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Effective model of the electronic Griffiths phase
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We present simple analytical arguments explaining the universal emergence of electronic Griffiths phases as
precursors of disorder-driven metal-insulator transitions in correlated electronic systems. A simple effective
model is constructed and solved within dynamical mean field theory. It is shown to capture all the qualitative
and even quantitative aspects of such Griffiths phases.
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I. INTRODUCTION the simplicity of this DMFT effective model makes it pos-
The recent discovery of a number of heavy fermion ma-Sible to describe all the qualitative features of the solution
using simple analytical arguments, thus eliminating the need

terials with non-Fermi liquid(NFL) thermodynamic and for | | ical . in the d . f
transport properties has been followed by a significant theglO" 1arge scale numerical computations in the description o

retical effort to understand the origin of the NFL behadior. the electronic Griﬁithg phasg. This may be crucial in order to.
In the cleaner systems, the proximity to a quantum critical"’.‘ddress more com.pllcated |ssues,_such as Fhe role_ of addi-
point appears to dominate many of the observeq“on‘_"ll Ruderman-Kittel-Kasuya-Yosid&KKY ) interactions
propertie€1° In other heavy fermion systems disorder N disordered Kondo alloy$: , .

seems to play a more essential role and appears to be cruciﬁl This paper is organized as follows. Section Il introduces

for understanding the NFL behavitrl” Many experiments the effective model for the electronic Griffiths phase as a
can be explained by the disordered Kondo mddathich PMFT model with a Gaussian distribution of random site

has recently been put on a much stronger microscopic ngrgies. This model is siolved'analytically in the Kondo

foundationt8—20 imit in _Sec. I, a_nd numerically in Sec. IV. The arguments
The emergence of electronic Griffiths phases in models o?xp'a'ﬂ'”g the universal aspects of the form_ of the renormal-

correlated electrons has been establif@das a universal ized dlsorQer are present.eq in Sec. V..Sectl_on Vi establishes

phenomenon, within a class of extendgstatistical’)y Dy- & connection with the Griffiths phase in a smgl_e band Hub-

namical mean field theoryDMFT) approached! This bard model, and Sec. VII contains our conclusions.

staDMFT method provides an exa¢humerica) treatment

of localization in the absence of interactions, and reduces to Il. MODEL

the standard DMFT equatioffsin the absence of disorder.

When both interactions and localization are present, non- We consider the Anderson lattice model where the disor-

Fermi liquid behavior emerges universaifias a precusor of der is introduced by random site energigsn the conduc-

a disorder-driven metal-insulator transition, due to a venyfion band, as given by the Hamiltonian

broad distributionP(Ty) of local Kondo temperatures. This

-— e —wele
distribution has a lowFy tail of the form P(T)~T¢ ™%, in- 1= t%g (CiyCjo + H.C) +% (&) = W)C},Cior
dependent of the microscopic details or the specific form of
disorder. The exponent=a(W) is found to be a smooth, +V2 (el fiptHe) + 2 Eff, fi, + U £l £,
monotonically decreasing function of the disorder strength jo jo i
W, and the NFL behavior emerges f@v greater than the (2.1

critical valueWyg, corresponding tax<1, whenP(Ty) be- o

comes singular at small,. As in other Griffiths phases, the Wherefj, andc;, are annihilation operators fdrand con-

thermodynamic and transport properties in this NFL regiordUction electrons, respectivel.is the hybridization param-
are dominated by rare events, which in this model corre€t€r, ancE; is the f-electron energy. We assurke—, and

spond to sites with the lowest Kondo temperatures. choose a Gaussian distribution of random site energies for
In this paper, we show that the same behavior is found ifhe conduction band
a simpler, standard DMFT version of the model with a judi- P(s;) = (2mW2) 112 exp{— %Sizlwz}_ (2.2)

cious choice of bare disorder. We should emphasize that lo-

calization is not present in this effective model, but the Grif-In Sec. V we will explain how this particular disorder distri-
fiths phase emerges in qualitatively the same fashion as ibution comes out naturally from the more genestiaDMFT
the above more realistic calculations. We discuss how thapproach.

specific disorder distribution which is hand-picked in the ef- To solve these equations, we use the DMFT appréach,
fective model is dynamically generated by fluctuation effectswhich is formally exact in the limit of large coordination. We
within the staDMFT formulation, elucidating the origin of concentrate on a generic unit cglicontaining & site and its
the universality of the Griffiths phase behavior. In addition,adjoining conduction electron Wannier state. After integrat-
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ing out the conduction electron degrees of freedom, we obEg. (2.6) in this case becomes
tain the effective action for thé electron on sitg 2472

Oj(w) = ——. (2.9

w—sfj

B B
Smp(j):Edef dT’f,-TU(T)W(T— 7)(d,+ Ef)
% o

I1l. ANALYTICAL SOLUTION

*Ag(7=m)]fjo(7). (2.3 IN THE KONDO LIMIT
Here, the restriction of no doublesite occupancy is im- Before presenting a numerical solution of the slave boson
plied. The hybrld_lzatlon fu_nct|_0|zt\fj between the electron Egs. (2.7) and (2.8) supplemented by the self-consistency
and the conduction bath is given by condition of Eq.(2.5), we will solve these equations analyti-
> cally in the Kondo limit for agivenconduction bath. A com-
Ad(iw,) = v 2.4 parison with the numerical solution will show that the self-
fJ( n) . ( )

ion—gj+pn—Adlioy) consistency does not qualitatively change the analytical
results.

The slave boson equations simplify in the Kondo limit
Z;—0. The integral in Eq(2.7) is dominated by the low-
frequency region, and the frequency dependenca.imand
tj can be neglected. Therefore, after integration

The self-consistency condition for the conduction bidv-

ity field) assumes a simpler form for the semicircular model
density of state$? which we use for simplicity. All the quali-
tative features of our solution are independent of the th
form of the lattice, and the quantitative results depend only
weakly on the details of the electronic band structure. For ;= — Zj RgA(0)], (3.1
this modelA (i w,) =t°G(iw,,), whereG(iw,) is the disorder-
averaged Green’s function of the conduction electrons, an
the self-consistency is enforced by

where, for simplicity, we took a semicircle conduction bath
with u=0. In the integral of Eq(2.8), the frequency depen-
dence ofAy; can also be neglected. Introducing the energy

G_C(iwn) = ([iw, - o+ - tzgc(iwn) _ (Dj(iwn)]'1>, cutoff D and using Eq(3.1) we obtain
2 2 \2
(2.9 z,~ oéi + (27Tt on) o oo Igetng)gil20,
where mpoV
2 2 \2 2
e + (mtop,) &7 J
_ V2 =ZO_It2—20 exp{—ﬁ(l—;)}. (3.2
q)j(lwn) = (2.6) (7t°po) Po €j

iy = B~ 2gj(iwp)” . . ,
Here, p, is the density of state€DOS) of the conduction

and Efj is the f-electron self-energy derived from the impu- electrons at the Fermi level=2V?/|E{|, and Z,=Z(g;=0).
rity action of Eq.(2.3). From a technical point of view, The Kondo temperature is proportional to the quasi-particle
within DMFT the solution of the disordered Anderson lattice weight, TKj:7TV2poZ]-. In the limit ;> J/2 and neglecting a
problem reduces to solving an ensemble of a single impurityveak site-energy dependence in the prefactor, we obtain
problems supplemented by a self-consistency condition. 101

We will solve the system of Eq$2.3—(2.6) at zero tem- Tk~ Te€™, 3.3
perature using the slave boson mean field theoryyhere the site dependent coupling constant is
approacit*?>This approximation is knowii—2°to reproduce
all the qualitative and even most of the accurately quantita- = t°pod (3.4)
tive features of the exact DMFT solution @t0. It intro- 17 g2 '
duces renormalization factotguasiparticle weighysZ; and . : . .
renormalizedf-energy levelseq;, which are site-dependent and Ty is the Kondo temperature in the clean linior ¢,
guantities in the case of a disordered lattice. These paranr0)- From these equations, we can immediately find the de-
eters are determined by the saddle-point slave boson equsired distribution of local Kondo temperatureB(Ty)
tions (see Ref. 26 for more detajlsvhich, on the real fre- =Ple(Tx)]|de/dTy|, which (up to a negligible logarithmic

guency axis, assume the form correction is given asymptotically by
y P(Ty) = (TW/ TR, (3.5
—lfd Im{;}—l(l—z) (2.7 with
a @ w—sfj—ZjAfj(w) - 2 1 '
B w = 2 3.6
a = ZWZ .

0
1 Agj(w) 1 This expression is one of the central results of this paper. It
p do Im w-g1 - ZAn(w) - E(sfj -Ep). (2.9 has exactly the form expected for a Griffiths phase, where

T o the exponent characterizing the local energy scale distribu-
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tion assumes a parameter-dependamablg form. j

To show how the NFL behavior appears due to the singu- 100}
larity in P(Tk), we use the standard expression due to Wilson
for the magnetic susceptibily

P(Z)

X(TlTK) = (37)

_Cc
T+aTk'
which is an excellent approximation for a single Kondo
impurity. HereC anda are constants. In the disordered case,
we can split the average susceptibility x(T)

0.01f

0000 000l  _ 00l 01
= [oP(Tx(T, T dTk in a regular “bulk” part Z
“ FIG. 1. Distribution of the local Kondo temperatures. The dis-
_ order ranges from moderai%/=0.1 to strongW=0.4. We used/
Xr(T) - J P(TK)X(T!TK)dTK! (38) :0.5, Ef:_l, and,lL:_o.l.
A

which belong to the tail of the Gaussian distribution. For

and a potentially singular part . . ;
P y sing P example, foW=0.3, sites withe;= 0.4 (which correspond to

A a1 Z=0.0)) are already in the power-law regime.
H=cC K 4T , 39 Accordm_g t_o the simplified c_ierlvatlon from Sec. III_, the
XM 1f T+aTk K 3.9 exponenta is inversely proportional t&\2. The numerical
0 results shown in Fig. 2 confirm such behavior for weak and

coming from the tail with low Kondo temperatur¢d is a ~ Moderate disorder. For strong disorder there appear some
crossover Sca}eAt weak disorder’ the exponemis |arge deV|at|0nS from thIS formula, Wh|Ch can be aSCI’Ibed to the

and the distributiorP(Ty) is regular, y(0)=y,+C,/(a-1),  dependence of the DOS at the Fermi level on the disorder
but NFL behavior emerges onee< 1, which corresponds to  Strength. S _
Before we present arguments which justify our effective
W= W, = Vt2poJdI2. (3.10 DMFT model approach, let us make a direct comparison
with the staDMFT results from Ref. 20. In this approach,
very broad distributions of local Kondo temperatures are

havioR® while f | ; . generated foarbitrary distributions of bare disorder. In par-
behavior,” while for <1 a power law divergence is ob- i jay, even if the bare distribution is bounded, sites with

tained, x(T) = T asT—0. The same singularity also leads yjtrarily small Kondo temperatures will exist, and their dis-
to an anomalous behavior in the transport properties, agintion will have a power law tail. This is a consequence of
shown in detail in Refs. 26 and 29. the spatial fluctuations of the conduction electron cavity
field, as we discuss in detail in the next section. In Fig. 3 we
compare the values of the exponertor the effective model
with Gaussian disorder of variana&?, and thestaDMFT

In the above derivation we ignored the fact that the con+esults obtained for @oundeduniform distribution of bare
duction bathA. has to be self-consistently determined. Thisdisorder with the same variance. Remarkably, not only does
will also produce particle-hole asymmetry and an asymmetthe electronic Griffiths phase emerge in the same fashion, but
ric distribution of Kondo temperaturd;. A nonzero chemi- the numerical values of disorder strength determining the
cal potential will further increase this asymmetry. However,onset of NFL behavior are also almost the same. The com-
the numerical solution we obtained using the slave boson
approximation at zero temperature shows that the essential
physics described by Eq$3.3)—3.6) remains qualitatively
correct. The distribution of local Kondo temperatures in the
asymptotic limit is indeed a power laR(Ty) ~ T¢™, where
the exponentr is a decreasing function of disorder. -

Figure 1 shows the distributioR(Ty) for several values 2r .
of the disorder distribution strengW. For the parameters I 1
that we here use, the system is close to the Kondo limit, and 1~ .
the Kondo gap of the clean system is approximately Q04 :
energy units of the half bandwidth of bare DO$he NFL e
behavior appears folv=0.14. We note that in the NFL re- ’ ) 2 ’ ’
gime the power law behavior appears already for the site
energieSs]- which deviate only moderately from the mean FIG. 2. Inverse power law parametﬂfl as a function ofW2.
(zerg value. In other words, the asymptotic behavior is es-For weak and moderate disorder this dependence is linear. \Here
tablishedwell beforewe attain very rare realizations @f =0.5,E;=-1, andu=-0.2.

For a=1 the magnetic susceptibility has a logarithmic diver-
gencex(T) «In(1/T), characteristic of marginal Fermi liquid

IV. NUMERICAL RESULTS
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2, - | - | ' For weak disorder, the corresponding fluctuations are

\ — effective model 1 small, and we can separate
\ --- statDMFT

AC] = Agv + 5AC] (52)

In the following, we compute the distribution function for
the fluctuations of the cavity field, which will lead to the
renormalized form of the disorder distribution function. The
renormalized site energies can be defined as

Zj=gj+ OAF, (5.3
where AT =R 87 (w=0)]. We stress that the cavity fluc-
tuations are present for a general finite coordination elec-
tronic system in the presence of disorder of any kind. In

FIG. 3. Power law exponent as a function of disorder strength

measured by the standard deviatih Full lines are the effective . . . e
model results, and dashed lines are $teeDMFT results. The hy- particular, the disorder in hybridization parametéfsor lo-

bridizationV/ is taken to be 0.5 anB;=—1. The chemical potential &l f-€nergy levelsE, will induce fluctuations in the local
is w=-0.1 (upper lines, and —0.5(lower lineg. The onset of NFL ~DOS even if random site energiesin the conduction band

behavior occurs air=1. are absent. Furthermore, as we argue in the next section, the
renormalized distributiom"(éj) will have universal Gaussian
tails even if the bare distributioR(e;) is bounded. Note that
0A¢j has a real as well as an imaginary p&ﬁt‘cj, due to the

fact that fluctuations locally violate particle-hole symmetry.
However, we show in Appendix A thaiAL- fluctuations, at
least when treated to leading order, do not produce singular
behavior inP(Ty) and therefore can be neglected when ex-

V. ROLE OF SPATIAL FLUCTUATIONS AND THE FORM amining the emergence of the electronic Griffiths phase.
OF RENORMALIZED DISORDER

parison is made for two different values of the chemical po
tential. As we move further away from half filling by chang-
ing the chemical potential, the critical val\tdr, decreases.
That is expected since should be proportional to the bare
(noninteracting DOS at the Fermi level.

B. Gaussian nature of the renormalized distribution
In this section we explain the universal aspects of the

emergence of the electronic Griffiths phase within the morei

generic statistical DMFT. In particular, we show how the : erall rs alreadv for relatively moderat
Gaussian tails in the distribution of renormalized disorde|I CES generally occurs already for a relatively moderate
amount of disorder. In this limit, the relevant distributions

appear for an arbitrary form of the bare disorder. Moreover,_re determined essentially by the central limit theorem,

we present arguments showing that the Griffiths phase a heref lting G o f f the tails RIE )
pears generically as a precursor of the Mott-Anderson metal= erefore resuting In a >aussian form ot the talls 1ee;).
This is precisely what is needed to justify the DMFT effec-

insulator transition. tive model, where such Gaussian tails are assumed from the
A. Universality of the renormalized disorder distribution outset.
) Before engaging in more precise computations of these
_ In the above DMFT formulation, we had to choose a speyjigtriputions, it is worth pausing to comment on the physical
cial form of disorder distribution in order to obtain the de- \4jigity of the assumed Gaussian statistics, i.e., the relevance
sired power-law distribution of Kondo temperatures. Had Weu¢ the central limit theorem in the cases of interest. Quite

chosen a different distribution, the results would not havegenerally, if a certain quantity can be represented as a sum of

held. For example, for a bounded distribution of site ener- large number of independent random variables, then the

gies, there would always be a minimum value of the Kondognra) jimit theorem tells us that the resulting distribution

temperature, and thus no power-law tail. On the other hand;j he Gaussian, irrespective of the specific form of the
from numerical simulations of lattices with finite coordina- istributions of the individual terms in the sum. In our case

t!on, it has bleen est'abhshed that the emergence of the Grifyg fjyctuations of the local cavity field result from Friedel
fiths phase is a universal phenomeﬁBrWh_Y? To under-  qcillations of the electronic wave functions, induced by
stand the reason for this, we note that for finite coordination,q, impurities which may lie at a relatively long distance
(as opposed to the DMFT limitthe cavity bathAc is not 5 the given site. This is a result of the sléwR™?) decay
self-averaging, but is a site-dependent, random quallify ot the amplitude of the Friedel oscillations éhdimensions,
In th'S,StaDMFT fprmulaﬂon, the local conduction electron whereR is the distance from the impurity site. The situation
Green’s function is given by is very reminiscent of the Weiss molecular field of an itiner-
1 ant magnet, where the RKKY spin-spin interactions have a
(5.9 long-range character for the very same reason, being as they
are a reflection of similar Friedel oscillations. Furthermore,
where ®; describes the local scattering of the conductionas we will explicitly show, the leading correctioft® order
electrons off thef shell at sitej, and is given as before by O(W?)] at weak disorder take the form of a linear superpo-
Eqg. (2.6). sition of contributions from single impurity scatterers, and

From detailed numerical studies it has become clear that
he onset of the Griffiths phase in disordered Anderson lat-

Gejliwy) = ’
q('wn) i(l)n — 8]' + M= ACJ(Iwn) - (D](Iwn)

205108-4
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thus of a sum of independent random numbers, for which we

expect the central limit theorem to hold.
To obtain the precise form of this distribution, it therefore
suffices to compute the variance

oR=((3A%)?), (5.4)

to leading order in disorder strength. To compute the fluctua-

tions 6A; at weak disorder, we note that the cavity fiéld
can be computed if we consider a particular site withO

(call it site 0, and compute its Green'’s function in a random

medium. At zero frequency for this site

Ago= = 1IGy,. (5.5
The corresponding variation is
o= 3God/ (Goo)”. (5.6

We still need to compute the fluctuatidi®,,, which can be
expanded in powers of the random potentialin doing this,

we have ignored the interaction renormalizations of the ran-

dom potential for conduction electrons. We will return to

reexamine this effect in Appendix B. Note, however, that in

PHYSICAL REVIEW B), 205108(2004
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FIG. 4. StaDMFT results for the disorder distributions. Univer-
sal Gaussian-like tails appear in the cavity field fluctuations, panel

the absence of interactions in the environment of a given sitqb) and the renormalized disorder distributions, pafw] even

the following expressions provide the exact leading contri
butions at weak disorder.
To leading order, we can write

5Goo=2 £{(Ggy)? + O(&?). (5.7
J
This gives
05=CWP+ O(WH), (5.8
where
i} (Gy)? |?
C= ]2 [Re (Goo)2:| . (5.9

(j#0)

The Green’s function sur@ will numerically depend on the
lattice geometry, but will generally be a dimensionless num
ber of order one.

The distribution of renormalized disord@=e+SAR is
given by a convolution of the distribution®,(s) and
Po(5A)

P(e) = f dw P1(z — 0)Py(w). (5.10

If the bare distribution is boundede.g., a standard “box”
distribution), then Gaussian tails will emerge due to the fluc-
tuations inSAR, and the “size” of the tails will be determined
by an effective disorder corresponding\téczf):w\s’c. Here,
the superscript© indicates that we ignored the interaction

though the bare disorder distributions are boun@eniform and
binary), panel(a). We usedv=0.5,E;=-1, andu=-0.5.

Figure 4 shows the results obtained within tsi2@DMFT
(Ref. 18 for uniform and binary disorder distributions with
the same standard deviati®hi=0.1. As anticipated by Eq.
(5.9), the fluctuations of the cavity bath acquire an approxi-
mately Gaussian form with the same variance for both bare
disorder distributions, panéb). The renormalized disorder
distribution P(g) exhibits long tails, pane(c), although the
bare distributions are bounded, paria). These Gaussian-
like tails are the main universal feature of the renormalized
disorder, and they are crucial for the appearance of the sin-
gular behavior inP(Tx) which leads to the formation of the
Griffiths phase.

. StaDMFT results in Fig. 5 provide further illustration of
the universality. The upper panel shows that the distributions
of Kondo temperatures for uniform and binary bare disorder
distributions with the same standard deviatidrare qualita-
tively the same. The exponeat which determines the slope
of the distribution tails, is shown at the lower panel as a
function of W. It depends very weakly on the particular form
of disorder distribution.

C. Localization effects

In the strict DMFT formulationa=~t?p,J/2W?, where
pPo=pay iS Simply the(algebraig average DOS of the con-
duction electrons, which therefore remains finite even at the
localization transitiorf° If Jis chosen to be large enough, the

renormalizations. In Appendix B, we argue that the effectiveabove seems to suggest that the Griffiths phase may not

scattering potentiald; will further renormalize the disorder

emerge before the electrons localizéN&t W~ 1/p,,. How-

distribution, but the Gaussian tails will remain as its genericever, in a theory that includes localization, the Kondo spins

feature.

do not see the average, but rather thpical DOS of the

Now we present numerical results which provide strongconduction electrond-3! Thus, in the NFL criterion, Eq.

evidence for the universality of the renormalized disorder

20510
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FIG. 6. Number of conduction electrons per site as a function of
the f-level energyE;. The approach to the insulating phase is linear,
B 10+ . ne~ E¢—Ef, whereEf is the critical value for thé-level energy. The
hybridizationV=0.5, andE; is measured with respect to the middle
) of the conduction band.
—— Uniform
——- Binary
0.0 L . 3 . )
.05 T 025 copper oxides? It consists of a two-band model, where one

of the bands is narrow, and has large on-site interadtlon
(Copperd band, while the other band is broad enough that
FIG. 5. StaDMFT resullts for the distribution of Kondo tempera- electron-electron interactions can be negleat@stygen p

tures for uniform and binary bare disorder distributionoper  band. A disordered version of this model is also appropriate
pane). The lower panel shows the exponemtas a function of to describe the Mott-Anderson transitfdrin doped semi-
disorder strength. The results are qualitatively the same regardlesgnductors such as Si:P. Here, the narrow band Corresﬁbnds
of the specific form of the disorder distribution. We usédO0.5, to the impurity band of the phosphorus donors, while the
Er=-1, andu=-0.5. broad one is the conduction band of silicon. This model is

given exactly by the Hamiltonian of E@2.1), but supple-
becomes very smafnd eventually vanishgss the Ander- mented by the constraint
son transition is approached, viz.

ng+ng =1, (6.1
= —-W)»A8
Pyp = AlWe = W)F, (519 which can be enforced by adjusting the value of the chemical
whereA and 8 are constants. We thus get potential. Heren;; andn,; are the average number of conduc-
1 tion andf electrons on sitg, and the overbar denotes the
WﬁlFL=—At2~](Wc‘WNFL)B- (5.12) average over disorder. In the mean _flel_d slave boson ap-
2 proach, the average occupancy of thsite is equal to
This transcendental equation cannot be solved in closed form ng=1-27;. (6.2

in general, but an approximate solution can be found for ) ,
W2 B/ ARJ<1. In this case, the quantithV=1-Wiy, /W, As the f-electron energy level is decreasg@H;| increasey .
wiCII be small, and to leading order isW the occupancy of thé sites becomes larger: The charge is

“transferred” from the conduction band. The transition to the
WiirL = W, — (ARI2) VAWZE < W (5.13  Mott insulator is found for sufficiently largéE|. At least
within DMFT, this metal-insulator transition has the same
character as the more familiar Mott transition in a single
band Hubbard model. As an illustration, we show in Fig. 6
the number of conduction electrons per sitgsZ, as a func-
VI. ELECTRONIC GRIFFITHS PHASE IN THE VICINITY tion of Ey, in the clean limit. _
OFE THE METAL-INSULATOR TRANSITION _ We have solved our effective model in the parameter re-
gime relevant to the approach to the Mott-Anderson transi-
Previous work! has shown that the electronic Griffiths tion, and the results demonstrate the emergence of an elec-
phase appears also in a single band Hubbard model, ast@nic Griffiths phase in the same fashion as for the Anderson
precursor to the Mott-Anderson metal-insulator transitionlattice model, consistent witestaDMFT results?® Here, the
(MIT). Since the Hubbard model at half filling is equivalent f-level energy in Fig. 7 is measured with respect to the
to the charge-transfer modébf the MIT, we examine in this middle of the conduction band, and not with respect to the
section the appearance of the Griffiths phase within thishemical potential as in Sec. IV. For the parameters used in
model, which can be considered a version of the Andersofrig. 7, the system is in the mixed valence regime, not in the
lattice model that we examined in our approach. Kondo limit, and stronger disorder is needed for the appear-
The charge transfer model has been used to describe thace of the NFL electronic Griffiths phase, again in close
Mott metal-insulator transition for various systems, includingagreement withstaDMFT results?® These results demon-

Therefore, the Griffiths phase emerges stridigfore the
transition is reached.
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S o4l i
R é APPENDIX A: FLUCTUATIONS IN  8AL,
ooil In Sec. V we have ignored the fluctuations in the imagi-

nary part of the cavity functioﬂA'Cj. The corresponding con-

P ] tribution to the lowT tail is subleading, as we now show.

L E— —gor 1 We need to focus on rare events that produce exceptionally
small values of the local conduction electron DQ
:—chj(O). Using Eq.(5.1), and ignoring the fluctuations in

5A'£ we see that low values fgs; correspond to exception-

FIG. 7. Distribution of local Kondo temperatures for several

levels of disorder. The total number of electrons per unit cell is“=cj ' |
fixed to 1. The disorder ranges froW=0.2 to 0.38. We use ally high values foréA.;,. We therefore need to compute the

: (. |
=0.5 andE;=-1.3, where; is measured with respect to the middle form of the _h'gh‘Sch tail of P(élch). JUISt as for the r_ea| part,
of the conduction band. The inset shows the exponeas a func- We can estimate the fluctuations 6A; by calculating the

tion of the disorder strength. The NFL phase occursdferl. second moment,
2_ 132
strate that our effective model proves capable to describe the o1 =((08e)%, (AL)
emergence of the electronic Griffiths phase as a universaind we get
phenomenon in correlated electronic systems with disorder. 0,2: C W2+ O(WA). (A2)
VIl. SUMMARY AND OUTLOOK
where

In this paper we have identified an analytically solvable )12
infinite range model, which captures the emergence of c=3 {Im (Go; } (A3)
electronic Griffiths phases found within the more generic ! i (Goo)? | -
staDMFT approache&?2%21In this effective model, a spe- (120)

cific distribution of disorder is postulated, leading to a ] o o ] )
power-law distribution of local Kondo temperatures and!n this approximation, the quantityA; has a Gaussian dis-
NFL behavior for sufficiently strong disorder. We have alsotribution, and we find

presented arguments explaining how this specific form of 72

randomness is universally generated by renormalizations due P(Tx) ~ TQl expy - - IN2(DITy) (- (A4)
to disorder-induced fluctuations of the conduction bath. In 2m G’IZ

this sense our effective model can be regarded @sahle  As we can see, because the “log” in the exponent has an
fixed point theory of electronic Griffiths phases. extra power of two, this distribution is log-normal and not
The main motivation for introducing this effective model power law. Therefore theSAL. fluctuations, at least when
lies in its simplicity, allowing an analytical solution, and thus treated on the Gaussian level as we have done, do not lead to
providing further insight into the mechanism for the emer-a singularP(T) distribution. Thus, to leading order we can

gence of the electronic Griffiths phase. Nevertheless, an eggnore these fluctuations when examining the emergence of
sential ingredient is still missing from our Griffiths phase ne electronic Griffiths phase.

theory, namely, the intersite RKKY interactions between

Kondo spins. According to the existing picture, all the spinS  AppPENDIX B: INTERACTION RENORMALIZATIONS

with T, <T will not be Kondo screened, thus providing a

large contribution to thermodynamic response. These decou- In these estimates, we have omitted an important ingredi-
pled spins will, however, not act as free local moments, bu€nt, the fact that Kondo disorder itself will produce addi-
will feature dynamics dominated by frustrating intersitetiona| Scattering, i.e., disorder in the conduction channel,
RKKY interactions. Recent experiments on disorderethiCh needs to be Self—consistently determined. As we have
Kondo a||oys indeed seem to Suggest the presence of |o\§hOWﬂ in previous WOI'RE,3 this results in a distribution of
temperature glassy dynamics with a negligible freezingeffective scattering potentialsb;, corresponding to the
temperaturé423The simplifications introduced by our effec- Kondo spins(note that in the uniform case, tiig-s are the
tive model open an attractive avenue to incorporate both thame on all sites, resulting in no scattering, but contributing
Kondo effect and the RKKY interaction in a single theory. to the formation of the Kondo gapThe resulting scattering,

This fascinating direction remains a challenge for futurein the weak disorder limit again can be considered as a
work. Gaussian distributed potential of width
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The authors acknowledge fruitful discussions with PiersNote however that this additional “Kondo” scattering does
Coleman, Antoine Georges, Qimiao Si, and Subir Sachdewnot enter directlyat site Q in the solution of the local Kondo
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problem, since the locdlsite “sees” the correspondirgsite 1+C

with the f site removeddowever, the presence df.-s on all Weir =\ 7 — CCZW' (B4)

other sitegj # 0) does modify the form oﬁAffj which, there-

fore, has to be computed by including this additional scatter- This reasoning, valid for weak bare disorder illustrates

ing. At weak disorder, we expect how the effective disorder is generated in the conduction
(%) = C\WR,, (B2) band even if it originally was not there, or is enhanced due to

additional Kondo scattering, if already present. In addition,
where the constant,; measures the response of the Kondothese arguments illustrate how Gaussian tails are generated
spins to the hybridization disorder. Note thi; enters here, for the renormalized disorder, even if they are not introduced
since thed;-s are obtained from the solution of local Kondo in the bare model. Of course, nonlinear effects at stronger
problems, which are determined by the strength of the renordisorder cannot be accounted for in this simple fashion,
malized site disorder, as modified by hybridization fluctua-which is especially true for the consideration of the addi-
tions. We therefore need to computé; self consistently, tional scattering introduced by disordered Kondo spins. Nev-

and we get ertheless, the simple arguments that we presented illustrate
W2 = W2 + (W2 + C W2 B3 _hovv_ umversahty is produced by renormalizations due to cav-
eff ( 2Wer), (B3) ity field fluctuations, and seem to capture the essential fea-
or tures of the emergence of the electronic Griffiths phase.
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