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Solution of the X-Ray Edge Problem for 2D Electrons in a Magnetic Field
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The absorption and emission spectra of transitions between a localized level and a two-dimensional
electron gas, subjected to a weak magnetic field, are calculated analytically. Adopting the Landau
level bosonization technique developed in previous papers, we find an exact expression for the relative
intensities of spectral lines. Their envelope function, governed by the interaction between the electron
gas and the core hole, is reminiscent of the famous Fermi edge singularity, which is recovered in the
limit of a vanishing magnetic field. [S0031-9007(98)05643-9]

PACS numbers: 78.70.Dm, 78.20.Bh, 78.20.Ls

Optical absorption and emission processes from corealized due to alloy fluctuations and thus behave like core
states in metals are expected to show striking many-bodiyoles in x-ray emission. This interpretation agrees with
effects close to the threshold energy [1]. This so-callecexperiments on cleaner samples [11] where the effect is
x-ray edge singularity is dominated by two competingconsiderably weaker.
effects. On the one hand by the Anderson orthogonality The experiments were also carried out in the presence
catastrophe [2], leading to a strong reduction of intensityof a perpendicular magnetic field [8,11], where the situa-
and, on the other hand, by the attractive electron-core-holiégon is drastically changed, since the conduction-band
interaction, leading to the power law divergence at thestates are quantized into discrete Landau levels. In this
x-ray absorption edge predicted by Mahan [3]. case, the sudden appearance of the hole potential gen-

A unified description of the two effects was first erates excitations, in which electrons are promoted from
provided by Noziéres and de Dominicis [4], by treatingone Landau level to another, across the Fermi energy. As
the electron-core-hole interaction as a one-body scattering result, both Mahan and Anderson phenomena show up
potential, switched on suddenly at the time of the x-rayin the relative intensities of the discrete emission peaks
transition. They found that the nature of this behavior—[8,11]. A theory of optical and magneto-optical phenom-
divergent or convergent—is controlled by the scatteringena in quasi-two-dimensional electron gases was given in
phase shifts. a series of papers by Hawrylak [12] and Uenoyama and

A particularly transparent analysis of the problem wasSham [10,13]
subsequently given by Schotte and Schotte [5] in terms of Inspired by the work of Schotte and Schotte [5], we
a bosonization scheme, inspired by previous work on thadopt a bosonization scheme to study the magneto-optical
Tomonaga model [6]. On the one hand, the orthogonalityspectra of electronic transitions between a localized nonde-
catastrophe is viewed as a consequence of the infinitgenerate level and the Landau levels of a two-dimensional
number of low energy electron-hole pairs generated in thelectron gas. This allows us to derive for the first time, to
vicinity of the Fermi surface (shakeup) due to the suddenhe best of our knowledge, amalyticalexpression for the
appearance of the scattering potential. On the otherlative intensities of the emission peaks.
hand, the Mahan effect is interpreted as a consequenceOur model is very similar to the one used in the
of the interference between the bosons created in thstudy of core level absorption spectra in metals [3-5]
shakeup and those representing the extra electron in thlend in previous works on two-dimensional electron sys-

bosonization scheme. tems [10,12,13]. The Hamiltonian consists of three con-
The theoretical predictions appear to agree with x-raytributions
spectra for the first five metallic elements of the peri- H=Hu"+ua" + 1"

odic table [7], although the interpretation of the spectra is i . .

rendered difficult by possible band structure effects. Ad- 1he first term describes independent electrons (taken
vances in the growth of modulation-doped semiconductoP€T® @S spinless) of effective massin a magn:e)tlc field.
heterostructures have made it possible to investigate tHeor a disk geometry and the symmetric gauds, can be
same kind of processes in quasi-two-dimensional electrofliagonalized in terms of angular momentum eigenstates
gases. In a pioneering work, Skolniekal. [8] found evi-  [14],
dence for a Fermi edge singularity in the low-temperature @ B "
photoluminescence spectra of InGaAs-InP quantum wells. Hy = Z Z (Rwen = w)epy, Cam, »

This is surprising since in interband transitions the hole n=0me = .

recoil is expected to damp the edge singularity [9,10]Where ¢!, creates an electron in a Landau level
Skolnick et al. argued that the minority carriers are lo- with azimuthal angular momentufim,, w,. = —<B is the
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cyclotron frequencyy is the chemical potential (including bt — 1 i "
the zero point energfw./2) andN, = % is the number mme = Cntpom: Cp.m:
of flux quanta¢, piercing a sample of aref

The second term describes a localized hole and i¥hich generate neutral excitations above the ground state.
written as In order to bosonize the fermion operators, we use the

hase representation
HY = hwod'd, P P

forn=1,

whered' creates a hole in a nondegenerate level of energy c;fl:(e) = \/% Z e""%j{gmz

—hwy (measured from the chemical potential). Its wave T n

function is assumed to be strongly localized at the originn close analogy to bosonization in one dimension [17],

and to ha}ves—wavg symmetry. we express these operators in terms of bosonic fields,
The third contribution refers to the electron-hole cou-

pling, which we represent by a spherically symmetric po- et (9) = 1 eiv0,i®. 0y )

tential. Angular momentum is therefore conserved and the e 27e ‘

potential scatters electrons frofm, m.) to (n',m.). Fol-  Herey,, is a unitary operator which increases the number

lowing Schotte and Schotte [5], we represent this couplingf fermions with angular momentum, and provides us

by a contact potential at the origin, with the appropriate anticommutation propertieé3;, (6),

1M = vywto)w(0)dtd, defined for each angular momentum channel as
where W(0) = X, ¥um.(0)c,y. is the fermion field . B X e T L e
operator at7 = 0. This simplifies considerably the O (0) = N0 lﬂ; n {e™bn = e " bum}-

analysis, since wave functions witlk, # 0 vanish at

- S, . is equivalent to the chiral phase operator of 1D bosoniza-
the origin, 1., (0) = 725 (where £ = 5, IS the  yion [15] ‘andN,, = 3, cl cpm. — (¢l cpm) is the

magnetic length), and are therefore not affected by the

h tor. Instead of taking the lingit—
localized hole. Then, definingg/m = —Vypr with arge operator. Instead of taking the linait= 0, we

m : : can interpretl /e as a bandwidth cutoff eliminating large
PE = 3772 belr_lg thg density of states fas =0, We  contributions. This cutoff increases adncreases, but
arrive at the simplified electron-hole interaction Hamil- the final result is cutoff independent, as in the solution of
tonian Schotte and Schotte [5].
oM g @ZCTI o odtd The main difference to the bosonization introduced
I ‘w4 w,0¢n0 ' before [15] is that here a channel is identified by its
’ angular momentum instead of its guiding center. This
Analogously to the Schotte and Schotte pajigr can be choice is indeed more useful in the present case since all

identified as the phase shift in the Born approximation, : ;
We remark that the scheme developed in this paper Caks[;/]hakeup processes produced by the spherically symmetric
If

be easily generalized to the case of finite range spherical otential conserve angular momentum.
Y9 ) g€ sp We describe now emission and absorption processes
symmetric potentials.

RN . due to transitions between the localized level and Landau
For simplicity, we restrict ourselves to the case of

lativel K e field. tuned | h th Yevels. We assume the selection rube = 0, which is
relatively weak magnetic 1ield, tuned in such a way aﬁustified if the hole wave function is spherically symmetric
the N electrons fill completely ther = N/N, lowest

Landau levels. This corresponds fo an integer quantu 12]. In the case of absorption the system is initially in
Hall regime with large filling factor. Thus the ground die ground state (1). Neglecting thedependence of the

@ . . pole matrix elements, we find a transition rate
state ofH, ' is given by E E
v—1 Ny—n 1 2 0o Lf
— + - 4
At this point we adopt a Landau level bosonizationwhere the summation is performed over all stdtgs of
scheme, introduced in previous papers [15], to express dlie electron gas with one electron more than in the ground
the excitations of the electronic system in terms of bosoni&tate|Go). The transition rate can be rewritten as
fields. %
In a first step we enlarge the Hilbert space by including Wa(w) = Re[ dte' Fu(t), 3)
negativen states, in the spirit of the Luttinger model [16]. 0
Accordingly, the ground state (1) has to be redefined, s¥here
that all the negative energy states are completely filled. _ —iwgt iHt/h —iHt/h 1
. g at) = (G i 0 ! 0)|Gy). (4
These unphysical states should have little influence on thej: 0 =e (Gole co(0)e OG0 (4)
low-energy excitations. The initial and final Hamiltoniang?; and H;, respec-
Next we introduce the bosonic operators tively, can be represented in bosonized form. Since
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F.(r) involves the propagation of zero angular momen-inserting this result into Eq. (3) we finally obtain the

tum states, we can limit ourselves to absorption spectrum
o] v—1
t I'h+a+1) .
i = Wa 1) - - c)s
Hl hwc ngl nbn,obn,()» ((l)) x ZO F(n + l)F(a + 1) ((U a)() nw )
for the Hamiltonian before the absorption (no hole) and ©)
B where o = —28z/7 + (85/7)?, I'(x) is the gamma
Hf = ho, Z{nbnob 0— — \/_(bno + bngo)], function, ands®(x) is a distribution of widthe that tends
n=1 to a delta function as — 0.
for the Hamiltonian after the absorption (hole present). ~ The calculation of the emission spectrum proceeds in

Therefore, in terms of the bosons, the hole potentiafn analogous way. Initially the system is in the ground
is a simple shift operator which generates the unitarygtate|G) of the full HamiltonianH with a hole in the
transformation localized level. The transition rate is given by

Ey — E
T = ex Z T ono - blm] (5) Welw) = §|<f|cO<o>|G>|25<w ~ @ - °Tf>

Apart from a constant term that does not affect thewhereEy is the ground state energy &f, or

dynamics, the Hamiltoniang/; and H; are connected o A

through the relatiorl; = TH;T1. W.(w) « Rej dte "' (1), (10)
This simplifies the expression (4) to 0

Fult) = €7 (Golag(0, 1)ad (0,0) |Go)
where the new fermion operatey,_ (6, ) is defined by

where
Folt) = e (Gle™ e f (00 i1 T eo(0)1G) . (11)

The initial Hamiltonian for emission is the final Hamilton-
am (0,1) = eMitlic, (9)Te Hitlh, (6) ian for absorptionand vice versa, i.8; = Hy, Hy = H;.
Furthermore the ground states of the Hamiltonians be-
fore (|G)) and after the emissioNlGy)) are related by
é ») = T(IGy)), whereT is the unitary transformation

)

Therefore our task is to evaluate the correlation funcy
tion of the operator(0, ) that simultaneously shifts the
bosonic fields and creates an electron in a superposition
Landau levels with zero angular momentum. This can b .
easily done by using the bosonized version of the fermion F.(r) = e""“’(GoIa:{(O 1)ao(0,0) |Go),
operators, since the operatBris also an exponential of
bosonic fields. Then, using Egs. (2) and (5) it is possible
to show that

. This allows us to arrive at

Wheream (0,1) is again given by Eq. (6).
The rest of the calculation proceeds exactly as in the
case of absorption and we find

Ta(t) = e*iwot 271’8 <G0|€7i®0(0’t)€i®0(0’0)|G()> .,Fe([) = e_Zintfa(t) .
—iwot The emission spectruniV,(w) has the same form as
= & D0N=Dy(0.0) Eq. (9), withnw, replaced by-nw..
2me Thus, both the emission and absorption spectra con-
where sist of sets of peaks with intensities proportional to
~ - I'nt+a+1) L .
Do(0, 1) = (Gol®0(0, 1)B0(0,0) |Go), (7)  TwrDla+D- This is the central result of this paper. The
. _ ' emission spectrum is illustrated in Fig. 1.
and®(0, r) is written as In the limit B — 0 (that amounts taw, — 0 andv —
_ 5z e e i ), in a smallw interval there will be a numbet > 1
00(0,1) = — <1 - —) Z {e" b,y — H.c}. of consecutive peaks. Then, by using the asymptotic
T ) =1 \/ﬁ Finta)

formula n® for n > 1, we can see that the
(8) envelope o% the emission peaks tends to the standard result

After substituting expression (8) into (7) we arrive at (@) ~ (=5=)*. Since physicallys ™' must be Of the

5 e order of the band width, which means~ = By ¢
Dy(0,1) — Do(0,0) = (1 — —) In<m>, the constant/w. ~ hprS/N plays the roIe of a field-
™ 1 = et independent, nonuniversal cutoff constant.
that transforms the correlation function (4) into When B # 0 there is a single parameter governing
i (1— 28y the relative intensities of the peaks similarly to the zero
Fot) = ’ ( & ‘ ) i _ field case. What occurs here is that far< 0 there
2me \1 — e ilwcr—ie) is an enhancement of the emission intensity due to the
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envelope function which is reminiscent of the singular
behavior for zero magnetic field. A single parameter
a determines the line intensities, and this parameter is
nothing else than the exponent of the zero field edge
I(w) singularity.
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