
Phase diagram of the two-leg Kondo ladder

J. C. Xavier and E. Miranda
Instituto de Física Gleb Wataghin, Unicamp, Caixa Postal 6165, Campinas SP 13083-970, Brazil

E. Dagotto
National High Magnetic Field Lab and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Received 5 March 2004; revised manuscript received 22 April 2004; published 23 November 2004)

The phase diagram of the two-leg Kondo ladder is investigated using computational techniques. Ferromag-
netism is present, but only at small conduction electron densities and robust Kondo couplingJ. For densities
n*0.4 and any Kondo coupling, a paramagnetic phase is found. We also observed spin dimerization at
densitiesn=1/4 andn=1/2. Thespin-structure factor at smallJ peaks atqW =s2n,0dp for n&0.5, and atqW
=sn,1dp for n*0.5. The charge structure factor suggests that electrons behave as free particles with spin -1/2
(spin-0) for small (large) J.
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Numerical studies provide valuable unbiased information
about strongly correlated electronic systems. However, cur-
rent computer limitations restrict most investigations to one-
dimensional (1D) models or small two-dimensional(2D)
clusters. Unfortunately, the physics found in 1D models is
often qualitatively different from results observed in real ma-
terials. A possible procedure to start an investigation of real-
istic 2D models is by coupling 1D systems together. This
approach has been used with great success in the case of the
t-J model, where numerical methods, such as Exact
Diagonalization1 and Density Matrix Renormalization Group
(DMRG)2 were helpful in elucidating several properties of
the 2D model through studies oft-J ladders.1,3–5

The ground-state properties of the 2D Kondo lattice
model (KLM ) remain mainly unexplored using unbiased
methods. The KLM is the simplest model believed to de-
scribe heavy-fermion materials,6 and, thus, a better under-
standing of its ground state is much needed. The main goal
of the present work is to provide the first steps toward deter-
mining the phase diagram of the two-leg Kondo ladder(2-
LKL ). The information provided here will hopefully be as
relevant for KLM 2D systems as ladder studies were in the
t-J model context. TheN-leg Kondo ladders consist ofN
Kondo chains coupled by the hopping term. As shown below,
the phase diagram of the 2-LKL is fairly different from the
1D KLM. We considered the 2-LKL on 23L clusters and a
Hamiltonian

H = − t o
ki,jl,s

sci,s
† cj ,s + H.c.d + Jo

j

Sj ·sj ,

wherecjs annihilates a conduction electron at sitej with spin
projection s, Sj is a localized spin-12 operator, sj

= 1
2oabcj ,a

† sabcj ,b is the conduction electron spin-density op-
erator, andsab are Pauli matrices. Hereki j l denotes nearest-
neighbor sites,J.0 is the Kondo coupling constant between
conduction electrons and local moments, andt=1 fixes the
energy scale. The total number of conduction electrons isN
andn=N/2L. This model was investigated with the DMRG
technique2 using open boundary conditions. The finite-size

algorithm for sizes up to 23L=80 was applied, keeping up
to m=1200 states per block. The discarded weight was typi-
cally about 10−5–10−9 in the final sweep.

Let us first briefly describe what is currently known about
the KLM ground-state phase diagram. In 1D, for low elec-
tronic density and/or largeJ, the ground state is
ferromagnetic7 (see also Ref. 8). The rest of the phase dia-
gram is characterized by a paramagnetic phase, except for a
small wedge of ferromagnetism for fillings aboven=0.5
(Ref. 9). Furthermore, spin dimerization has recently been
discovered atn=0.5 (Ref. 10). Most ground-state investiga-
tions in higher dimensions have been limited to approximate
approaches. Doniach11 pointed out the possible existence of a
Kondo-lattice quantum critical point(QCP) due to the com-
petition between the Ruderman-Kittel-Kasuya-Yosida
(RKKY ) interaction, which favors antiferromagnetism
(AFM), and the Kondo effect, which favors paramagnetism.
The full mean-field phase diagram of the 3D Kondo lattice
was obtained by Lacroix and Cyrot.12 They found that, at
small J, there is a critical densitync separating a ferromag-
netic phase from an antiferromagnetic one. For sufficiently
largeJ, however, the Kondo effect dominates and the system
is paramagnetic. Further studies also considered an explicit
exchange interaction between localized spins.13 Recently,
quantum Monte Carlo(QMC)14 and DMRG15 investigations
of the half-filled Kondo lattice in small clusters confirmed
the existence of a QCP atJ,1.45 in agreement with previ-
ous approximate approaches.16 Moreover, DMRG results on
N-leg Kondo ladders at half filling have shown that the spin
and charge gaps are nonzero for any number of legs and
couplingJ.15 A two-channel version has also been studied at
half filling.17 Here, the two-leg Kondo ladderawayfrom half
filling is considered.

In Fig. 1(a), the schematic phase diagram of the 2-LKL is
presented. We have identified three phases characterized by
full ferromagnetism(FM), partially saturated FM(PFM), and
paramagnetism(PM). The approximate boundaries between
these phases were first obtained from the energy difference
DE=Ess2L−Nd /2d−Es0d for L=16, where Espd is the
ground-state energy in the sector with total spin projection
ST

z =oiSi
z+si

z=p [Figs. 1(a) and 1(b)]. This was then refined

PHYSICAL REVIEW B 70, 172415(2004)

1098-0121/2004/70(17)/172415(4)/$22.50 ©2004 The American Physical Society70 172415-1



through the(computationally more costly) calculation of the
ground-state total spin in the sectorSz=0 of 238, 2316,
and 2332 clusters[Fig. 1(c)]. In Fig. 1(b), we showDE as a
function of J for the 2316 cluster and several values ofN.

These values suggest that for small density and large(small)
J, the ground state is FM(PM),19 while for the whole region
with density n*0.4 andJ.0, it is PM. In Fig. 1(c), the
magnetization densitym=ST/2L versusJ is shown for some
conduction electron densities. It can be seen that for smalln
andJ, the total spin is zero(within the DMRG precision). At
n=1/8,m starts to increase asJ is increased and saturates at
m=s1−nd /2. For n=1/4, however,m is nonmonotonic and
vanishes with further increase ofJ, apparently continuously.
These results are not due to finite-size effects: the same be-
havior is observed for both 2316 and 2332 clusters at this
density, suggesting that it survives the thermodynamic limit.
For 0.25&n&0.4, the magnetization density does not satu-
rate at m=s1−nd /2 [see n=0.3125, Fig. 1(c)]. Then, this
phase has partial ferromagnetic(PFM) order. Forn*0.4, we
have found thatm,0.03 for several Kondo couplingsJ
(while for large J, m,10−3). This result strongly suggests
that the whole region withn*0.4 is paramagnetic. This is
different from the 1D KLM, which shows full FM at any

FIG. 1. (Color online) (a) Phase diagram of the 2-LKL, FM,
PM, and PFM denote regions with ferromagnetism, paramagnetism,
and partial ferromagnetism, respectively. To the right of the dotted
line, the thick lines separate three regions: small and largeJ and
n_0.5. These regions are characterized by the location of the spin-
spin structure factor peak(see text). (b) Gap DE between the
ground state and the ferromagnetic state vs.J for a 2316 cluster,
and several numbers of electrons(as shown). The densities from the
top are,n=0.1875, 0.25, 0.3125, 0.374, and 0.5625.(c) Magnetiza-
tion density vs. Kondo coupling, at several densitiesn. The errors
are of the order of or smaller than the symbol size.18

FIG. 2. (Color online) The spin structure factorS sqWd vs qx for
the 2-LKL: (a) J=0.8, n=1/4, andL=32; (b) J=0.8, n=7/8, and
L=32; (c) S sqx,qy=0d vs qx for several values ofL with J=0.8 and
n=1/4; (d) S sqWd for densitiesn=7/16 andn=7/8 (see arrows)
with L=32 andJ=60. The solid(dotted) lines correspond toqy=0
sqy=pd.

FIG. 3. (a) Nearest-neighbor spin correlations of the 2-LKL for
L=32, J=0.8, andn=1/4. Solid and dashed lines represent AFM
and FM correlations, respectively. The thickness of the lines is pro-
portional to the magnitude of the correlations. Only the ladder cen-
tral portion is presented. Below the correlations, a classical configu-
ration compatible with them is shown.(b) Same as(a), but for n
=1/2; (c) Dimer order-parameterDsL /2−1d vs 1/L for J=0.8 and
n=1/4.
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density for a large-enoughJ.7,9 It is surprising that coupling
just one more chain to the 1D Kondo lattice induces such a
dramatic effect on the phase diagram.

To probe the paramagnetic phase, we calculated the Fou-
rier transform of the spin-spin correlation function(the spin-
structure factor) SsqWd=1/2LorW1,rW2

eqW·srW1−rW2dkSrW1

T ·SrW2

T l, where
SrW1

T =SrW1
+srW1

. We observed that the maximum ofSsqWd can
appear in three distinct positions, as indicated in Fig. 1(a).
For small values ofJ, the maximum ofSsqWd is located atqW
=s2n,0dp for n&0.5, while for n*0.5, it is atqW =sn,1dp.
As an example, in Figs. 2(a) and 2(b), the spin-structure
factorSsqWd is presented for the 2332 cluster withJ=0.8 and
densitiesn=1/4 andn=7/8, respectively. These results do
not seem to be caused by finite-size effects, as shown in Fig.
2(c): the peak becomes more pronounced as the lengthL
increases. Previous studies of the two-leg Hubbard model
close to half filling also found that the peak ofSsqWd appears
at qW =sn,1dp (Ref. 4). We have also observed that, as the

density decreases fromn=1, the peak atqW =sn,1dp de-
creases, while another peak atqW =s2n,0dp starts to increase,
such that atn<0.5 they have the same magnitude. In con-
trast, for large values ofJ, SsqWd is one order-of-magnitude
smaller and has a small cusp atqW =s2n,0dp, as can be seen in
Fig. 2(d).

Spin dimerization of the localized spins has been detected
in the 1D KLM for bothJ,020 andJ.0 (Ref. 10). It would
be very interesting if the dimerization also survives in the
2-LKL, as this would suggest that it may also be present in
the 2D system. Indeed, we have observed spin correlations in
the 2-LKL that resemble the dimerization of the 1D KLM. In
Fig. 3(a), we show the spin-spin correlationskSrW1

T ·SrW2

T l for
nearest-neighbor sites of the 2-LKL at densityn=1/4, J
=0.8, andL=32. The solid(dashed) lines indicate thatDs jd
is negative(positive) and the line thickness is proportional to
the amplitude of the correlations. As can be seen, along the
legs, the dimer order parameterDs jd=kSs1,jd

T ·Ss1,j+1d
T l oscil-

lates with period 2, while the rungs exhibit FM correlations.
We have also found that forn=1/2,Ds jd also oscillates with
period 2, as shown in Fig. 3(b). However, in this case, the
correlations along the rungs are antiferromagnetic. This is
not a finite-size effect artifact or caused by open boundaries.
In Fig. 3(c), the order parameter at the center of the ladder
Ds j =L /2−1d vs. 1/L, at J=0.8 n=1/4, shows a very weak
size dependence. For other densities, more complex spin
structures were observed and there is no analogous simple
picture(a similar situation occurs in the 1D KLM away from
quarter filling10). For J@1 and 0.5&n,1, kSrW1

T ·SrW2

T l
,−10−3 (for n&0.5 some small ferromagnetic correlations
start to develop), much less than the values found for smallJ.
We also have verified that, as in the 1D case,10 these spin
correlations can be traced back to the RKKY interaction be-
tween localized spins. This effective, conduction-electron
mediated spin-spin interaction can be obtained from second-
order perturbation theory, and it is given by

HRKKY , J2o
i,j

JRKKY
1 sui − j udsSi

1 ·Sj
1 + Si

2 ·Sj
2d

+ 2JRKKY
2 sui − j udSi

1 ·Sj
2,

where

sJRKKY
1 s0d,JRKKY

1 s1d,JRKKY
1 s2d, . . . d = H s0,− 1,0.66,0.07,− 0.41,− 0.03,0.28, . . .d n = 1/4

s0,− 0.17,1.25,0.73,− 1.29,0.10,0.46, . . .d n = 1/2
J ,

sJRKKY
2 s0d,JRKKY

2 s1d,JRKKY
2 s2d, . . . d = Hs− 1.46,0.23,0.90,0.09,− 0.41,− 0.03,0.28, . . .d n = 1/4

s4.35,2.30,− 2.42,0.07,0.70,0.40,− 0.86, . . .d n = 1/2
J ,

andSj
1 sSj

2d is the localized spin in the first(second) leg and
rung j . For simplicity, only the first few RKKY couplings
were shown. Let us now focus on densityn=1/4. All

JRKKY
1 sld have signs that favor a classical configuration along

the legs as↑↑↓↓↑↑↓↓. Note that spin dimerization is expected
in a spin chain with first- and second-neighbor interactionsJ1

FIG. 4. (Color online) The charge structure factorN sqWd vs qx

for the 2332 cluster andn=7/8: (a) J=0.8 and(b) J=10. We also
showN0

1/2 sqWd andN0
0 sqWd (see text).
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and J2, if J2.0 and −4J2,J1,0 (Ref. 21). The first two
RKKY couplingsJRKKY

1 s1d andJRKKY
1 s2d along the legs sat-

isfy this inequality, and further neighbors couplings favor the
classical configuration. Moreover, the couplingsJRKKY

2 sld be-
tween legs also favor the predominant ferromagnetic align-
ment across the rungs(except forJRKKY

2 s1d=0.23, which is
nevertheless small), also in agreement with the classical pic-
ture presented in Fig. 3(a). A similar analysis also holds for
the casen=1/2. It is interesting to note that, in this case, the
legs are coupled antiferromagnetically, andJRKKY

2 sld has
larger magnitudes than atn=1/4. This fact suggests that at
n=1/2 the legs are more strongly coupled than atn=1/4.
Indeed, our numerical results of Figs. 3(a) and 3(b) confirm
this expectation. Thus, the RKKY interaction appears to
naturally lead to the spin structure shown in Figs. 3(a) and
3(b). It is interesting to note that unusual ordered spin struc-
tures have been observed in some heavy fermion compounds
(see, for example, Ref. 22). Our results suggest that the ef-
fective RKKY interaction may be their origin.

We have also calculated the charge structure factorNsqWd
=1/2LorW1,rW2

eqW·srW1−rW2dkdnsrW1ddnsrW2dl, where dnsrW1d=nsrW1d
−knsrW1dl. Previous work on the 1D KLM has shown that the
qualitative behavior ofNsqWd in the extreme weak- and
strong-coupling limits could be ascribed to free spin-1

2 and
spinless fermions, respectively.23 The same analysis clarifies
the behavior ofN sqWd in the 2-LKL. Let us callN0

S sqWd the

charge structure factor of free fermions with spin-S in a two-
leg nearest-neighbor tight-binding ladder.23 In Fig. 4(a),
N sqWd is shown for the 2-LKL withL=32, J=0.8, andn
=7/8, aswell N0

1/2 sqWd. The behavior ofN sqWd is fairly simi-
lar to free spin-12 fermions. On the other hand, in the strong
coupling limitN sqWd approaches the structure factorN0

0 sqWd of
spinless fermions[see Fig. 4(b)].

In conclusion, we have explored the phase diagram of the
two-leg Kondo lattice model away from half filling. Our re-
sults show that a ferromagnetic phase is present only for
small densities, unlike the 1D Kondo chain, but consistent
with mean-field studies.12 We have found that the charges
behave basically as free fermions. On the other hand, the
spins have nontrivial behavior. The peak of the spin-structure
factor for small values ofJ is located atqW =s2n,0dp for n
&0.5 and atqW =sn,1dp for n*0.5. For large values ofJ and
n*0.4 SsqWd has only a small cusp atqW =s2n,0dp. We have
also shown that dimerization is present in the 2-LKL at den-
sitiesn=1/4 andn=1/2, andthat the RKKY interaction can
tentatively explain this unusual spin arrangement.

This work was supported by Grants from FAPESP, No.
00/02802-7(J.C.X.) and No. 01/00719-8(E.M.); CNPq, No.
301222/97-5 (E.M.); and DMR No. 0122523 and No.
0312333(E.D.).

1E. Dagotto, Rev. Mod. Phys.66, 763 (1994).
2S. R. White, Phys. Rev. Lett.69, 2863(1992); Phys. Rev. B48,

10345(1993).
3E. Dagotto and T. M. Rice, Science271, 618 (1996).
4R. M. Noack, S. R. White, and D. J. Scalapino, Phys. Rev. Lett.

73, 882 (1994).
5S. R. White, R. M. Noack, and D. J. Scalapino, Phys. Rev. Lett.

73, 886 (1994).
6A. C. Hewson,The Kondo Problem to Heavy Fermions(Cam-

bridge University Press, Cambridge, England, 1993).
7H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys.69, 809

(1997).
8G. Honner and M. Gulacsi, Phys. Rev. Lett.78, 2180 (1997);

Phys. Rev. B58, 2662(1998).
9I. P. McCulloch, A. Juozapavicius, A. Rosengren, and M. Gulacsi,

Phys. Rev. B65, 052410(2002).
10J. C. Xavier, R. G. Pereira, E. Miranda, and I. Affleck, Phys. Rev.

Lett. 90, 247204(2003).
11S. Doniach, Physica B & C91, 231 (1977).
12C. Lacroix and M. Cyrot, Phys. Rev. B20, 1969(1979).
13J. R. Iglesias, C. Lacroix, and B. Coqblin, Phys. Rev. B56,

11820 (1997); A. R. Ruppenthal, J. R. Iglesias, and M. A.
Gusmão,ibid. 60, 7321(1999).

14F. F. Assaad, Phys. Rev. Lett.83, 796 (1999).
15J. C. Xavier, Phys. Rev. B68, 134422(2003).
16Z. P. Shi, R. R. P. Singh, M. P. Gelfand, and Z. Wang, Phys. Rev.

B 51, 15630(1995); Z. Wang, X. P. Li, and D. H. Lee, Physica
B 199-200, 463 (1994); K. S. D. Beach, P. A. Lee, and P.
Monthoux, Phys. Rev. Lett.92, 026401(2004).

17J. Moreno, S. Qin, P. Coleman, and L. Yu, Phys. Rev. B64,
085116(2001).

18We defined the magnetization error asDS= uSmlast
−Ssmlast−200du / sSmlast

+1d, whereSm is the total spin of the ground
state with truncationm andmlast is the biggest truncation avail-
able. We added 1 to the denominator so that the definition is
useful also whenS=0.

19The appearance of robust FM in some regions of parameter space
in both 1D and ladders should not be too surprising due to the
similarities of the model with that used for manganites. See, for
example, S. Yunokiet al., Phys. Rev. Lett.80, 845 (1998).

20D. J. García, K. Hallberg, C. D. Batista, M. Avignon, and B.
Alascio, Phys. Rev. Lett.85, 3720(2000).

21C. Itoi and S. Qin, Phys. Rev. B63, 224423(2001).
22E. Granado, P. G. Pagliuso, C. Giles, R. Lora-Serrano, F. Yolca-

ichiya, and J. L. Sarrao, Phys. Rev. B69, 144411(2004).
23J. C. Xavier and E. Miranda, Phys. Rev. B70, 075110(2004).

BRIEF REPORTS PHYSICAL REVIEW B70, 172415(2004)

172415-4


