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ABSTRACT

The purpose of this work is to study the effects of disorder on the Majorana hon-
eycomb model. We did so for two different initial flux configurations, one which
corresponds to the sector containing the ground state, i.e., the zero flux sector, and
a configuration which corresponds to highly excited states, namely the random flux
configuration. The method chosen for the study of these systems was the Strong
Disorder Renormalization Group (SDRG). Our findings suggest that for the initial
configuration corresponding to the zero flux sector, the Majorana honeycomb model
is shielded against weak disorder, whereas the system always flows to infinite dis-
order given that the initial disorder is strong enough. As for the random flux initial
configuration, we believe that the system always flows to infinite disorder, with a
tunnelling exponent k = 1

2 .



RESUMO

O objetivo deste trabalho é estudar os efeitos de desordem no modelo hexagonal
de férmions de Majorana. Isso foi feito para duas configurações iniciais de fluxo
distintas: uma correspondente ao setor que contém o estado fundamental, chamado
de setor de fluxo zero; e outra que contém estados altamente excitados, chamada de
configuração de fluxo aleatório. O método utilizado para o estudo desses sistemas
foi o Grupo de Renormalização de Desordem Forte (GRDF). Nossos dados sugerem
que a rede hexagonal de Majoranas na configuração inicial de fluxo zero é blindada
contra desordem fraca, enquanto o sistema sempre flui para desordem infinita uma
vez que a desordem inicial é forte o suficiente. Já para a configuração inicial de
fluxo aleatório, acreditamos que o sistema sempre flui para a desordem infinita, com
um expoente de tunelamento k = 1

2 .
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C h a p t e r 1

INTRODUCTION

Magnetic systems have been known formany centuries. However, our comprehen-
sion about them has increased significantly with the advent of quantum mechanics.
This is due to the fact that the primary origin of magnetism lies in the intrinsic
angular momentum carried by particles, which came to be known as spin. We know
today that most magnetic materials present some kind of spin ordering, which in turn
dictates the physical properties of the material. Therefore, the interaction between
spins is a central theme in the study of magnetic systems, for it is the primary source
of magnetic ordering.

Many models have thus been proposed to describe these interactions. Two very
famous and widely used ones are the Heisenberg Model and the Ising Model. Both
can be described by an exchange interaction, a phenomenon arising between identical
particles, which is a consequence of the Coulomb interaction between electrons and
the exchange symmetry present in the wave function that describes them. The Ising
model is the simpler one, for it considers all spins in the system to be in either one
of two states, +1 or −1, corresponding to the two values of a spin component, say,
(I. In the absence of an external magnetic field, the Hamiltonian of the model is

� = −
∑
〈8 9〉

�f8f9 ,

where � is the coupling constant, the sum 〈8 9〉 is over all nearest neighbours, and
f8 = ±1. As for the Heisenberg model, the Hamiltonian in the absence of an external
field is

� = −
∑
〈8 9〉

�
−→
(8 ·
−→
( 9 ,

where now
−→
(8 is the spin operator associated with site 8. For a spin-1

2 system,
−→
(8

would simply be the Pauli spin-1
2 matrices times ℏ

2 . The spin configuration which
minimizes each interaction for both models is the one where neighbouring spins are
either parallel when � > 0, or antiparallel when � < 0. This explains the behaviour
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some materials show, in which spins have a tendency of aligning as temperature is
lowered and the system’s energy is decreased. These materials are said to exhibit
ferromagnetic behaviour if spins tend to align in a parallel manner, whereas they are
said to exhibit antiferromagnetic behaviour if spins tend to be antiparallel.

However, a magnetic system may not always be able to minimize all exchange
interactions simultaneously in its ground state, as is the case of the spin-1

2 antiferro-
magnetic Ising model on the triangular lattice. If one sets two spins on the corners
of a triangle in an antiparallel manner so as to minimize their exchange interaction,
there is no possible orientation for the third one which minimizes its interactions
with the other two (figure 1.1). The system is then said to be geometrically frustrated,
for this phenomenon is inextricably linked to lattice geometry.

Figure 1.1: Depiction of interacting spins in a triangular arrangement. There is no
possible configuration for which all three interactions are minimized.

Given that the exchange interactions can no longer be simultaneously satisfied,
frustration in a system acts as to destroy magnetic ordering. This led Anderson,
when studying the spin-1

2 antiferromagnetic Heisenberg model on the triangular
lattice in 1973, to propose the existence of systems completely devoid of magnetic
ordering even in their ground state, due to geometrical frustration along with quan-
tum fluctuations, which also act as to destroy order. He suggested that the ground
state would instead be composed of a quantum superposition of different pairings of
spins into singlets, which he called a Resonating Valence Bond (RVB) state (figure
1.2) (Anderson, 1973).

Since, by definition, there would be quantum mechanical fluctuations of the
valence bonds, the term Quantum Spin Liquid (QSL) was coined, as opposed to
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Figure 1.2: The RVB state as proposed by Anderson. It is defined as a superposition
of different pairings of spins into singlets. Illustration as seen in (Savary andBalents,
2016).

solids with localized static bonds (Balents, 2010). It was not until 1987 that the
QSL theory became the subject of intense physical interest, when Anderson argued
that the QSL theory could underlie the physics of the then recently discovered high-
temperature superconductors (Anderson, 1987), (Bednorz and Müller, 1986). Yet,
due to the difficulty in proving whether a state truly possessed some kind of magnetic
ordering in the low energy limit, the QSL theory did not show important theoretical
improvements.

However, in 2006, Kitaev proposed the first model in which the ground state
is exactly solvable and predicts both gapless and gapped QSL phases depending
on the exchange coupling constants (Kitaev, 2006). Moreover, the model predicts
the fractionalization of spins into emergent quasiparticles, the Majorana fermions.
These particles date back to 1937, when Ettore Majorana showed that the Dirac
equation accepts a class of solutions that describes particles that are identical to
their antiparticles (Majorana, 1937). Although this may seem highly theoretic, ma-
terials which present QSL states have been widely searched for, and some probable
candidates have been found, as is the case for U − 'D�;3 (Banerjee et al., 2016). A
list of probable candidates has also been presented by Balents (Balents, 2010) and
more recently by Savary (Savary and Balents, 2016). Experimental evidence for the
Majorana fermion has also been presented (He et al., 2017).

Now, in the context of magnetic ordering, it is important to understand the effects
of disorder in a system, for it can play a dominant role over quantum and thermal
fluctuations, and thus give rise to completely new phenomena, such as the Anderson
localization (Anderson, 1958).

A very powerful method often used to study the critical behaviour of many-body
systems near a phase transition is the Renormalization Group (RG). The basic idea
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behind the RG is to reduce the complexity of a many-body system by gradually
integrating out large energy (short wave length) degrees of freedom and analysing
how the left-over degrees of freedom are effectively described. When the coefficients
of the interaction terms describing the low-energy (long wave length) sector start to
converge as the energy scale is lowered, we say we have found a fixed point. From
the properties of the fixed point and its vicinity, we can extract physical properties
of the system (M. E. Fisher, 1974). Moreover, the dependence of these coefficients
on the lowering energy scale are usually described by differential equations called
the RG flow equations.

However, the difficulty in formulating a renormalization group theory which in
turn quantifies the physical properties of a disordered system lies in the fact that
renormalizations in disordered systems involve probability distributions, whereas in
pure systems they usually involve a finite number of coupling constants. This com-
plicates the analysis of the RG flow and the determination of the fixed points. It is in
this context that the Strong Disorder Renormalization Group (SDRG), introduced by
Ma, Dasgupta and Hu, was proven to be so valuable. The method was first proposed
in order to study the low energy physics of a spin-1

2 antiferromagnetic Heisenberg
chain in the presence of disorder (Ma, Dasgupta, and Hu, 1979). Whereas the
method was first considered to be an approximate procedure, Fisher showed ana-
lytically that the renormalization flow converges towards an infinite disorder fixed
point, meaning the method is asymptotically exact (D. S. Fisher, 1994). The method
has since then been applied with great success to a variety of different disordered
systems (Iglói and Monthus, 2005), (Kovács and Iglói, 2011), (Quito, Hoyos, and
Miranda, 2016).

In this context, it would be very interesting to study the effects of disorder on
the Kitaev model. The implementation of the SDRG for this model is, however,
extremely complicated, one of the reasons being that the renormalization procedure
may end up changing the initial flux configuration, which in turn defines the acces-
sible energy states. Given the complications, we set ourselves to study the effects of
disorder on aMajorana honeycombmodel, a "toy model" inspired by the Kitaev one.
This particular model raises the question of Anderson localization in a Majorana
fermion system, which has not been studied yet. We take a step in that direction.
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I start this thesis by introducing the Kitaev model and presenting the ground state
solution. Then we introduce the SDRG method, which was the method of choice to
study the desired systems. More specifically, for pedagogic reasons, I shall present
the SDRG when applied to the spin-1

2 antiferromagnetic Heisenberg chain in the
presence of disorder. Afterwards, we discuss the SDRGmethod when applied to the
Majorana honeycomb model, and lastly, I present the computational method and the
obtained results. We then end this dissertation with some conclusions and future
prospects.
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C h a p t e r 2

THE KITAEV MODEL

Kiatev’s model is defined on a hexagonal lattice with a spin-1
2 located at each of

the vertices. The hexagonal lattice can in turn be seen as two triangular Bravais
lattices, referred to as “even” and “odd” (the empty and full circles in figure 2.1),
thus one unit cell of the lattice contains one vertex of each kind.

Figure 2.1: The hexagonal lattice. Each site is connected to its three first neighbours.
The links are divided in three types, depending on their direction, “x-links”, “y-
links”, and “z-links”.

The idea is to construct such a Hamiltonian that the interactions along nearest
neighbouring bonds cannot be satisfied simultaneously, giving rise to frustration,
which could drive the system into a quantum spin liquid (QSL), while having it be
exactly solvable for the ground state. The Hamiltonian is as follows:

� = −�G
∑

G−;8=:B
fG9 f

G
: − �H

∑
H−;8=:B

f
H

9
f
H

:
− �I

∑
I−;8=:B

fI
9
fI
:
, (2.1)

where f0
9
is a Pauli’s matrix in the 0 direction on site 9 and �0 are model parameters.

What we wish to do now is to find constants of motion in which subspaces’ the
Hamiltonian can be diagonalized. Kitaev starts by defining the following plaquette
operators:
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,? = f
G
1f

H

2f
I
3f

G
4f

H

5f
I
6 , (2.2)

where p labels the plaquette. From the Pauli matrices definition, it follows that

[f09 , f1: ] = 28n012f2: X 9 ,: , (2.3)

which in turn implies that

[,?,,
′
?] = 0, [�,,?] = 0. (2.4)

Therefore, the ,? form a set of constants of motion which commute between
themselves.

It also follows from the Pauli matrices definition that

f2
G = f

2
H = f

2
I = 1, (2.5)

and hence,2
? = 1. Thus,

,? = ±1 (2.6)

are the eigenvalues of ,?; hence the Hilbert space can be decomposed in well
defined subspaces of,?.

Our goal is then to rewrite Hamiltonian (2.1) in terms of the ,? operators,
so that the Hamiltonian can be promptly diagonalized. Notice however, that an
interaction along a specific direction 8, 8 = G, H, I, depends only of f8, whereas
,? = f

G
1f

H

2f
I
3f

G
4f

H

5f
I
6 . What follows next is a convenient, particular representation

of the spin operators in terms of Majorana operators. This results in a Hamiltonian
which is quadratic in form and thus makes an exact solution possible.
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2.1 Majorana operators
In 1937, Ettore Majorana showed that the Dirac equation accepts a class of

solutions that describes particles that are identical to their antiparticles. These
particles are called Majorana fermions, meaning they are spin-1

2 particles whose
creation and annihilation operators are precisely the same. We can construct a
particular representation in terms of the usual fermionic operators in the following
manner:

5 9 = 0 9 + 0†9 , 6 9 =
0 9 − 0†9
8

, (2.7)

where 0 and 0† are the usual spin-1
2 creation and annihilation operators. Note that

any fermion can be written as a combination of two Majorana fermions, which is
analogous to splitting the fermion into a real and an imaginary part, each of which
is a distinct Majorana fermion (Wilczek, 2009).

Thus, instead of the usual description of a system with = fermionic modes that is
done by = creation and annihilation operators 0†

:
, 0: , (: = 1, ..., =), one can instead

opt to use 2=Majorana operators.

By definition we see that:

5 9 = 5
†
9
, 6 9 = 6

†
9
, (2.8)

5 2
9 = 6

2
9 = 1, (2.9)

{ 5 9 , 5 9 } = {6 9 , 6 9 } = 2, (2.10)

{ 5 9 , 6 9 } = 0. (2.11)

It also follows immediately from the definition (2.7) how the Majorana operators act
on the Hilbert space:

5 |0〉 = (0 + 0†) |0〉 = |1〉, (2.12)

6 |0〉 = 0 − 0
†

8
|0〉 = 8 |1〉, (2.13)

5 |1〉 = |0〉, (2.14)

6 |1〉 = −8 |0〉. (2.15)

Here, |0〉 represents the usual spin-1
2 vacuum and |1〉 = 0† |0〉.
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2.2 Application to the model
We wish to rewrite Hamiltonian (2.1) in such a way that it can be readily diago-

nalized. To do that, we start by representing the spin operators fG , fH, and fI in
terms of Majorana operators: fG → f̃G , fH → f̃H, and fI → f̃I. The following
particular representation for a spin is chosen:

f̃G = 81G2, f̃H = 81H2, f̃I = 81I2, (2.16)

where 1G , 1H, 1I, 2 are four Majorana operators. Also, each spin is depicted by 4
Majorana fermions, as is shown in figure (2.2).

Figure 2.2: Graphic depiction of the Majorana operators representing a spin.

This new representation is not arbitrary, however. It is necessary that all algebraic
properties of the Pauli matrices are maintained. Nonetheless, there is yet another
complication. The spin-1

2 is defined in a 2-dimensional Hilbert space, whereas the
four Majorana operators described in (2.16) act on the 4-dimensional Hilbert space,
hence by changing the representation we are introducing new states to the system
which do not correspond to physical states. Therefore, we define the constraint

� = 1G1H1I2, (2.17)

such that (
1 + �

2

)
|k〉 = |k〉 (2.18)
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acts as a projector into the physical subspace, if and only if � = 1. Indeed, following
equations (2.9) and (2.11) we see that �2 = 1, thus

� = ±1. (2.19)

Now, by setting � = 1 and returning to Eq. (2.16), one can see that

[f̃09 , f̃1: ] = 28n012f̃2: X 9 ,: , (2.20)

(f̃09 )† = f̃09 , (2.21)

(f̃09 )2 = 1. (2.22)

f̃Gf̃Hf̃I = 81G1H1I2 = 8� = 8. (2.23)

Hence, only in the subspace defined by � = 1, all original algebraic properties
of the Pauli matrices are satisfied. Such a result implies that we can work in the
extended space for practical reasons and use our constraint � = 1 to obtain only
physical states.

Finally, we make the substitution f0
9
→ f̃0

9
and rewrite Hamiltonian (2.1) in

terms of the Majoranas:

�̃ =
8

2

∑
9 ,:

�U 9:
D̂ 9 :2 92: , (2.24)

where
D̂ 9 : = 81

U 9:

9
1
U 9:

:
, (2.25)

U 9 : = G, H, I depending on the direction of the link. (2.26)

The factor 1
2 accounts for the fact that each pair of connected sites is counted twice.

It is interesting to write �̃ in terms of D̂ 9 : due to the fact that:

(D̂ 9 : )2 = 1 → D 9 : = ±1, (2.27)

[�̃, D̂ 9 : ] = 0, (2.28)

hence we can diagonalize Hamiltonian (2.24) in well defined subspaces of D 9 : = ±1.
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There is still however a complication. For our solutions to correspond to physical
states, we need to impose the constraint � = 1. Yet,

[D̂ 9 : , � 9 ] ≠ 0, (2.29)

thus it is of no use to indeed diagonalize �̃ in subspaces of D̂ 9 : . Let us instead
define the following operator:

,̃? =
∏

?;0@D4CC4

D̂ 9 : ( 9 ∈ even sublattice, : ∈ odd sublattice). (2.30)

For this operator, on the other hand, we see that

[,̃?, �̃] = 0, (2.31)

[,̃?, � 9 ] = 0. (2.32)

This means that the invariant physical states of the problem can be described in
terms of the variables ,̃?, which we will have a better understanding of next.

I shall be a little more mathematically thorough in what comes next due to the
fact that I couldn’t quite understand why ,̃? was defined in this manner the first
time I read Kitaev’s paper. For simplicity reasons, from hereafter the hats will be
omitted, i.e. D̂ = D. For an arbitrary plaquette,

,̃? = D21 D23 D43 D45 D65 D61.

Following equation (2.25) and the schematics from (2.2), we have that

,̃? = 81
I
21

I
1 81

G
21
G
3 81

H

41
H

3 81
I
41

I
5 81

G
61
G
5 81

H

61
H

1.

Rearranging the terms in accordance with eq. (2.11)

,̃? = 1
H

1 1
I
2 1

G
3 1

H

4 1
I
5 1

G
6 1

I
1 1

G
2 1

H

3 1
I
4 1

G
5 1

H

6.

Using Eq. (2.9) and rearranging the terms so that same site operators are next to
each other
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,̃? = − f̃H1 f̃
I
1 f̃

I
2 f̃

G
2 f̃

G
3 f̃

H

3 f̃
H

4 f̃
I
4 f̃

I
5 f̃

G
5 f̃

G
6 f̃

H

6 . (2.33)

Here is when it all comes together. We know from Eqs. (2.20) - (2.23) that in the
subspace defined by � = 1, the Majorana spin representation obey all the properties
shared by the Pauli matrices, and therefore this subspace corresponds to the physical
subspace. But how does this condition affect equation (2.33)? Let us look at Eq.
(2.23):

f̃G9 f̃
H

9
f̃I
9
= 8.

From Eq. (2.22) we know that (f̃0
9
)2 = 1. Therefore

f̃G9 f̃
H

9
= 8f̃I

9
. (2.34)

Note that this is only true because we set � = 1. Substituting Eq. (2.34) on Eq.
(2.33) we finally get:

,̃? = f̃
G
1 f̃

H

2 f̃
I
3 f̃

G
4 f̃

H

5 f̃
I
6 , (2.35)

which is precisely Eq. (2.2) when we make the substitution f0
9
→ f̃0

9
. In other

words, when we set � = 1

,̃? = ,? . (2.36)

Thus, by making ,̃? = ,? in each and every plaquette, we can work in the expanded
space with ,̃? while having an accurate representation of the physical state.

2.3 The energy ground state
We are interested in studying the low energy limit, so the ground state is particu-

larly of interest. It follows from a theorem proved by Lieb, that the energy minimum
is achieved when ,? = 1 for all ? (Lieb, 1994). This configuration corresponds
to a vortex-free field regime, and is thus called the zero flux configuration. Conse-
quently, we may assume D 9 : = 1 for all links, where 9 belongs to the even sublattice
and : belongs to the odd sublattice. This field configuration is such that the system
now presents a translational symmetry and therefore the fermionic spectrum can
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be obtained analytically by the means of a Fourier transform applied to the now
quadratic Hamiltonian

�̃ =
8

2

∑
9 ,:

�U 9:
2 92: , (2.37)

where we set D 9 : = 1 for all 9 , : . The obtained spectrum is

n (q) = ±| 5 (q) |, (2.38)

where
5 (q) = 2(�G48(q,n1) + �H48(q,n2) + �I), (2.39)

and

n1 = (
1
2
,

√
3

2
), n2 = (−

1
2
,

√
3

2
) (2.40)

is the chosen basis of the translation group in the xy-coordinates.

From equation (2.38), an important property of the spectrum can be obtained.
If n (q) = 0 for some q, the spectrum is found the be gapless. It follows from Eq.
(2.39) that the spectrum is gapless if and only if |�G |, |�H |, |�G | satisfy the triangle
inequalities:

|�G | ≤ |�H | + |�I |, |�H | ≤ |�G | + |�I |, |�I | ≤ |�G | + |�H |. (2.41)

This is illustrated in figure (2.3).

2.4 The Majorana Honeycomb model and the implementation of disorder
It is known that the presence of disorder in a system can give rise to completely

new phenomena, such as the Griffith’s phase (Griffiths, 1969). With that in mind
and inspired on the Kitaev model, we set ourselves to study the effects of disorder
on a Majorana honeycomb model. Instead of a spin-1

2 , each site of figure (2.1) is
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Figure 2.3: Phase diagram of the model (2.37). The region defined by inequalities
(2.41) are marked by B.

now filled with a Majorana fermion and their interaction is analogous to that which
was found for the Kitaev model in terms of the Majoranas:

� =
∑
=.=.

C 9 ,: D 9 ,: [ 9 [: , (2.42)

where the sum is done over the nearest neighbours and here D 9 ,: simply states
the direction which the bond takes. The implementation of disorder was done
by generating random values for the coupling constants C 9 ,: according to some
distribution %(C), and the Majorana operators are now represented by [8.

We started by fixing ,? = 1 for all ? and thus studying such a system whose
initial configuration is analogous to that of the Kitaev model in the zero flux sector.
For this reason, we shall refer to it as theMajorana honeycombmodel in the zero flux
sector. We then proceeded to let ,? = ±1 be randomly and uniformly distributed.
For this study, ourmethod of choice was the StrongDisorder RenormalizationGroup
(SDRG). Afterwards, we applied the same method to a Majorana square lattice for
comparison. An isotropic distribution of C 9 ,: was chosen in all cases.
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C h a p t e r 3

STRONG DISORDER RENORMALIZATION GROUP

We now present the Strong Disorder Renormalization Group (SDRG) theory, a
method which was firstly introduced by Ma, Dasgupta and Hu in order to study a
spin-1

2 antiferromagnetic Heisenberg chain in the presence of disorder. This method
allows us to determine the physics of a many-body system at a specific energy scale.
It was designed to facilitate the study of a system in the low energy limit and consists
of decimations in real space of the highest value of a random variable. We shall start
by illustrating the method when applied to the spin-1

2 Heisenberg chain for didactic
reasons, and then apply it to the Majorana honeycomb model.

3.1 The SDRG and the 1/2-spin Heisenberg chain
The Heisenberg model for a spin-1

2 antiferromagnetic chain in the absence of an
external field is described by the Hamiltonian

� =
∑
8

�8S8 · S8+1, (3.1)

where (8 is the spin operator indexed to site 8, and �8 > 0 is the coupling constant
between spins (8 and (8+1. The disorder is introduced by letting all �8 be independent
random variables distributed according to some distribution %(�), as is illustrated
in figure (3.1).

Figure 3.1: spin-1
2 antiferromagnetic chain.

The idea now is to reduce the degrees of freedom of a spin through the pairing
with another spin in a singlet state. The procedure is as follows:
(8)We first find the highest energy coupling in the chain,Ω = max{�8}, e.g. Ω = �2.
(88) We now consider the interaction between S2 and S3 as much more significant
than that of S1 with S2 and that of S3 with S4, which is justifiable on highly
disordered systems. In other words, we take
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�1 = �1S1 · S2 + �3S3 · S4, (3.2)

as a perturbation of

�0 = �2S2 · S3. (3.3)

The ground state of �0 is a singlet state, so let us suppose that the energy of the
highest coupling in the system is much greater than the temperature T, temperature
in which we wish to determine the thermodynamic properties of the system, i.e.
�2 = Ω � ) . This means that the triplet state of the Hamiltonian �0 is very unlikely
to be thermically accessed. This justifies our next step.
(888) We remove (2 and (3 from the system and let (1 and (4 interact effectively in
accordance with

�eff = �̃S1 · S4, �̃ =
�1�2
2Ω

, (3.4)

where �̃ is obtained after a second order correction to Hamiltonian (3.3). This means
that the strongly correlated singlet pair, spins 2 and 3, have been frozen out, and sites
1 and 4 are now nearest neighbours. Due to the fact that the obtained Hamiltonian is
of the same form as the original one, we can reiterate the steps successively, meaning
we can go back to step (8) and repeat the steps until a point that is determined next.
The procedure is illustrated in figure (3.2).
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Figure 3.2: Schematic procedure of the SDRG.

The whole idea behind a renormalization group theory is to iterate the decimation
procedure until the parameters of the Hamiltonian no longer change upon new
iterations. When that happens, we say that we have found a fixed point, from
which we can extract the thermodynamic properties of the system (M. E. Fisher,
1974). In 1994, Fisher showed that for the SDRG method applied to the spin-1

2
antiferromagnetic chain, all non-trivial initial distributions %(�) have the same fate
(D. S. Fisher, 1994):
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%*(�,Ω) = U

Ω

(
Ω

�

)1−U
(3.5)

with

Δ�

〈�〉 → ∞. (3.6)

This means that the distribution gets asymptotically wide and disorder approaches
infinity as the distribution approaches its fixed point. This is extremely important
for it states that the probability of a decimation occurring in which the bond between
S1 andS2 or the bond betweenS3 withS4 is comparable to the one betweenS2 and
S3 goes to zero as the distribution approaches its fixed point. In other words, the
procedure is asymptotically exact, meaning the more we iterate, the more accurate
it becomes.

To find the system’s physical properties, the SDRGmethod dictates we iterate the
procedure until the energy scale Ω is lowered to match the temperature ) . After-
wards, the non-decimated spins are considered free, as in non-interacting, whereas
the ones that are paired are considered inert and therefore don’t contribute to the
thermodynamic quantities to be extracted. Thus, we are left with a system composed
only of free spins, therefore the system is easily diagonalized and consequently the
physical quantities are promptly obtained (Bhatt and Lee, 1982). This may seem
strange at first, but it is justified by the fact that the temperature ) of interest is much
lower than the initial energy scaleΩ0. Hence the system suffers enough decimations
so that the initial distribution %(�) is close to its fixed point %*(�). In this way, the
energy scale of the majority of the interactions between the remaining spins is much
lower than the temperature ) and the spins are essentially free. The static magnetic
susceptibility, j, for instance, is simply given by the Curie contribution of each of
the active spins at temperature ) .

j ∼ =Ω=)
)

, (3.7)

where =Ω=) is the fraction of active spins at energy scale Ω. Thus, we are left now
with the task of determining =Ω=) .
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We start by noting that, in each decimation, 2 spins are removed from the system.
This means that the fraction of spins 3=Ω that can be decimated when changing
the energy scale of the system from Ω to Ω − 3Ω is 2 times the fraction of spins
available for a decimation multiplied by the probability of a decimation occurring
in this specific energy scale, %(� = Ω)3Ω. Hence,

3=Ω = 2=Ω%(Ω)3Ω. (3.8)

We now assume that the distribution %(�) is close to its fixed point, so %(�) is
then given by %*(�), which is a justifiable assumption given that we are interested in
the low energy limit and all distributions flow to their fixed point eventually. Thus,
if we take %(�) ∼ %*(�) from Eq. (3.5) and make the substitution in Eq. (3.8) we
get

=Ω ∼
1
Γ2 , Γ = ln

Ω0
Ω
. (3.9)

Therefore the static magnetic susceptibility, j, at temperature ) is given by

j ∼ =Ω=)
)
∼ 1
)Γ2

Ω=)

. (3.10)

From Eq. (3.5) we can also determine the relation between energy and length
scales. It is clear that the average distance between neighbouring active spins tend
to grow as we remove spins from the system. This basically means that

!Ω ∼ =−1
Ω . (3.11)

Substituting Eq. (3.11) in Eq. (3.9) we find that the relation between energy and
length scales is given by

Γ ∼ !k
Ω
, k =

1
2
, (3.12)

where k is called the tunnelling exponent and it dictates an universality class. For
the antiferromagnetic Heisenberg chain, the tunnelling exponent was first calculated
by Fisher and found to be k = 1

2 . The particular relation between energy and length
scales depicted in Eq. (3.12) is named activated (exponential) dynamic scaling, and
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it is characteristic of systems with an infinite disorder fixed point. These systems
are said to flow towards infinite disorder.

One can also choose to iterate the method up to the point where all spins are
paired in a singlet state. When this happens, the system is said to be in a random
singlet phase, which in turn corresponds to the system’s ground state, as illustrated
in figure (3.3).

Figure 3.3: Random singlet phase.

We have thus far laid the basic concepts behind the SDRG and presented some
immediate theoretic results. These results have been numerically (Hoyos, 2005)
and empirically (Masuda et al., 2004) discoursed in other works. Our goal now is
to elaborate this method for Majorana fermions in the honeycomb lattice as well
as present and discourse our numerical results. It is important to make the remark
that from hereafter we are again working with Majorana fermions. Therefore, it is
necessary that we redefine the decimation procedure in terms of the Majoranas.

3.2 The Majorana Honeycomb SDRG
We shall now apply the same procedure to a Majorana honeycomb model. As

stated in section (2.4), we did so for two different initial distributions of the plaquette
operators,?, which we refer to as the zero flux sector and the random flux sector,
following what was done for the Kitaev model. As we shall see, however, the
renormalization procedure changes the lattice’s connectivity, in such a way that
we can no longer define these plaquette operators in the same manner. In
spite of this, for simplicity, we shall keep referring to the system whose initial
configuration is ,? = 1 for all ? as the Majorana honeycomb model in the zero
flux sector. Analogously, the random flux sector is used to denote the system when
the initial configuration is that of,? = ±1 randomly and uniformly distributed.

From Eq. (2.37), it follows that each site interacts with its three neighbouring
spins according to
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� =
∑
:

(±)8C 9 :[ 9[: , (3.13)

where : accounts for the sum over all three neighbouring spins and the plus-minus
sign is due to the fact that the bond between spins has a well-defined direction (in
accordance with the operators D 9 : defined in section (2.2), which can assume the
values +1 or −1). The first decimation procedure is illustrated in figure (3.4).

Figure 3.4: Visual representation of all the sites involved in the first decimation
procedure. The bond between spins 2 and 3 is found to be the strongest. The bond
direction was chosen in this particular way for it is the one which minimizes energy,
i.e., it corresponds to the zero flux sector.

Just as we did for the 1/2-spin Heisenberg chain, we take

�1 = 8C21[2[1 + 8C25[2[5 + 8C43[4[3 + 8C63[6[3 (3.14)

as a perturbation of

�0 = 8C23[2[3, (3.15)

where {[ 9 , [: } = 0, in accordance with Eq. (2.11). Here we chose the following
order for the representation of the interactions:

�8=C4A02C8>= = + 8 | C | [A4248E8=6 [B4=38=6 . (3.16)

The correction term in energy which arises from perturbation is given by:

�̃ =
1

�0 − �1
〈0|�1 |1〉〈1|�1 |0〉. (3.17)

Let us rewrite equations (2.12) - (2.15) for practical reasons:
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[2 |0〉 = (0 + 0†) |0〉 = |1〉,

[3 |0〉 =
0 − 0†
8
|0〉 = 8 |1〉,

[2 |1〉 = |0〉,

[3 |1〉 = −8 |0〉.

Here, |0〉 represents the usual spin-1
2 vacuum and |1〉 = 0† |0〉. Thus,�0 |0〉 = −C23 |0〉

and �0 |1〉 = +C23 |1〉, meaning that �0 = −C23 and �1 = +C23. Next we shall calculate
each term of Eq. (3.17) individually.

〈0|�1 |1〉 = 〈0|8C21[2[1 + 8C25[2[5 + 8C43[4[3 + 8C63[6[3 |1〉,
= 〈0| − 8C21[1[2 − 8C25[5[2 + 8C43[4[3 + 8C63[6[3 |1〉,
= 〈0| − 8C21[1 − 8C25[5 + C43[4 + C63[6 |0〉.

(3.18)

〈1|�1 |0〉 = 〈1|8C21[2[1 + 8C25[2[5 + 8C43[4[3 + 8C63[6[3 |0〉,
= 〈1| − 8C21[1[2 − 8C25[5[2 + 8C43[4[3 + 8C63[6[3 |0〉,
= 〈1| − 8C21[1 − 8C25[5 − C43[4 − C63[6 |1〉.

(3.19)

Equation (2.9) states that [2
:
= 1, thus:

〈1|[8 |1〉 = 〈1|[2
2[8 |1〉,

= −〈1|[2[8[2 |1〉,
= −〈0|[8 |0〉.

(3.20)

Therefore we write:

〈0|�1 |1〉 = −8C21[1 − 8C25[5 + C43[4 + C63[6, (3.21)

〈1|�1 |0〉 = 8C21[1 + 8C25[5 + C43[4 + C63[6. (3.22)

Substituting this result in equation (3.17) along with what we found for �0 and �1,
multiplying the terms, and neglecting the constants we finally obtain

�̃ = 8

(
C21C43
C23

)
[4[1 + 8

(
C21C63
C23

)
[6[1 + 8

(
C25C43
C23

)
[4[5 + 8

(
C21C63
C23

)
[6[5 . (3.23)
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Notice how each of the terms in the equation above is precisely of the form

�8 9 = 8C̃[8[ 9 , C̃ =
C8C 9

CΩ
, (3.24)

where CΩ is the strongest coupling between active spins in the system, which implies
that C̃ < C8, C 9 always, as intended. What this means is that the perturbation basically
has the effect of creating weaker, yet new interactions between sites which were
initially disconnected. Following the steps defined in section (3.1), we now freeze
out sites 2 and 3 and let the effective interaction be given by equation (3.23).

Taking a closer look at equation (3.23), one can see that the sites which were
originally attached to the same side of the decimated bond do not form a connection
between them, whereas all Majoranas which were originally attached to opposite
sides of the decimated bond do. This is illustrated in figure (3.5).

Figure 3.5: Representation of a single decimation in a previously non-decimated
system.

Notice how this procedure changes the topology of the system. After the decima-
tions start, the fermionic interactions are no longer restricted to that of a honeycomb
lattice, which is already in direct contrast to what happens in the 1-dimensional
Heisenberg chain. As stated above, all Majoranas which were originally attached
to opposite sides of the decimated bond form a new connection. This means that
the number of new bonds created in each decimation is 8 × 9 , where 8 is the number
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of sites connected to one side of the decimated bond, and 9 is the number of sites
connected to the other end.

Let us suppose now that at some point Ω = C41, meaning that this bond shall be
decimated and all sites connected to site 4 are to form bonds with all sites connected
to site 1. However, we see that two of them are already connected, 7 and 8. If
we calculate the effective coupling arising from second order perturbation theory in
this case, we naturally get the term 8C̃[8[7, among others. This term can be factored
together with the one that represents the already existing bond between sites 8 and
7, which is part of the system’s Hamiltonian, 8C87[8[7. This gives us 8 (C87 + C̃) [8[7.
Thus

�̃87 = 8C̃
′[8[7, C̃′ = C87 + C̃ . (3.25)

This means that whenever a new bond is to be generated where there is already an
existing connection, the resulting binding energy is simply given by the direct sum
of the energy originated from the already existing bond and the energy that arises
from the decimation procedure. This implies that applying the SDRG method to a
system composed of # Majorana fermions yields ∼N3 interactions.

There are still two remarks left that we wish to make before proceeding into the
computational part, and for that we again turn our attention to equation (3.23). The
Majorana fermion honeycomb model consists of a bipartite system, for it can in turn
be seen as two triangular Bravais lattices, which we have been referring to as "even"
and "odd". Initially, the odd sites are connected only to the even sites, and vice
versa, as can be seen in figure (2.1). As stated before, equation (3.23) shows us that
there are no arising connections between sites which were originally attached to the
same side of a decimated bond, hence there is no "odd"-"odd" connection, nor there
is an "even"-"even" connection. Therefore the decimation procedure preserves the
bipartite structure of the system.

The other very important aspect we wish to point out is that the aforementioned
procedure was illustrated for a very specific case, the one in which all initial bonds
point in the direction of the even sites. This initial configuration, besides representing
the zero flux sector, also possesses a peculiar property. All even sites will always
be on the receiving end of the bonds, even when the SDRG completely changes



33

the system’s connectivity. This is not true, however, for a different initial bond
configuration. Figure (3.6) shows how the direction of the arising bond is related to
the initial bond configuration.

Figure 3.6: Every possible initial bond configuration which influences the direction
of the arising bond. The wavy arrows representΩ, while the blue ones represent the
direction of the new bond, resultant of perturbation.
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C h a p t e r 4

ALGORITHM AND RESULTS

4.1 The zero flux sector
We now discuss our findings for the disordered Majorana honeycomb model.

We started by generating the honeycomb lattice with randomly assigned coupling
constants distributed according to an uniform distribution, i.e.

%(C) = 1, C ∈ (0, 1). (4.1)

We then fixed,? = 1 for all plaquettes, and therefore focused on the zero flux sector.
The choice for the bond configuration which upholds,? = 1 for all plaquettes was
D 9 : = 1 for all links, where 9 belongs to the even sublattice and : belongs to the
odd sublattice, just as was done for the Kitaev model (figure 4.1). Following our
choice of representation (equation 3.16), the Hamiltonianwhich describes this initial
condition is given by Eq. (4.2).

Figure 4.1: Representation of a single plaquette. All even sites are on the receiving
end of the bonds.

� =
∑
=.=.

+ 8 | C | [4E4= [>33 . (4.2)

Our goal then was to use the SDRG method to determine how energy relates to
the number of active Majoranas, for this way we can work out a relation similar to
equation (3.12). The obtained result for a system of 1128 Majoranas is shown in
figure (4.2).
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Figure 4.2: System composed of 1128 Majorana fermions. Γ = ln Ω0
Ω
.

The method raises the system’s energy scale, meaning the SDRG seems inade-
quate to study the system under these initial conditions.

In an attempt to verify if the observed behaviour is a consequence of the system
size, we aimed to reduce computational time and thus work with increased system
sizes. The idea was to reduce the ∼ #3 interactions that the SDRG for the Majorana
honeycomb model yields. We asked ourselves if we could keep track of only some
: greatest bonds for each site and obtain the same energetic result for each step of
the decimation, up to the random singlet phase, this way reducing the number of
interactions to ∼ :#2 (figure 4.3).

For a given initial configuration of a system composed of 1128 sites, we found
that cutoff number to be : = 70. What was left to see was how this number would
change upon new realizations of the program and how it relates to system size. Our
findings can be seen in figure (4.4).

From thereafter, using that result, we expanded the system’s size and always
worked above the cutoff value, in order to obtain the same energetic result as if we
were applying the exact decimation procedure. We then reran the simulation for
a system composed of 4186 Majoranas under the same initial conditions, i.e., zero
flux sector and C uniformly distributed, with : = 300 (figure 4.5).
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(a)

(b)

(c)

Figure 4.3: System composed of 1128 Majorana fermions. In each realization we
tested a number : above which there is a cutoff and the weaker connections of a site
are discarded so as to only keep track of the : greatest bonds. e.g.: if the cutoff
: = 40 and a site is about to go from 30 connections to 50 connections, we discard
the 10 weakest interactions and that site is left with only the 40 strongest bonds.
(a): = 20. (b): = 50. (c): = 70.

The system’s energy scale increases even more! We are thus led to believe that
this behaviour is not consequence of system size and hence the method is inadequate
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Figure 4.4: Cutoff value : for a given system size. For each size multiple program
realizations were made.

Figure 4.5: System composed of 4186 Majoranas. The method still raises the
system’s energy scale.

given these initial conditions. In trying to understand this, we supposed that the
behaviour is due to bad decimations, meaning that the system cannot get through
the initial regime where the distribution of C is not yet broad, in a manner that
the distribution does not flow to the neighbourhood of its fixed point. To test this
hypothesis, we increased the initial disorder so that the system may be able to cross
the initial regime resulting in the decimations becoming asymptotically exact. This
was done by changing the initial distribution %(C) to

%(C) = U 1
C1−U

, C ∈ (0, 1), U > 0. (4.3)
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It follows that smaller U → Stronger disorder (appendix A). Our goal then was to
find U, if there was one, for which the energy scale only diminished while still in
the zero flux sector

To search for a critical value for U, we worked with a fixed system size # , started
with U = 1 and systematically decreased it by 0.01 each simulation, thus increasing
the disorder in the initial distribution every time. We actually relaxed the condition
for Γ in a manner that we demanded that

Γ < 1.5Γ0, (4.4)

to account for the fact that there can be some bad decimations in the initial regime,
given that the method is suited to study the physics in the low energy limit, where
the decimations need to be asymptotically exact. The result obtained for a system
composed of 4186 sites, with U = 0.30, is displayed in figure (4.6).

Figure 4.6: System composed of 4186 Majoranas. The method seems adequate
given the initial condition U = 0.30. We suppose that the difference in behaviour
near the end of the decimations is due to finite system size; since we are interested
in the thermodynamic limit, this wouldn’t be a problem.

Figure (4.6) implies that there is a critical value of U, given that initial config-
uration, for which the method reduces the system’s energy scale. To see how this
reflects in the distribution of C we take a look at the distributions in both cases, i.e.,
U = 1 and U = 0.30 for the system composed of 4186 Majoranas (figure 4.8).
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Figure 4.8: Distribution flow for a system composed of 4186 Majoranas under two
different initial disorders, U = 1 and U = 0.3.

We observe, in figure 4.8, how wider the distribution for U = 0.3 gets as we iterate
the decimation procedure in comparison with the distribution for U = 1. Of course,
the initial distribution for U = 0.3 is already broader, as expected. However the
difference in growth strongly suggests that our proposition is correct. The system
with U = 1 cannot get through the initial regime where %(C) is not yet wide and the
distribution doesn’t flow to the neighbourhood of its fixed point. Whereas the wide
distribution for U = 0.3 suggests that the system does flow to the neighbourhood of
its fixed point and the method is adequate for studying the effects of disorder under
these initial conditions as long as the result is extendible to the thermodynamic
limit.

To determine whether obtained results for a reduced system size can be extended
to the thermodynamic limit, we need first to determine how U relates to system size.
Our findings can be seen in figure (4.9).
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Critical U necessary for non-anomalous behaviour

Figure 4.9: Two plots for the necessary U so that the method actually diminishes
the system’s energy scale. In order to check for a power law dependency we did a
log-log plot. From these we extrapolate the behaviour for # →∞ to determine how
disorder affects the system in the thermodynamic limit.

We observe that the relation between U and 1/# is approximately linear above
a certain system size. We argue that the realizations for smaller systems are inac-
curate, for the distribution does not have enough time to be sufficiently wide and
consequently the result is heavily influenced by the finiteness of the system. That
being said, we considered only systems with # > 3000, and extrapolated U as
# →∞ (figure 4.10).

Critical U necessary for non-anomalous behaviour

Figure 4.10: Linear fitting for the critical U considering only systems where # >

3000. The second plot consists of a close up of the considered data, and was done
to better see how well the linear fitting adjusts the data.

If this relation is indeedmaintained as # →∞, then U 9 0. This means that there
is a value of U below which the system always flows to infinite disorder. Our results
suggest that this value is U = 0.12 ± 0.02. Consequently, the Majorana honeycomb
model in the zero flux sector will always flow to infinite disorder given that the initial
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disorder is strong enough, whereas the symmetry somehow protects the system from
weak disorder; a symmetry which arises from making all,? = 1 and thus imposing
specific directions for each bond. This is analogous to the Haldane phase, in which a
gap shields the system from weak disorder in a spin-1 antiferromagnetic Heisenberg
chain.

4.2 The random flux regime
We now turn our attention to the random flux regime, this means the plaquettes

are no longer restricted to,? = 1 (figure 4.11). It is extremely important to remark
that an uniform distribution of ,? was used, meaning that for roughly half of the
plaquettes,? = 1, while for the other half,? = −1. This corresponds to a highly
excited initial state.

Figure 4.11: Possible plaquette configuration.

Following our choice of representation (equation 3.16), the Hamiltonian which
encloses this initial condition is

� =
∑
=.=.

± | C | [4E4= [>33 . (4.5)

We chose to work with the distribution from Eq. (4.3), yet starting with U = 1,
thus using a uniform distribution for the initial tests. Again, our goal was to analyse
how energy relates to the number of activeMajoranas. To do this, we first determined
a cutoff value : just like was done for the zero flux case:

Afterwards, we applied the initial condition described above, i.e., U = 1, and
ran the simulation for a system composed of 4186 Majoranas while maintaining
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Figure 4.12: Cutoff value : for the number of bonds to be considered for each site so
as to get the exact result. We can clearly see that : is better defined for the random
flux case.

: = 500. We observed that energy relates to the number of active sites in the
manner shown in figure (4.13).

Figure 4.13: System composed of 4186 Majoranas, for a random flux configuration
and an uniform initial distribution. Some bad decimations happen in the initial
regime, as can be seen by the large fluctuations at the early stages of the procedure,
but they quickly disappear in the low energy limit. The anomalous behaviour at the
end is believed to be the effect of a finite system.

The method seems to work as intended, lowering the system’s energy scale even
for an uniform initial distribution. Indeed, by checking the distribution flow figure
(4.14), we see that disorder grows asymptotically, thus we say that the system flows
to infinite disorder and therefore an activated dynamic scaling behaviour, similar to
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equation (3.12), is to be verified. But first, one can wonder what would be the effect
of increasing the initial disorder. To test that, we reran the simulation with U = 0.3
(figure 4.15).

Figure 4.14: Distribution width for different stages of the decimation procedure
given an uniform initial distribution.

Figure 4.15: Energy density given a stronger initial disorder. Bad decimations can
no longer be seen at the early stages of the procedure, but the anomalous behaviour
at the end remains.

The system gets through the initial regime faster and the decimations become
asymptotically exact sooner, as can be seen by the distribution flow in figure (4.16).
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If this influences a system’s properties in the thermodynamic limit is discussed next,
when we calculate the tunnelling exponent k for both cases.

Figure 4.16: Distribution width for different stages of the decimation procedure
given a stronger initial disorder.

To calculate k, we considered the interval of decimations for which the system is
assumed to be close to its fixed point but sufficiently distant from the last decimations
so as to avoid the effects of a finite sized system. Figure (4.17) shows our findings
for a system composed of 4186 Majoranas, both for U = 1 and for U = 0.3.

For both cases we found k to be fairly close to the one calculated by Fisher for
the antiferromagnetic Heisenberg chain, i.e., k = 1/2. This exponent dictates an
universality class, and is not in any way restricted to k = 1/2. We strongly believe
that the Majorana honeycomb model in the random flux regime always flows to
infinite disorder, with a tunnelling exponent k = 1/2. The effect of a stronger initial
disorder, i.e., a broader initial distribution, is believed to only affect how fast the
procedure becomes asymptotically exact. Given that we are interested in the low
energy limit, this difference in initial configuration is presumed to be neglectable
in the thermodynamic limit. Further testings with increased system size should be
done to corroborate the hypothesis. In the future, we wish to vary the distribution
of,? in order to see how it affects these results.
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(a) (b)

(c) (d)

Figure 4.17: System composed of 4186 Majorana fermions. The upper panel
corresponds to U = 1, while the second one to U = 0.30. (b) and (d) represent,
respectively, the slice of (a) and (c) considered in the calculation of k. (b) k = 1

1.90 .
(d) k = 1

2.04 .

4.3 The square lattice
Lastly, we present a brief result for the Majorana square lattice. It follows in

figure (4.18), a program realization for a system composed of 3136 Majoranas for
U = 1. The bond directions were randomly attributed, so this would be analogous
to the random flux regime.

The method lowers the system’s energy scale even for U = 1, but it is clear
that bad decimations happen more often when in comparison with the honeycomb
model. We take this to be the consequence of a higher initial connectivity, i.e.,
each site is connected to 4 other sites, meaning the probability of a bad decimation
occurring is higher. Consequently, testings with increased system size should yield
more accurate results. This shall be done in the future.
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Figure 4.18: The Majorana square lattice composed of 3136 sites. For this case we
found k = 1

2.14 . We took : = 800 as a benchmark hasn’t been done for the square
lattice yet.
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C h a p t e r 5

CONCLUSIONS

In this work we discussed the effects of disorder on aMajorana honeycombmodel.
For this study the method of choice was the Strong Disorder Renormalization Group
(SDRG), first introduced by Ma, Dasgupta and Hu in order to study the low energy
physics of a spin-1

2 antiferromagnetic Heisenberg chain in the presence of disorder.
We started by fixing the initial state of the plaquette variables ,? in a specific
configuration which corresponds to the sector containing the ground state, i.e., the
zero flux sector. Our findings suggest that the Majorana honeycomb model in the
zero flux sector is shielded against weak disorder, whereas the system always flows
to infinite disorder given that the initial disorder is strong enough (figure 4.10). We
do not know the reasoning behind this, but we suppose the symmetry somehow
protects the system from weak disorder; a symmetry which arises from making all
,? = 1 and thus imposing specific directions for each bond. This is analogous to
the Haldane phase, in which a gap shields the system from weak disorder in a spin-1
antiferromagnetic Heisenberg chain.

We then uniformly randomized ,? in a manner that for roughly half of the
plaquettes ,? = 1, while for the other half ,? = −1, which corresponds to a
highly excited initial state. By analysing the distribution width of %(C) during the
decimation procedure, we concluded that the Majorana honeycomb model always
flows to infinite disorder, even for a uniform initial distribution (figures 4.13, 4.14).
We also determined the tunnelling exponent k for such systems through the relation
between energy density and the fraction of active fermions and found it to be k ∼ 1

2
(figure 4.17). Moreover, we presented a brief result for the Majorana square lattice
(figure 4.18). The system appears to flow to infinite disorder, however further
testings are necessary for conclusive results.

In the future, we aim to increase system size to further corroborate our hypothesis,
not only for the honeycomb model but also for the square lattice. We also seek to
vary the distribution of,? in order to see how it affects these results.
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A p p e n d i x A

HOW U RELATES TO DISORDER

Let us calculate ΔC
〈C〉 so as to determine how the dispersion of %(C) relates to U. The

distribution in question is that of Eq. (4.3), i.e.,

%(C) = U 1
C1−U

, C ∈ (0, 1), U > 0, (A.1)

〈C〉 =
∫ 1

0
CU

1
C1−U

3C =
U

1 + U . (A.2)

ΔC =

√∫ 1

0
C2U

1
C1−U

3C − 〈C〉2 =
√

U

2 + U −
( U

1 + U

)2
. (A.3)

Therefore,

ΔC

〈C〉 =

√
U

2+U −
(
U

1+U
)2

U
1+U

=

√
1

U(2 + U) . (A.4)

Consequently, the smaller the value of U is, the greater is the dispersion, i.e., the
greater is the initial disorder.
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