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Solution of the X-Ray Edge Problem for 2D Electrons in a Magnetic Field
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The absorption and emission spectra of transitions between a localized level and a two-dimens
electron gas, subjected to a weak magnetic field, are calculated analytically. Adopting the Lan
level bosonization technique developed in previous papers, we find an exact expression for the rel
intensities of spectral lines. Their envelope function, governed by the interaction between the elec
gas and the core hole, is reminiscent of the famous Fermi edge singularity, which is recovered in
limit of a vanishing magnetic field. [S0031-9007(98)05643-9]

PACS numbers: 78.70.Dm, 78.20.Bh, 78.20.Ls
ore
ith
t is

nce
a-
nd
this
en-

om
As
up
ks
-
in

nd

e
tical
de-
nal
to

e
5]
s-
n-

ken

tes
Optical absorption and emission processes from c
states in metals are expected to show striking many-bo
effects close to the threshold energy [1]. This so-call
x-ray edge singularity is dominated by two competin
effects. On the one hand by the Anderson orthogona
catastrophe [2], leading to a strong reduction of intens
and, on the other hand, by the attractive electron-core-h
interaction, leading to the power law divergence at t
x-ray absorption edge predicted by Mahan [3].

A unified description of the two effects was firs
provided by Nozières and de Dominicis [4], by treatin
the electron-core-hole interaction as a one-body scatter
potential, switched on suddenly at the time of the x-ra
transition. They found that the nature of this behavior—
divergent or convergent—is controlled by the scatteri
phase shifts.

A particularly transparent analysis of the problem w
subsequently given by Schotte and Schotte [5] in terms
a bosonization scheme, inspired by previous work on t
Tomonaga model [6]. On the one hand, the orthogona
catastrophe is viewed as a consequence of the infin
number of low energy electron-hole pairs generated in
vicinity of the Fermi surface (shakeup) due to the sudd
appearance of the scattering potential. On the oth
hand, the Mahan effect is interpreted as a conseque
of the interference between the bosons created in
shakeup and those representing the extra electron in
bosonization scheme.

The theoretical predictions appear to agree with x-r
spectra for the first five metallic elements of the pe
odic table [7], although the interpretation of the spectra
rendered difficult by possible band structure effects. A
vances in the growth of modulation-doped semiconduc
heterostructures have made it possible to investigate
same kind of processes in quasi-two-dimensional elect
gases. In a pioneering work, Skolnicket al. [8] found evi-
dence for a Fermi edge singularity in the low-temperatu
photoluminescence spectra of InGaAs-InP quantum we
This is surprising since in interband transitions the ho
recoil is expected to damp the edge singularity [9,10
Skolnick et al. argued that the minority carriers are lo
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calized due to alloy fluctuations and thus behave like c
holes in x-ray emission. This interpretation agrees w
experiments on cleaner samples [11] where the effec
considerably weaker.

The experiments were also carried out in the prese
of a perpendicular magnetic field [8,11], where the situ
tion is drastically changed, since the conduction-ba
states are quantized into discrete Landau levels. In
case, the sudden appearance of the hole potential g
erates excitations, in which electrons are promoted fr
one Landau level to another, across the Fermi energy.
a result, both Mahan and Anderson phenomena show
in the relative intensities of the discrete emission pea
[8,11]. A theory of optical and magneto-optical phenom
ena in quasi-two-dimensional electron gases was given
a series of papers by Hawrylak [12] and Uenoyama a
Sham [10,13]

Inspired by the work of Schotte and Schotte [5], w
adopt a bosonization scheme to study the magneto-op
spectra of electronic transitions between a localized non
generate level and the Landau levels of a two-dimensio
electron gas. This allows us to derive for the first time,
the best of our knowledge, ananalyticalexpression for the
relative intensities of the emission peaks.

Our model is very similar to the one used in th
study of core level absorption spectra in metals [3–
and in previous works on two-dimensional electron sy
tems [10,12,13]. The Hamiltonian consists of three co
tributions

H ­ H
sed
0 1 H

shd
0 1 H

se2hd
I .

The first term describes independent electrons (ta
here as spinless) of effective massm in a magnetic field.
For a disk geometry and the symmetric gauge,H

sed
0 can be

diagonalized in terms of angular momentum eigensta
[14],

H
sed
0 ­

X̀
n­0

Nf2nX
mz ­2n

sh̄vcn 2 mdcy
nmz

cnmz ,

where cy
n,mz

creates an electron in a Landau leveln

with azimuthal angular momentum̄hmz , vc ­
2eB
mc is the
© 1998 The American Physical Society 2953



VOLUME 80, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 30 MARCH 1998

te.
he

],

er

a-

of

d
ts
is
all
tric

ses
au

c
n

nd

ce
cyclotron frequency,m is the chemical potential (including
the zero point energȳhvcy2) andNf ­

BS
f0

is the number
of flux quantaf0 piercing a sample of areaS.

The second term describes a localized hole and
written as

H
shd
0 ­ h̄v0dyd ,

wheredy creates a hole in a nondegenerate level of ener
2h̄v0 (measured from the chemical potential). Its wav
function is assumed to be strongly localized at the orig
and to haves-wave symmetry.

The third contribution refers to the electron-hole cou
pling, which we represent by a spherically symmetric po
tential. Angular momentum is therefore conserved and t
potential scatters electrons fromsn, mzd to sn0, mzd. Fol-
lowing Schotte and Schotte [5], we represent this couplin
by a contact potential at the origin,

H
se2hd
I ­ V0Cys0dCs0ddyd ,

where Cs0d ­
P

n,mz
cn,mz

s0dcnmz
is the fermion field

operator at $r ­ 0. This simplifies considerably the
analysis, since wave functions withmz fi 0 vanish at

the origin, cn,mz s0d ­
dmz ,0p
2p,2 (where , ­

q
h̄

mvc
is the

magnetic length), and are therefore not affected by t
localized hole. Then, definingdByp ­ 2V0rF with
rF ­

m
2p h̄2 being the density of states forB ­ 0, we

arrive at the simplified electron-hole interaction Hamil
tonian

H
se2hd
I ­ 2h̄vc

dB

p

X
n0,n

c
y
n0,0cn,0dyd .

Analogously to the Schotte and Schotte paper,dB can be
identified as the phase shift in the Born approximatio
We remark that the scheme developed in this paper c
be easily generalized to the case of finite range spherica
symmetric potentials.

For simplicity, we restrict ourselves to the case of
relatively weak magnetic field, tuned in such a way th
the N electrons fill completely then ­ NyNf lowest
Landau levels. This corresponds to an integer quantu
Hall regime with large filling factor. Thus the ground
state ofH

sed
0 is given by

jG0l ­
n21Y
n­0

Nf2nY
mz­2n

cy
n,mz

j0l . (1)

At this point we adopt a Landau level bosonizatio
scheme, introduced in previous papers [15], to express
the excitations of the electronic system in terms of boson
fields.

In a first step we enlarge the Hilbert space by includin
negativen states, in the spirit of the Luttinger model [16]
Accordingly, the ground state (1) has to be redefined,
that all the negative energy states are completely fille
These unphysical states should have little influence on t
low-energy excitations.

Next we introduce the bosonic operators
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p
n

X̀
p­2`

c
y
n1p,mz cp,mz for n $ 1 ,

which generate neutral excitations above the ground sta
In order to bosonize the fermion operators, we use t
phase representation

cy
mz

sud ;
1

p
2p

X
n

einucy
n,mz

.

In close analogy to bosonization in one dimension [17
we express these operators in terms of bosonic fields,

cy
mz

sud ­
1

p
2p´

einueiQ´
mz sudUmz

. (2)

HereUmz is a unitary operator which increases the numb
of fermions with angular momentummz and provides us
with the appropriate anticommutation properties.Q´

mz
sud,

defined for each angular momentum channel as

Q´
mz

sud ­ Nmz u 2 i
X̀
n­1

e2 n´

2

p
n

heinuby
n,mz

2 e2inubn,mz j .

is equivalent to the chiral phase operator of 1D bosoniz
tion [15], andNmz ­

P
p cy

p,mz
cp,mz 2 kcy

p,mz
cp,mz l is the

charge operator. Instead of taking the limit´ ! 0, we
can interpret1y´ as a bandwidth cutoff eliminating large
n contributions. This cutoff increases asn increases, but
the final result is cutoff independent, as in the solution
Schotte and Schotte [5].

The main difference to the bosonization introduce
before [15] is that here a channel is identified by i
angular momentum instead of its guiding center. Th
choice is indeed more useful in the present case since
shakeup processes produced by the spherically symme
potential conserve angular momentum.

We describe now emission and absorption proces
due to transitions between the localized level and Land
levels. We assume the selection rulemz ­ 0, which is
justified if the hole wave function is spherically symmetri
[12]. In the case of absorption the system is initially i
the ground state (1). Neglecting then dependence of the
dipole matrix elements, we find a transition rate

Wasvd ~
X
f

jkfjc
y
0 s0d jG0lj2d

√
v 2 v0 1

E0 2 Ef

h̄

!
,

where the summation is performed over all statesjfl of
the electron gas with one electron more than in the grou
statejG0l. The transition rate can be rewritten as

Wasvd ~ Re
Z `

0
dt eivtFastd , (3)

where

Fastd ­ e2iv0tkG0je
iHity h̄c0s0de2iHf ty h̄c

y
0 s0d jG0l . (4)

The initial and final HamiltoniansHi and Hf , respec-
tively, can be represented in bosonized form. Sin
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Fastd involves the propagation of zero angular mome
tum states, we can limit ourselves to

Hi ­ h̄vc

X̀
n­1

nb
y
n,0bn,0 ,

for the Hamiltonian before the absorption (no hole) and

Hf ­ h̄vc

X̀
n­1

(
nb

y
n,0bn,0 2

dB

p

p
n sby

n,0 1 bn,0d

)
,

for the Hamiltonian after the absorption (hole present).
Therefore, in terms of the bosons, the hole potent

is a simple shift operator which generates the unita
transformation

T ­ exp

"X̀
n­1

2dB

p
p

n
sbn,0 2 b

y
n,0d

#
. (5)

Apart from a constant term that does not affect th
dynamics, the HamiltoniansHf and Hi are connected
through the relationHf ­ THiTy.

This simplifies the expression (4) to

Fastd ­ e2iv0tkG0ja0s0, tday
0 s0, 0d jG0l ,

where the new fermion operatoramz su, td is defined by

amz su, td ­ eiHity h̄cmz sudTe2iHity h̄. (6)

Therefore our task is to evaluate the correlation fun
tion of the operatora0s0, td that simultaneously shifts the
bosonic fields and creates an electron in a superposition
Landau levels with zero angular momentum. This can
easily done by using the bosonized version of the fermi
operators, since the operatorT is also an exponential of
bosonic fields. Then, using Eqs. (2) and (5) it is possib
to show that

Fastd ­ e2iv0t 1
2p´

kG0je
2iQ̃0s0,tdeiQ̃0s0,0djG0l

­
e2iv0t

2p´
eD0s0,td2D0s0,0d,

where

D0s0, td ­ kG0jQ̃0s0, tdQ̃0s0, 0d jG0l , (7)

andQ̃0s0, td is written as

Q̃0s0, td ­ 2i

√
1 2

dB

p

! X̀
n­1

e2n´

p
n

heinvctb
y
n,0 2 H.c.j .

(8)

After substituting expression (8) into (7) we arrive at

D0s0, td 2 D0s0, 0d ­

√
1 2

dB

p

!2

ln

√
´

1 2 e2isvct2i´d

!
,

that transforms the correlation function (4) into

Fastd ­
e2iv0t

2p´

√
´

1 2 e2isvct2i´d

!s12 dB
p

d2

.
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Inserting this result into Eq. (3) we finally obtain th
absorption spectrum

Wasvd ~

n21X
n­0

Gsn 1 a 1 1d
Gsn 1 1dGsa 1 1d

d´sv 2 v0 2 nvcd ,

(9)

where a ­ 22dByp 1 sdBypd2, Gsxd is the gamma
function, andd´sxd is a distribution of width́ that tends
to a delta function aś ! 0.

The calculation of the emission spectrum proceeds
an analogous way. Initially the system is in the groun
state jGl of the full HamiltonianH with a hole in the
localized level. The transition rate is given by

Wesvd ~
X
f

jkfjc0s0d jGlj2d

√
v 2 v0 2

E0
0 2 Ef

h̄

!
,

whereE0
0 is the ground state energy ofH, or

Wesvd ~ Re
Z `

0
dt e2ivtFestd , (10)

where

Festd ­ eiv0tkGjeiH 0
i ty h̄c

y
0 s0de2iH 0

f ty h̄c0s0d jGl . (11)

The initial Hamiltonian for emission is the final Hamilton
ian for absorptionand vice versa, i.e.,H 0

i ­ Hf , H 0
f ­ Hi .

Furthermore the ground states of the Hamiltonians b
fore sjGld and after the emissionsjG0ld are related by
sjGld ­ TsjG0ld, where T is the unitary transformation
(5). This allows us to arrive at

Festd ­ eiv0tkG0ja
y
0 s0, tda0s0, 0d jG0l ,

whereamz
su, td is again given by Eq. (6).

The rest of the calculation proceeds exactly as in t
case of absorption and we find

Festd ­ e22iv0tFastd .

The emission spectrumWesvd has the same form as
Eq. (9), withnvc replaced by2nvc.

Thus, both the emission and absorption spectra c
sist of sets of peaks with intensities proportional

Gsn1a11d
Gsn11dGsa11d . This is the central result of this paper. Th
emission spectrum is illustrated in Fig. 1.

In the limit B ! 0 (that amounts tovc ! 0 andn !

`), in a smallv interval there will be a numbern ¿ 1
of consecutive peaks. Then, by using the asympto
formula Gsn1ad

Gsnd , na for n ¿ 1, we can see that the
envelope of the emission peaks tends to the standard re
Isvd , s´ v02v

vc
da. Since physicallý 21 must be of the

order of the band width, which meanś, 1
n ­ B S

Nf0
,

the constant́ yvc , h̄rFSyN plays the role of a field-
independent, nonuniversal cutoff constant.

When B fi 0 there is a single parametera governing
the relative intensities of the peaks similarly to the ze
field case. What occurs here is that fora , 0 there
is an enhancement of the emission intensity due to
2955



VOLUME 80, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 30 MARCH 1998

r
r
is
e

. is
e

t

,

FIG. 1. Emission spectra forn ­ 10 and ´ ­ 0.1 with v
measured from the threshold. The envelope of the peaks
reminiscent of theB ­ 0 case.

enhancement of the number of final states in this typ
of process. On the other hand, fora . 0 we observe a
reduction on the emission intensity that can be related
the Anderson orthogonality catastrophe. We emphasiz
however, that the well-known power-law singularities o
the B ­ 0 case are absent when the magnetic field
turned on. This can be traced back to the appearan
of an energy gap, the cyclotron energy,h̄vc, which
preempts the infrared divergence present whenB ­ 0.
Nevertheless, a remnant of this effect can still be seen
the envelope function of the discrete peaks in Fig. 1. Th
is in agreement with the numerical results of Uenoyam
and Sham [10] in the case of infinite hole mass and wit
the experimental results of Skolnicket al. [8].

In conclusion, we have used the bosonization techniq
for calculating exactly the emission and absorption spect
for transitions between a localized level and the discre
Landau levels of a two-dimensional electron gas. Th
intensities of the (equidistant) spectral lines follow an
2956
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envelope function which is reminiscent of the singula
behavior for zero magnetic field. A single paramete
a determines the line intensities, and this parameter
nothing else than the exponent of the zero field edg
singularity.
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