appearance of the Griffiths phase within this
model, which can be considered a version of the Anderson
lattice model that we examined in our approach.

The charge transfer model has been used to describe the
Mott metal-insulator transition for various systems, including

copper oxides.33 It consists of a two-band model, where one
of the bands is narrow, and has large on-site interactionU
(Copperd band), while the other band is broad enough that
electron-electron interactions can be neglected(Oxygen p
band). A disordered version of this model is also appropriate
to describe the Mott-Anderson transition21 in doped semi-
conductors such as Si:P. Here, the narrow band corresponds34

to the impurity band of the phosphorus donors, while the
broad one is the conduction band of silicon. This model is
given exactly by the Hamiltonian of Eq.(2.1), but supple-
mented by the constraint

nf j + ncj = 1, s6.1d

which can be enforced by adjusting the value of the chemical
potential. Herenf j andncj are the average number of conduc-
tion and f electrons on sitej , and the overbar denotes the
average over disorder. In the mean field slave boson ap-
proach, the average occupancy of thef site is equal to

nf j = 1 −Zj . s6.2d

As the f-electron energy level is decreased(uEfu increased),
the occupancy of thef sites becomes larger: The charge is
“transferred” from the conduction band. The transition to the
Mott insulator is found for sufficiently largeuEfu. At least
within DMFT, this metal-insulator transition has the same
character as the more familiar Mott transition in a single
band Hubbard model. As an illustration, we show in Fig. 6
the number of conduction electrons per site,nc=Z, as a func-
tion of Ef, in the clean limit.

We have solved our effective model in the parameter re-
gime relevant to the approach to the Mott-Anderson transi-
tion, and the results demonstrate the emergence of an elec-
tronic Griffiths phase in the same fashion as for the Anderson
lattice model, consistent withstatDMFT results.21 Here, the
f-level energy in Fig. 7 is measured with respect to the
middle of the conduction band, and not with respect to the
chemical potential as in Sec. IV. For the parameters used in
Fig. 7, the system is in the mixed valence regime, not in the
Kondo limit, and stronger disorder is needed for the appear-
ance of the NFL electronic Griffiths phase, again in close
agreement withstatDMFT results.21 These results demon-

FIG. 5. StatDMFT results for the distribution of Kondo tempera-
tures for uniform and binary bare disorder distributions(upper
panel). The lower panel shows the exponenta as a function of
disorder strength. The results are qualitatively the same regardless
of the specific form of the disorder distribution. We usedV=0.5,
Ef =−1, andm=−0.5.

FIG. 6. Number of conduction electrons per site as a function of
the f-level energyEf. The approach to the insulating phase is linear,
nc,Ef −Ef

c, whereEf
c is the critical value for thef-level energy. The

hybridizationV=0.5, andEf is measured with respect to the middle
of the conduction band.
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strate that our effective model proves capable to describe the
emergence of the electronic Griffiths phase as a universal
phenomenon in correlated electronic systems with disorder.

VII. SUMMARY AND OUTLOOK

In this paper we have identified an analytically solvable
infinite range model, which captures the emergence of
electronic Griffiths phases found within the more generic
statDMFT approaches.18,20,21In this effective model, a spe-
cific distribution of disorder is postulated, leading to a
power-law distribution of local Kondo temperatures and
NFL behavior for sufficiently strong disorder. We have also
presented arguments explaining how this specific form of
randomness is universally generated by renormalizations due
to disorder-induced fluctuations of the conduction bath. In
this sense our effective model can be regarded as a(stable)
fixed point theory of electronic Griffiths phases.

The main motivation for introducing this effective model
lies in its simplicity, allowing an analytical solution, and thus
providing further insight into the mechanism for the emer-
gence of the electronic Griffiths phase. Nevertheless, an es-
sential ingredient is still missing from our Griffiths phase
theory, namely, the intersite RKKY interactions between
Kondo spins. According to the existing picture, all the spins
with TK,T will not be Kondo screened, thus providing a
large contribution to thermodynamic response. These decou-
pled spins will, however, not act as free local moments, but
will feature dynamics dominated by frustrating intersite
RKKY interactions. Recent experiments on disordered
Kondo alloys indeed seem to suggest the presence of low
temperature glassy dynamics with a negligible freezing
temperature.14,23The simplifications introduced by our effec-
tive model open an attractive avenue to incorporate both the
Kondo effect and the RKKY interaction in a single theory.
This fascinating direction remains a challenge for future
work.
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APPENDIX A: FLUCTUATIONS IN dDcj
I

In Sec. V we have ignored the fluctuations in the imagi-
nary part of the cavity functiondDcj

I . The corresponding con-
tribution to the low-TK tail is subleading, as we now show.
We need to focus on rare events that produce exceptionally
small values of the local conduction electron DOSr j

=− 1
pGcjs0d. Using Eq.(5.1), and ignoring the fluctuations in

dDcj
R, we see that low values forr j correspond to exception-

ally high values fordDcj
I . We therefore need to compute the

form of the high-dDcj
I tail of PsdDcj

I d. Just as for the real part,
we can estimate the fluctuations ofdDcj

I by calculating the
second moment,

sI
2 = ksdDcj

I d2l, sA1d

and we get

sI
2 = CIW

2 + OsW4d, sA2d

where

CI = o
j

s jÞ0d

FIm
sGojd2

sGood2G2

. sA3d

In this approximation, the quantitydDcj
I has a Gaussian dis-

tribution, and we find

PsTKd , TK
−1 expH−

J2

2p2sI
2 ln2sD/TKdJ . sA4d

As we can see, because the “log” in the exponent has an
extra power of two, this distribution is log-normal and not
power law. Therefore thedDcj

I fluctuations, at least when
treated on the Gaussian level as we have done, do not lead to
a singularPsTKd distribution. Thus, to leading order we can
ignore these fluctuations when examining the emergence of
the electronic Griffiths phase.

APPENDIX B: INTERACTION RENORMALIZATIONS

In these estimates, we have omitted an important ingredi-
ent, the fact that Kondo disorder itself will produce addi-
tional scattering, i.e., disorder in the conduction channel,
which needs to be self-consistently determined. As we have
shown in previous work,18 this results in a distribution of
effective scattering potentialsF j, corresponding to the
Kondo spins(note that in the uniform case, theF j-s are the
same on all sites, resulting in no scattering, but contributing
to the formation of the Kondo gap). The resulting scattering,
in the weak disorder limit again can be considered as a
Gaussian distributed potential of width

WF = kF j
2l1/2. sB1d

Note however that this additional “Kondo” scattering does
not enter directly(at site 0) in the solution of the local Kondo

FIG. 7. Distribution of local Kondo temperatures for several
levels of disorder. The total number of electrons per unit cell is
fixed to 1. The disorder ranges fromW=0.2 to 0.38. We usedV
=0.5 andEf =−1.3, whereEf is measured with respect to the middle
of the conduction band. The inset shows the exponenta as a func-
tion of the disorder strength. The NFL phase occurs foraø1.
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problem, since the localf site “sees” the correspondingc site
with the f site removed. However, the presence ofF j-s on all
other sitess j Þ0d does modify the form ofdDcj

R which, there-
fore, has to be computed by including this additional scatter-
ing. At weak disorder, we expect

kFi
2l = C1Weff

2 , sB2d

where the constantC1 measures the response of the Kondo
spins to the hybridization disorder. Note thatWeff enters here,
since theF j-s are obtained from the solution of local Kondo
problems, which are determined by the strength of the renor-
malized site disorder, as modified by hybridization fluctua-
tions. We therefore need to computeWeff self consistently,
and we get

Weff
2 = W2 + CsW2 + C2Weff

2 d, sB3d

or

Weff =Î 1 + C

1 − CC2
W. sB4d

This reasoning, valid for weak bare disorder illustrates
how the effective disorder is generated in the conduction
band even if it originally was not there, or is enhanced due to
additional Kondo scattering, if already present. In addition,
these arguments illustrate how Gaussian tails are generated
for the renormalized disorder, even if they are not introduced
in the bare model. Of course, nonlinear effects at stronger
disorder cannot be accounted for in this simple fashion,
which is especially true for the consideration of the addi-
tional scattering introduced by disordered Kondo spins. Nev-
ertheless, the simple arguments that we presented illustrate
how universality is produced by renormalizations due to cav-
ity field fluctuations, and seem to capture the essential fea-
tures of the emergence of the electronic Griffiths phase.
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